Institutt for økonomi og administrasjon

Størrelse: px
Begynne med side:

Download "Institutt for økonomi og administrasjon"

Transkript

1 Fakultet for safusfag Istitutt for økooi og adiistraso Ivesterig og fiasierig Bokål Dato: Tirsdag. deseber 4 Tid: 4 tier / kl. 9-3 Atall sider (ikl. forside): sider vedlegg Atall oppgaver: 4 Tillatte helpeidler: Kalkulator (se kalkulatorregleetet) Merkad: Kadidate å selv kotrollere at oppgavesettet er fullstedig. Besvarelse skal erkes ed kadidatuer, ikke av. Bruk blå eller sort kulepe på iførigsarket. Eekode: ØABED (ORD)

2 Oppgave ( %) E fisk bedrift har utviklet et uikt keisk produkt so ka sprøytes på ytterveggee på bolighus og ligede i tre og forlege itervallee ello hver gag bygigee å ales eller beises. Bedrifte har tatt patet på produktet og patetet løper i ytterligere 6 år. AS ABC Keikalie blir å tilbudt å produsere og selge dette produktet på lises i Norge så lege patetbeskyttelse varer, det vil si i 6 år til. Etter at patetbeskyttelse er utløpt, vetes det e itesiv priskokurrase og det vurderes so uaktuelt å fortsette produksoe etter det. Det er satt opp følgede bidragskalkyle pr. liter av produktet: Salgspris 5 Råvarer 5 Lø 5 Dekigsbidrag Det er aslått at ulig salg av produktet er liter pr. år. Derso det blir aktuelt å produsere produktet, er det bereget at det vil bli ødvedig ed ivesterig i produksosutstyr for kr 4. Det reges ikke ed at utstyret vil ha salgsverdi ved levetides slutt. Det er også aslått at arbeidskapitalbehovet blir 5. Ledelse aslår også at det ye produktet å arkedsføres itesivt i hele periode, og det er aslått at dette vil koste 5 årlig. Det er også aslått at betalbare faste kostader vil øke ed 6 årlig ut over hva de er å, derso prosektet igagsettes. ABC Keikalie forhadler fredeles ed de fiske bedrifte hva a skal betale for rettighetee til å produsere produktet, e det ka se ut so at a lader på e pris på 3, so evetuelt skal betales so et egagsbeløp straks prosektet evetuelt starter. ABC Keikalie bruker et avkastigskrav på % før skatt i sie ivesterigskalkyler. Nye opplysiger i e deloppgave gelder bare for vedkoede oppgave ed idre oe aet klart fregår. a) Basert på opplysigee so er gitt over, bør ABC Keikalie igagsette prosektet? Bereg åverdi og iterrete. Se bort fra skatt. b) Side det er et relativt ytt produkt, er grade av aksept i arkedet og ulig salgspris usikre. Hva er laveste salgspris og laveste salgsvolu so vil gi prosektet løsohet? c) Hva er det este a ka betale for rettighetee til å produsere produktet?

3 Oppgave (35 %) AS EBC er et selskap ie farasøytisk idustri. Ma vurderer å å lasere ulike legeidler so er utviklet av et aet selskap, på lises. Liseskostadee er avtalt til å være 5 % av osetige. AS EBC forveter e gradvis økig i etterspørsele etter edikaetee, og a har satt opp følgede resultatbudsett for åree 5 9 (du ka ata at 5 er o år det vil si år og at igage til 5 er år ): Itekter Liseskostader Løskostader Materialkostader Idirekte kostader Avskriviger Retekostader Resultat Alle tall er i kr, slik at for eksepel itektee i 5 er 7 5. Derso prosektet settes i gag å a istallere i askier og utstyr for 5. Aleggsidlee avskrives lieært til e restverdi på 5 ved levetides slutt, og a atar også at dette ka være salgsverdie for aleggsidlee. Ikludert i de idirekte kostadee er fordelte faste kostader fra hovedkotoret so beløper seg til 44 årlig. De øvrige idirekte kostadee ka tilskrives prosektet. AS EBC vil også åtte ha e høyere beholdig av varelager og høyere kudefordriger derso prosektet starter. Ved oppstarte blir arbeidskapitalbehovet 95, så sker det e ytterligere økig på 5 i år og i år. Arbeidskapitale blir frigort ved levetides slutt. Derso prosektet geoføres vil det også være behov for å overføre e perso fra hovedkotoret, og hu vil ha overoppsy ed dette prosektet i år, for deretter ige å bli tilbakeført til hovedkotoret. Hees lø er 6 årlig. Mes hu er aktiv i dette prosektet å hovedkotoret asette e perso i hees sted, og det budsetteres ed e årlig lø på 45. Selskapet bruker et avkastigskrav på % før skatt. a) Budsetter kotatstrø og bereg åverdi. Er prosektet løsot? Se bort fra skatt. b) Se bort fra opplysige o avkastigskrav over. Ata å at prosektet fiasieres ed 5 % geld og at geldsrete er 6,75 % før skatt. Risikofri rete er 4 % og arkedsavkastige er %. Skattesatse er 8 % og selskapets egekapitalbeta er,63. Hva er selskapets WACC etter skatt? Rud gere av til æreste hele proset. c) Ata å at aleggsidlee avskrives etter saldoprisippet skatteessig ed e saldosats på 5 %. De skatteessige gustigste behadlige av salget av aleggsidlee skal brukes. Hva er prosektets åverdi etter skatt? Rud gere av tallee i beregigsgrulaget til æreste hele tall.

4 Oppgave 3 ( %) Du vurderer å askaffe e y bil og har fuet e eget bil. Bile koster 5 og du har 5 i egekapital og å dered låefiasiere reste. Nedefor fier du ekelte detaler o et låetilbud du har fått fra Nordea. Lået skal edbetales so et auitetslå ed åedlige betaliger over 5 år. a) Nordea oppgir at åedlig teribeløp på dette lået er Vis hvorda dette tallet er bereget. b) Splitt det åedlige teribeløpet opp i reter, avdrag og gebyr for de første 3 åedee. c) Nordea oppgir at de effektive rete på lået er 6,69 %. Vis hvorda dette er bereget. d) Hva blir realrete etter skatt, derso prisstigige blir % og di skattesats er 8 %. e) Hva ville de effektive rete blitt derso det ikke hadde vært gebyrer av oe slag?

5 Oppgave 4 (5 %) E ivestor vurderer å ivestere ehete i prosekt A eller B. Nedefor fier du ekelte opplysiger o prosektee: Kouktur Sasylighet Avkastig på A Avkastig på B Høykouktur, % 3 % Noral,6 % % Reseso, 3 % -5 % a) Ute å foreta oe beregiger, ka du gi e begruelse for hvilket prosekt so er est risikabelt? b) Bereg forvetet avkastig og risiko (stadardavvik) for hvert prosekt. c) Bereg forvetet avkastig og risiko for e porteføle beståede av 75 % A og 5 % B. Du velger selv hvilke etode du vil bruke for å berege verdiee. Ata at ivestore også vurderer to prosekter X og Y. Korrelasoe ello avkastige på X og arkedsavkastige er,5. Stadardavviket for avkastige til X er,. Stadardavviket for avkastige til Y er,7. Korrelasoe ello avkastige på Y og arkedets avkastig er,3. Stadardavviket til arkedsavkastige er,35. Korrelasoe ello avkastige til X og Y er,3. d) Hva er betaverdiee til X og Y? e) Hva er risikoe til e porteføle beståede av 3 % X og 7 % Y?

6 Forelsalig Fiasierig og ivesterig. Reteregig Sluttverdi FV av et beløp CF, retesats i og periodeatall : - FV CF ( i) Nåverdi PV av et beløp FV, retesats i og periodeatall : - PV FV ( i) Nåverdi PV av e etterskuddsauitet PMT, retesats i og periodeatall : -3 ( i) PV PMT i ( i ) Auitetsfaktore A år,i %, dvs åverdie av kroer ed rete i etter perioder: A -4 år, i% Ivers auitetsfaktor over år: -5 A år,% i ( i) i ( i) årlig ytelse for å avdra og forrete et auitetslå på kr. til i% rete i( i) Aåt,% i ( i) Etterskuddsauitet PMT for åverdie PV, retesats i og periodeatall : -6 i( i) PMT PV ( i) Nåverdi PV av e etterskuddsauitet CF, retesats i og uedelig levetid: -7 PV CF i Nåverdi PV av e etterskuddsauitet CF, retesats i, vekstfaktor g, og uedelig levetid: -8 PV CF i g Nåverdi PV for e etterskuddsauitet CF, retesats i, vekstfaktor g, og periodeatall : -9 ( i) ( g) PV CF ( i) ( i g) Årsrete p år perioderete er q og atall perioder i året er : - p ( q) Effektiv årsrete ieff år oiell årsrete er i, er atall perioder i året i - ieff ( )

7 . Nåverdi og iterrete Nåverdie NPV av kotatstrøe CF, CF, CF,..,CF over perioder til retekrav i: CF CF CF - NPV CF... ( i) ( i) ( i) Iterrete irr for kotatstrøe CF, CF, CF,..,CF over perioder CF CF CF - CF... ( irr) ( irr) ( irr) 3. Nåverdi og skatt Effektiv skattesats se år iterrete før skatt er p, iterrete etter skatt er r: p r 3. se p Bokført restverdi i år t: RVt, år askaffelseskost er AM so avskrives ed saldosats a: 3. RV AM ( a) t Avskrivig i år t: AVt, for e ivesterig ed askaffelseskost AM, ed saldosats a: 3.3 ( ) t AVt AM a a Nåverdi av fretidige saldoavskriviger år askaffelseskost er AM so avskrives ed saldosats a og kapitalkostad k: 3.4 Nåverdi av saldoavskriviger AM k Nåverdi av spart skatt av saldoavskriviger år askaffelseskost er AM, saldosats a og kapitalkostad k: 3.5 Nåverdi av spart skatt AM a s k a Nåverdi etter skatt saldogruppe A-D og J år askaffelseskost er AM, saldosats a, salgsverdi etter år SV, skattesats s og kapitalkostad k: 3.6 CFt ( s) SV AM a s SV a s NPV AM t ( k) ( k) ( k a) ( k) ( k a) t Nåverdi etter skatt i saldogruppe E-I, sybolbruk so i forrige uttrykk, og g er gevistførigssats: 3.7 t a a CF ( ) ( ) ( ) t s SV AM a s AM a a s SV AM a g s NPV AM t ( k) ( k) ( k a) ( k a) ( k) ( k g) ( k) 4. Avkastigskrav på fiasivesteriger og iflaso Realavkastig før skatt pr, oiell avkastig p og prisstigig : p 4. pr 4. p p ( ) r Realavkastig etter skatt rr, oiell avkastig p og prisstigig : p ( s ) 4.3 rr 5. Forvetet verdi, varias, stadardavvik, kovarias og korrelasoskoeffesiet Forvetet avkastig E(r) av ulige utfall for avkastig r, r,,r, ed sasyligheter p, p,.,p:

8 5. E r p r p r... p r Variase på avkastig r, Var (r) eller σ 5. ( ) ( )... ( ) Var r r E r p r E r p r E r p Stadardavviket av avkastige, σ 5.3 Var() r Forvetet avkastig E(rp) i e porteføle av akser ed forvetet avkastig E(r), E(r),.,E(r), ed porteføleadeler w, w,..,w : 5.4 Erp w Er w Er... w Er Kovariase ello avkastige på akse A, ra i forhold til avkastige på akse B, rb, : σab 5.5 ( ) ( )... ( ) ( ) r E r r E r p r E r r E r p AB A A B B A A B B Korrelasoskoeffesiete ello avkastige på akse A og avkastige på akse B, ρab 5. 6 AB AB A B Variase på avkastige i e porteføle P ed adel wa i akse A og wb i akse B: var (P) eller P 5.7 Var r w w w w P P A A A B AB B B w w w w A A A B AB A B B B Stadardavviket på avkastige i e porteføle P σp: 5.8 Var ( r ) P P Miiu varias porteføle: 5.9 a A ( rb ) ( ra, rb ) ( ra ) ( rb ) ra rb ra rb ra rb ( ) ( ) (, ) ( ) ( ) 5. Sharpe E() r rf

9 6. Kapitalverdiodelle, kapitalkostader og akseverdi Forvetet avkastig på akse : E(r), risikofri rete rf, forvetet avkastig på arkedsporteføle E(r), β er betaverdi for akse 6. Er rf Er -rf Med skatt s er uttrykket: 6. E r rf ( s) E r rf ( s) Avkastigskrav for geld (før skatt) 6.3 E r r E r r ( s) g f g f Betaverdie for akse, β cov( r, r ) var( r ) Epirisk varias på avkastige var(r) for e akse, ed observasoer, ed avkastige ri, for periode i, og r er geosittlig avkastig: i 6.6 Var r r r i i Epirisk kovarias cov(r,r) ello avkastige r på akse og avkastige r på arkedsporteføle : i 6.7 cov r, r ri r ri r i Dages aksepris P, este års utbytte D, kostat vekst g i utbyttet og kapitalkostad r. 6.8 P D r g (De veidde) kapitalkostad for totalkapitale rt, egekapitalkostad re, låekostad rg, skattesats s, retebærede geld G, og egekapital E: E G 6.9 rt re rg s E G E G Vektstagforele: G E 6. r r r r s e t t g

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfusfag Istitutt for økoomi og admiistraso Ivesterig og fiasierig Bokmål Dato: Madag. desember 3 Tid: 4 timer / kl. 9-3 Atall sider (ikl. forside): 5 + sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

Rente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015

Rente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015 Rete og pegepolitikk 8. forelesig ECON 1310 21. september 2015 1 Norge: lav og stabil iflasjo det operative målet for pegepolitikke, ær 2,5 proset i årlig rate. Iflasjosmålet er fleksibelt, dvs. at setralbake

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Dato: Torsdag 1. desember 2011

Dato: Torsdag 1. desember 2011 Fakultet for samfunnsfag Økonomiutdanningen Investering og finansiering Bokmål Dato: Torsdag 1. desember 2011 Tid: 5 timer / kl. 9-14 Antall sider (inkl. forside): 9 Antall oppgaver: 4 Tillatte hjelpemidler:

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Høgskoleni Østfold NY/UTSATT EKSAMEN. Emne: Finansiering og investering. Eksamenstid: :00

Høgskoleni Østfold NY/UTSATT EKSAMEN. Emne: Finansiering og investering. Eksamenstid: :00 Høgskoleni Østfold NY/UTSATT EKSAMEN Emnekode: SFB11002 Dato: 05.01.2016 Emne: Finansiering og investering Eksamenstid: 09.00-13:00 Hjelpemidler: Kalkulator Faglærer: Trond-Arne Borgersen Eksamensoppgaven:

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer Iveseriger og ska Løsomhe av fiasiveseriger før og eer ska Løsomhe av realiveseriger eer ska Avhedelse (salg) av aleggsmidler Egekapialavkasig eer ska Joh-Erik Adreasse 1 Høgskole i Øsfold Skaesaser med

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning - Obligatorisk oppgave 1310, v15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning - Obligatorisk oppgave 1310, v15 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sesorveiledig - Obligatorisk oppgave 30, v5 Ved sesure tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksame, må besvarelse

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Høgskolen i Hedmark. 3BED200 Investering og finansiering. Ordinær eksamen høsten 2014. Vedlegg: Rentetabell 1-6 og 5 sider formelsamling.

Høgskolen i Hedmark. 3BED200 Investering og finansiering. Ordinær eksamen høsten 2014. Vedlegg: Rentetabell 1-6 og 5 sider formelsamling. Høgskolen i Hedmark 3BED200 Investering og finansiering Ordinær eksamen høsten 2014 Eksamenssted: Rena Eksamensdato: 4. desember 2014 Eksamenstid: 09.00-13.00 Sensurfrist: 29. desember 2014 Tillatte hjelpemidler:

Detaljer

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1 Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Høgskolen i Hedmark. SBED200 Investering og finansiering Ordinær eksamen høst 2014. Eksamenssted: Studiesenteret.no / Campus Rena

Høgskolen i Hedmark. SBED200 Investering og finansiering Ordinær eksamen høst 2014. Eksamenssted: Studiesenteret.no / Campus Rena Q) Høgskolen i Hedmark SBED200 Investering og finansiering Ordinær eksamen høst 2014 Eksamenssted: Studiesenteret.no / Campus Rena Eksamensdato: 4. desember 2014 Eksamenstid: 09.00 13.00 Sensurfrist: 29.desember

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Eksamen Finansiering og investering Vår 2004

Eksamen Finansiering og investering Vår 2004 Eksamen Finansiering og investering Vår 2004 Eksamen teller totalt 40% av totalkarakteren Tid: 4 timer Hjelpemidler: I tillegg til kalkulator får dere også utdelt et formelark samt en rentetabell som begge

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Realavkastning. Investeringsanalyse og inflasjon. Realavkastning av finansinvesteringer

Realavkastning. Investeringsanalyse og inflasjon. Realavkastning av finansinvesteringer Ivesteigsaalyse og iflasjo Nomiell avkastig og ealavkastig Reell låeete (ealete) Realivesteige og iflasjo Kotatstøm i omielle og faste pise Iflasjo og skatt Omløpsmidle og iflasjo Joh-Eik Adeasse 1 Høgskole

Detaljer

Finans Formelark Antall formler: 46 formler Antall emner: 7 emner Antall sider: 16 Sider Forfatter: Studiekvartalets kursholdere

Finans Formelark Antall formler: 46 formler Antall emner: 7 emner Antall sider: 16 Sider Forfatter: Studiekvartalets kursholdere Finans Formelark Antall formler: 46 formler Antall emner: 7 emner Antall sider: 16 Sider Forfatter: Studiekvartalets kursholdere. Emne 1 Investeringsanalyse (1) Formel for nåverdien: NPV = Nåverdi CF t

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015

LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015 NTNU Norges tekisk-aturviteskapelige uiversitet Fakultet for aturviteskap og tekologi Istitutt for aterialtekologi TT4110 KJEI LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 015 OPPGAVE 1 Vi starter ALLTID ed å

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015 Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,

Detaljer

Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1

Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1 Oppgaveverksted 4, ECON 30, H5 Oppgave IS-RR-PK- modelle Ta utgagspukt i følgede modell for e lukket økoomi () = C + I + G (2) C e C = z + c( T) c2( i π ), der 0 < c < og c 2 > 0, (3) I ( e I = z + b )

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Eksamensoppgave 1310, v15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Eksamensoppgave 1310, v15 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesoppgave 1310, v15 Ved sesure tillegges oppgave 1 vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksame, må besvarelse i hvert fall: Ha

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1

Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1 Fasit Oppgaveverksted 3, ECON 1310, H15 Oppgave 1 IS-RR-PK- modelle Ta utgagspukt i følgede modell for e lukket økoomi (1) = C + I + G (2) C e C z c1( T) c2( i ), der 0 < c 1 < 1 og c 2 > 0, (3) I ( e

Detaljer

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x

f(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x Ogave a) f() = f 0 () = + 3 ) f() = g() f 0 () = g() g0 () g() c) f(; y) = (y + ) f 0 = (y + )y f 0 y = (y + ) d) f(; y) = ( y + ) ( y ) f 0 = ( y + ) r y ( y ) + ( y + ) ( y ) r y = ( y + )( r y y ) ((

Detaljer

Prøveeksamen 2. Elektronikk 24. mars 2010

Prøveeksamen 2. Elektronikk 24. mars 2010 Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er

Detaljer

Vi bruker et avkastningskrav som tar hensyn til disse elementene ved å diskontere kontantstrømmer

Vi bruker et avkastningskrav som tar hensyn til disse elementene ved å diskontere kontantstrømmer Oppgave 1.1 oppgave 1.1 alt basis Salgspris 900 Avk krav f s 15 % Materialkostnader 200 Avk krav e s 10,8 % Diverse variable kostnade 100 Saldosats 10 % Dekningsbidrag pr. enhe 600 Skattesats 28 % Produksjonsvolum

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON 1310, h15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON 1310, h15 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sesorveiledig ECON 30, h5 Ved sesure tillegges oppgave vekt /6, oppgave 2 vekt 2/3, og oppgave 3 vekt /6. For å få godkjet besvarelse, må de i hvert fall: Oppgave

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

År Salgsvolum (enheter)

År Salgsvolum (enheter) Oppgave (5 %) ABC Electoics AS ha i løpet av de siste 3 å utviklet e iihøyttale so plassees i øee hvo a få tådløs oveføig av lyd fa sattelefoe. Utvikligskostadee ha væt 5 illioe koe. Høyttalee e å fedig

Detaljer

Finans. Fasit dokument

Finans. Fasit dokument Finans Fasit dokument Antall svar: 40 svar Antall emner: 7 emner Antall sider: 18 Sider Forfatter: Studiekvartalets kursholdere. Emne 1 - Investeringsanalyse Oppgave 1 Gjør rede for hva som menes med nåverdiprofil.

Detaljer

Kapitalverdimodellen. Investering under usikkerhet Risiko og avkastning. Capital Asset Pricing Model Kapitalverdimodellen (KVM)

Kapitalverdimodellen. Investering under usikkerhet Risiko og avkastning. Capital Asset Pricing Model Kapitalverdimodellen (KVM) Investering under usikkerhet Risiko og avkastning Kapitalverdiodellen Veid kapitalkostnad Finansieringsstruktur og kapitalkostnad John-rik Andreassen 1 Høgskolen i Østold Capital Asset Pricing Model Kapitalverdiodellen

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forvetig og varias. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. Defiisjo: E tilfeldig variabel er e variabel som får si umeriske verdi bestemt

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det ateatisk-aturviteskapelige fakultet Eksae i: FY 105 - Svigiger og bølger Eksaesdag: 11. jui 003 Tid for eksae: Kl. 0900-1500 Tillatte hjelpeidler: Øgri og Lia: Størrelser og eheter

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet

Detaljer

Høgskolen i Hedmark. 3BED200 Investering og finansiering. Kontinueringseksamen høsten Vedlegg: Rentetabell 1-6 og 5 sider formelsamling.

Høgskolen i Hedmark. 3BED200 Investering og finansiering. Kontinueringseksamen høsten Vedlegg: Rentetabell 1-6 og 5 sider formelsamling. GD Høgskolen i Hedmark 3BED200 Investering og finansiering Kontinueringseksamen høsten 204 Eksamensdato: 4.februar, 205 Eksamenstid: 09.00 3.00 Sensurfrist: 25. februar 205 Tillatte hjelpemidler: Kalkulator

Detaljer

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk Fredag 16. januar 1998 Tid:

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk Fredag 16. januar 1998 Tid: Side av 4 Norges tekisk-aturviteskapelige uiversitet Istitutt for fysikk Faglig kotakt uder eksae: Nav: Ola Huderi Tlf.: 934 EKSAMEN I FAG 74435 - FASTE STOFFERS FYSIKK Fakultet for fysikk, iforatikk og

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: Fredag 6. Jui 04 Varighet/eksamestid: 5 timer Emekode: TALM005-A Emeav: Statistikk og Økoomi Klasse(r): Kjemi, Material, Logistikk

Detaljer

Pengepolitikk og inflasjon 1. Innhold. Forelesningsnotat 8, 12. september 2014

Pengepolitikk og inflasjon 1. Innhold. Forelesningsnotat 8, 12. september 2014 Forelesigsotat 8, 12. september 2014 Pegepolitikk og iflasjo 1 Ihold Pegepolitikk og iflasjo... 1 IS-RR-PK-modelle... 2 Økt etterspørsel... 4 Kostadssjokk... 6 Økt produktivitet... 8 Fiasiell stabilitet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Istitutt for data-, elektro-, og romtekologi Siviligeiørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital sigalbehadlig Tid: Fredag 06.03.2008, kl: 09:00-12:00 Tillatte

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksame 9.11.013 REA308 Matematikk S Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast i etter timar. Del skal leverast i seiast

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

Kraftforsyningsberedskap. Roger Steen Seniorrådgiver Beredskapsseksjonen NVE, rost@nve.no

Kraftforsyningsberedskap. Roger Steen Seniorrådgiver Beredskapsseksjonen NVE, rost@nve.no Kraftforsyigsberedskap Roger Stee Seiorrådgiver Beredskapsseksjoe NVE, rost@ve.o Beredskapsasvar Olje- og eergidepartemetet har det overordede asvaret for ladets kraftforsyig. Det operative asvaret for

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

SAKSFRAMLEGG. Saksbehandler: Gro Øverby Arkiv: 212 Arkivsaksnr.: 15/2863

SAKSFRAMLEGG. Saksbehandler: Gro Øverby Arkiv: 212 Arkivsaksnr.: 15/2863 SAKSFRAMLEGG Saksbehadler: Gro Øverby Arkiv: 22 Arkivsaksr.: 5/2863 MODUM BOLIGEIENDOM KF - ETABLERING AV ÅPNINGSBALANSE OG INVESTERINGSBUDSJETT FOR 25 Rådmaes istillig:. Åpigsbalase for Modum Boligeiedom

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001 Avdelig for igeiørutdaig EKSAMENSOPPGAVE Fag: Kjemi og Miljø Fagr FO 05 K Faglig veileder: Kirste Aarset, Bete Hellum og Ja Stubergh Gruppe(r): 1-elektro, 1-maski, -alme Dato: 17 desember 001 Eksamestid,

Detaljer

9050 STORSTEINNES Moen, 6. januar 2012. Vår ref. oppgis ved henvendelse: Deres ref.: Anne Larsen, tlf. 993 79 629 1933/43/1/9003-10/11048-005

9050 STORSTEINNES Moen, 6. januar 2012. Vår ref. oppgis ved henvendelse: Deres ref.: Anne Larsen, tlf. 993 79 629 1933/43/1/9003-10/11048-005 Stat4 Balsfjord kommue 9050 STORSTEINNES Moe, 6. jauar 2012 Vår saksbehadler: Vår ref. oppgis ved hevedelse: Deres ref.: Ae Larse, tlf. 993 79 629 1933/43/1/9003-10/11048-005 Storskoge st.skog - gr. 43

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statistikk H00 9.8: To uvalg (siste del) 9.9: Parvise observasjoer 9.0-9.: Adelser 9.: Varias Mette Lagaas Foreleses oag 0.oktober, 00 Norske hoppdommere og Jae Ahoe Jae Ahoe er e fisk skihopper,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

Forsvarets personell - litt statistikk -

Forsvarets personell - litt statistikk - Forsvarets persoell - litt statistikk - Frak Brudtlad Steder Sjefsforsker Oslo Militære Samfud 8.11.21 Forsvarets viktigste ressurs Bilder: Forsvarets mediearkiv Geerell omtale i Forsvaret, media og taler

Detaljer

Finans. Oppgave dokument

Finans. Oppgave dokument Finans Oppgave dokument Antall Oppgaver: 40 Oppgaver Antall emner: 7 emner Antall sider: 13 Sider Forfatter: Studiekvartalets kursholdere Kapittel 1 - Investeringsanalyse Oppgave 1 Gjør rede for hva som

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

11,7 12,4 12,8 12,9 13,3.

11,7 12,4 12,8 12,9 13,3. TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b6 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

MOD 233 Konveksitet og optimering. Leksjon 1

MOD 233 Konveksitet og optimering. Leksjon 1 MOD 233 Koveksitet og optierig Leksjo Mål ed kurset Forståelse av gruleggede optierigsteori Løsigsetoder Algoritisk forståelse Praktiske avedelser odellerig løsig ved bruk av verktøy MOD233 - Geir Hasle

Detaljer