Løsningsforslag til øving 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag til øving 11"

Transkript

1 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn a dn omogn dff.lknngn Karakrssk lknng (K.L.: r r (r (r r r r r ( Parklær løsnng: Sdn f( rør md:. Gr: Innsa ODE: ( Gnrll løsnng: (. Ssll løsnng: (Kan bar rgns s nalbnglsr r kjn llrs l dn gnrll løsnngn ær sar Drr: ( Innsa nalbnglsn: ( ( rk! å alld fnn dn gnrll løsnngn før kan bsmm konsann og ( b ODE: ( (. K.L.: r r (r (r r r Homogn løsnng: ( Løsnng a. al: # Dfnrr dff.lknngn: > od := dff(($ + *dff(( + *( = ; # Løsr dff.lknngn md nalbnglsr: > dsol( {od (= D((=} ( ; Parklær løsnng : Innsa ODE: ( ( Gnrll løsnng: ( ( ( Innsa nalbnglsn: ( Løsnng: ( sd a

2 ODE: sn( KL: r r (r (r r r Par. løsn. : Homogn løsnng: sn Bos os Bsn sn Bos Innsa ODE: ( B sn ( B B os sn B B B sn os Gnrll løsnng: ( sn os d ODE: KL: r r (r (r r r Parklær løsnng rør : B Homogn løsnng: Innsa ODE: ( ( B ( B ( B ( B B B Gnrll løsnng: ( B B NB! Dnn fnksjonn ar kn mamask nrss. Dff. lknngn kan n rlars l n raksk rosss all fall ll rsonsn ær øs ønsk sdn dn oksr or all grnsr. ODE: KL: r r (r r ( dobbl. Homogn løsnng: Parklær løsnng: ( s kommnar ( ( ( ( Innsa ODE: ( ( Kommnar: Sdn f ( a md ll normal a s løsnngn. Ns narlg alg ll ær ( mn dnn fnksjonn ar allrd mn også dnn fnksjonn dkks a Drfor ndr o md. Gnrl må alså mllsr md blr forkjllg. (Lnær angg løsnngr.. m (m=lall nnl og Gnrll løsnng: ( sd a

3 f ODE: K.L.: os sn r r j r j Homogn løsnng: K os K sn Parklær løsnng: Prør os B sn ( Obs! å mllsr md. Jamfør k. os sn Bsn B os ( B os (B sn Bos ( Bsn sn (B os (B os ( Bsn Innsa ODE: ( B os ( B Bsn os sn B B os sn Gnrll løsnng: ( (K os (K sn g ODE: ( ( ( K.L.: r r r (r r (dobbl r. Homogn løsnng: Parklær løsnng: ( rk! Løsnngr å formn og fnns allrd Gr:. Innsa ODE: Gnrll løsnng: ( ( (. Innsa nalbnglsn: ( ( ( Ssll løsnng: ( rk! "Ubsm koffsnrs mod" r sl kk bgrns l.ordns dff.lknngr. odn fngrr å all n ordns ODEr forsa a dss r lnær md konsan koffsnr m a og a f ( r å formn (m=os lall sn( llr os( OPPGVE Krafbalans: m a( d( k ( m d k. I d øblkk slr klossn må asgn ær lk ds. nalbnglsn blr: (. [m] og ( ( [ m s] a Un dmnng d : K.L.: r r j j Gnrll løsnng: ( K os( K sn( K sn( K os(. Innsa nalbnglsn: ( K. ( K Possjon: (. os(. os(. [m] ( V får n sånd sngnng sd a

4 b d d Nm/s : K.L.: r r (r j(r j r j Gnrll løsnng: ( (K os K sn ( (K os K sn ( K sn K os ( K K os ( K K sn ( K Innsa nalbnglsn: K. K. ( K K Possjon: ( (. os. sn [m] Hasg: ( ( sn [m/s] kslrasjon: a( ( sn os ( os sn [m/s ] ( [m] ( [m/s] a( [m/s ] Klossns ossjon som fnksjon a d. [s ] Klossns asg. [s ] Klossns akslrasjon. [s ] OPPGVE ODE: Dffrnsallknngn kan kk løss md "bsm koffsnrs mod" ga. formn å ørldd f(. V må l Lagrangs mod. Bgnnr som før md å fnn dn omogn løsnngn (å anlg må: K.L.: r r ( r r (dobbl I ns omgang anar n gnrll løsnng å samm form mn or konsann og rsas a ( og ( ds. fnksjonr a. Gnrll løsnng: ( ( ( ( ( V sr som kra a ( ( D ldr l (s Hagans sd : Hr: f(. ( f( d W og ( f( d W ( ( ( ( d d d K W ( d d K W Løsnng: K K ( K K sd a

5 OPPGVE F( Egnrdn l koffsnmarsn: ( ( Egnkorr: ( λ ( λ ( λ ( λ ( ( D Forar sbssjonn D gr: F( ( F( D F(. Ds.: V ar onådd n dkolng sdn r lknng nå bar nnoldr én angg arabl. V løsr førs m.. lrna Ubsm koffsnrs mod Dlr o omogn og arklær løsnng slk som oga Homogn: Parklær: Lknng : Sdn løsnngn allrd fnns rør : Innsa: Lknng : Prør: Innsa: Gnrll løsnng m. : B B B B ( Obs! V r kk rkg mål nnå... B lrna UV-modn Lknng :. Sr: d d d d d d d d ( Lknng : og d d ( d d ln d ( d d ln ( og ln d Løsnng m : V ar nå fnn n gnrll løsnng for ( mn ønskr n ssll løsnng for (. Tlbaksbssjon:. sd a

6 OPPG. (fors. Ds: ( ( ( Innsa nalbnglsn: ( ( Gr løsnngn: ( ( OPPGVE a Volmbalans: Tank : nnsrømn ng srømnng dv d q q ( Tank : d d olmndr ng dv d q q qo ( d d "Oms lo" for nln: rkkforsk jlln srømnng* mosand Vnl : ( ρg ( ρg qr ρg ρg qr ( Vnl : ( ρg qor ρg qor ( amosfærrkk. Kombnrr ( og (: d ρg ρg ρg ρg q q q q d R R R Kombnrr ( ( og (: d ρg ρg ρg ρg ρg ρg q q qo q q d R R R R R På marsform: ρg ρg q R R ρg ρg ρg q R R R b d allrdr:.... Bnr samm mod som oga.. ( dm ( dm Egnrdr: (. (..... {..} llr D.. sd a

7 OPPG. (fors. Egnkorr: m/.:.... Ellr: m/.:.... Sbssjon gr F( D F(..a.o.: Gnrll løsnng m : Tlbaksbssjon: a.o: (.. ( Innsa nalbnglsn: ( (.. Løsnng: ( ( Sasjonærrdn fnnr nkl d å la dn gå mo ndlg: sasjonær lm (.dm sasjonær lm (.dm aksmalrdn fnnr nn randnkn ( d ( llr dr or d Tank :.. ldr lk. å a maks d sar ds: ma ( dm Tank : ln... ln. (dm Væskødn som fnksjon a dn.. ln ln.s ( ma (....dm ( (sk sd a

8 OPPGVE a lknng : U R U R R d Innsa lknng : U d R R d d R Lknng : b L Rb L L d d På marsform: R L Rb L R U d d R R U b Innsa d g allrdn: Egnrdr: ( λ λ ( λ Egnkorr: ( k λ k λ λ.k. or : k k ( λ ( λ ( k λ.a.o.: D k λ k k.k Sbsrr slk som og. og ds.: D F( λ λ Homogn løsn. m. : Parklær løsnng rør som gr: Ds: Innsa nalbnglsn: ( ( Gr løsnngn: ( b R b ( ( (ol (ol ol kondnsaorsnnng ( lassnnng b ( (sk sd a

9 OPPG. (fors. Fra ogaksn: ( U R ( L Rb ( (: Innsa (: U R( R U R (. Drrr (: L Rb ( ( og ( nnsa (: R (L Rb (L Rb U R (. Sorrr ( og får: RL ( RRb L (R Rb U Innsa allrdr:.. Løsr dnn å anlg må: Karakrssk lknng: r. r.r r (λ r (λ Homogn løsnng: Parklær løsnng:. Gnrll løsnng: ( Nøakg d samm som b Drr: Innsa nalbnglsn: ( ( : ( ( kan fnn d å s nn lknng ( Kommnar: Så lng ar lnær dffrnsallknngr md konsan koffsnr l d alld ær mlg å gjør om n n ordns ODE l s md n sk..ordns dff.lknngr og omnd (slk som r. Førsnn organg r foroldss nkl mns ssnn for kan bl n slsom rosss. rk også a røn dn karakrssk lknng r dnsk md ssms gnrdr. sd a

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2. Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P

Detaljer

VEDLEGG FAUSKE KOMMUNE - REGULERINGSBESTEMMELSER I TILKNYTNING TIL REGULERINGSPLAN FOR SJÅHEIA 1 D rgulr områd r på plann v md rgulrnggrn Innnfor dnn bgrnnnglnj kal bbyggln plarng

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

Nytt Dobbeltspor Oslo Ski

Nytt Dobbeltspor Oslo Ski Nytt Dobbltspor Oslo Sk Fagrapport støy 01B Rttls a tkstfl 25.04.2013 Adsul IVr HJ 00B Først utga; for rgulrngsplan 17.04.2013 AdSul IVr HJ Rsjon Rsjonn gjldr Dato Utarb. a Kontr. a Godkj. a ttl: Antall

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I GDE Gimsa E K M E N O P P G V E : G: M-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8.8. Eksamnsi a-il: 9.. Eksamnsoppgan bså a ølgn nall si: 5 inkl. osi nall oppga: nall lgg: Tilla hjlpmil :

Detaljer

mot mobbing 2011 2014 Manifest

mot mobbing 2011 2014 Manifest g t n s b f b n o a M ot m 014 m 11 2 20 dt mljø o g t rngs r o d f g læ rb st- o a sam pvk nd op t lk rnd p r o Et f nklud Manfst Et forplktnd samarbd for t godt nkludrnd oppvkst- lærngsmljø Forord All

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg:

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

VEDLEGG EGENOPPGAVE Slgr/ir:,J air^ 0< K^ l,rn narrr' 5,/rzi{ rr? cnn, BNR l-, fl KoMMNR S*lrr/^ I Posnr: f Å,f0 Ko na^ l Grunnmur, fundamn og sokkl: L I Kjnnr du

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 V a l d r e s g t 1 6 S / E I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i V a l d r es g t 1 6 S / E, a v h o l d e s o n s d a g 2 7. a

Detaljer

Rotasjonsbevegelser 13.04.2015

Rotasjonsbevegelser 13.04.2015 Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 H o v i n B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s

Detaljer

I n n k a l l i n g t i l o r d i n æ r g e n e r a l f o r s a m l i n g

I n n k a l l i n g t i l o r d i n æ r g e n e r a l f o r s a m l i n g 1 Z i t t y B o r e t t s l a g I n n k a l l i n g t i l o r d i n æ r g e n e r a l f o r s a m l i n g 2 0 1 1 O r d i n æ r g e n e r a l f o rs am l i n g i Z i t t y B o r e t t s l a g, a v h o

Detaljer

Formelsamling for matematiske metoder 3.

Formelsamling for matematiske metoder 3. Formlsmli for mmis modr 3 f f Grdi Slrfl f r rdi f Risdrivr drivr il slrfl f i p o i ri r f f f os vor risvor r svor o r vil mllom rdi o risvor rivr v vorfl F m : F R F R vær diffrsirr i r F i d drivr

Detaljer

GAVE GAVE GAVE 3690.- 11990.- 6555.- STIHL

GAVE GAVE GAVE 3690.- 11990.- 6555.- STIHL TIMESTILBUD T Ny kk T S E F S G N I ÅPN 3- TILBUD S p på kn k F p jø k F h Tknn v k T f v D ønn å væ T Fkjøp Fk nv åpnnf A k fø k på åpnnn, knnn v f v * Un nn v Tknnn jnnfø c k V V V - 36 STIHL MS 8 6555-

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 K e y s e r l ø k k a Ø s t B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d

Detaljer

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i n æ r t s am e i e rm øt e i S am e i e t W al d em a rs H a g e, a v h o l d e s t o rs d a g 1 8. j u n i 2 0 0 9, k l.

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l å r e t s g e n e r a l f o r s a m l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies. FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert ). 2. ADFERDSRISIKO 2.1 ADFERDSRISIKO -PROBLEMET

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert ). 2. ADFERDSRISIKO 2.1 ADFERDSRISIKO -PROBLEMET FOREESNINGSNOTATER I INFORMASJONSØKONOMI Gr B. Ash, år odatrt.... ADFERDSRISIKO Otal kotraktr dr asytrsk forasjo. Agts sats r kk rfsrbar; ds., kotraktr ka kk btgs å. Agt å gs str tl å lg d sats rsal øskr.

Detaljer

DELTAKERINFORMASJON FEMUNDLØPET 2015

DELTAKERINFORMASJON FEMUNDLØPET 2015 DELTAKERINFORMASJON FEMUNDLØPET 015 Vdg finnr du vikig inforsjon o din dks. Vnnigs s vdg inforsjon nøy og sjkk også nsidn vår www.fundop.no d dn nys øypbskrivsn, vrinærinforsjon og rgr. Vi ønskr dg n god

Detaljer

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016. Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for

Detaljer

Butikkstekte brød. grove, stort utvalg, 50-100% grovhet. Tilbudet gjelder man-ons. ord.pris 169,00/kg. Lettsaltet torskefilet SPAR 47-49% SPAR 25-32%

Butikkstekte brød. grove, stort utvalg, 50-100% grovhet. Tilbudet gjelder man-ons. ord.pris 169,00/kg. Lettsaltet torskefilet SPAR 47-49% SPAR 25-32% Hvragn grov, tort utvalg, 50-100% grovht Tlbut gjlr man-on 29% 39 Tlbut gjlr man-on Vår Butkktkt brø gn nytkt 52% 45-47% 79 or.pr 56,/tk brø r br m mny or.pr 169,00/kg or.pr 27,50/ 28,50/pk Nygrllt kyllng

Detaljer

Kinematikk i to og tre dimensjoner 29.01.2014

Kinematikk i to og tre dimensjoner 29.01.2014 Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 S a m e i e t S o l h a u g e n I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i S am e i e t S o l h a u g e n, a v h o l d e s o n s d a

Detaljer

PERIODEPLAN VEKE 43 PERIODEPLAN VEKE 44 MÅNDAG 24 TYSDAG 25 ONSDAG 26 TORSDAG 27 FREDAG 28 MÅNDAG 31 TYSDAG 1 ONSDAG 2 TORSDAG 3 FREDAG 4

PERIODEPLAN VEKE 43 PERIODEPLAN VEKE 44 MÅNDAG 24 TYSDAG 25 ONSDAG 26 TORSDAG 27 FREDAG 28 MÅNDAG 31 TYSDAG 1 ONSDAG 2 TORSDAG 3 FREDAG 4 IOD V 43 IOD V 44 ÅD 24 YD 25 OD 26 OD 27 D 28 ÅD 31 YD 1 OD 2 OD 3 D 4 orgonling 1 O O U U O O U U 2 O I O Y BID O O O Y BID O 3 U U 2: & H U Y BID U U 2: & H U Y BID 4 I U 2: & H YJI 2: Y I U 2: & H

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l år e t s g e n e r a l f o rs am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i n

Detaljer

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1 HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 Ø s t r e K r a g s k o g e n S a m e i e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i Øs t r e K r ag s k o g e n S am ei e, a v h o l

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Insu for maemaske fag Eksamensoppgave TMA44 Saskk Faglg konak under eksamen: John Tyssedal, aakon akka. Tlf.: John Tyssedal: 4645376. Tlf: aakon akka: 97955667. Eksamensdao: 7..4 Eksamensd (fra-l): 9.-3.

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 0 9 O r d i n æ r g e n e r a l f o rs am l i n g i N y b y g g A S, a v h o l d es o ns d a g 2 9. a p r i l 2 0 0 9, k l.

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

VEDLEGG Marikklrappor Bygg - 11112014_11:51 1841 Fausk Kommun Bygningsnr : 11212751 Bygningsdaa Bygningsyp Bygningssaus Enbolig (111) Ta i bruk (TB) - 24111984 Ufullsndig

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Knem o og re dmensoner 4.2.215 Hr du hene boen men e bel? YS-MEK 111 4.2.215 1 Esempel: En msse m = 1 g er fese l en fær med færonsn = 1 N/m og n beege seg på e bord uen frson og lufmosnd. Mssen beeger

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

INF3400 Del 5 Statisk digital CMOS

INF3400 Del 5 Statisk digital CMOS INF400 Del 5 Sask dgal MOS Elmore forsnkelsesmodell modell: modell NANDN: NAND 1 9 Forsnkelsesmodell: N 1 j 1 j 1 NAND Ulegg 7 10 1 Parassk dsforsnkelse: V kaller dffusjonskapasanser for parasske kapasanser

Detaljer

Løsningsforslag for regneøving 2

Løsningsforslag for regneøving 2 TFE4 Dgtalteknkk med kretsteknkk Løsnngsforslag tl regneøng årsemester 8 Løsnngsforslag for regneøng Utleert: fredag 5. februar 8 Oppgae : a b Krets Benytt følgende erder: a A, b A, Ω, Ω, 5Ω a) Fnn spennngene

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

38 Lørdag. Odd Kalsnes, eiendomsmegler Gir du penger til veldedige organisasjoner? Ja, jeg sponser hvert år en helg for funksjonshemmede

38 Lørdag. Odd Kalsnes, eiendomsmegler Gir du penger til veldedige organisasjoner? Ja, jeg sponser hvert år en helg for funksjonshemmede LØRDAG 6. MARS 2010 38 Lørdag FOTO: IVÁN KVERME Odd Kalsns, ndomsmglr Gr du pngr l vlddg organsasjonr? jg sponsr hvr år n hlg for funksjonshmmd på Haraldvangn. D r gjnnom klubbn Roary, mn d ss årn jg spons

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i U l l e r n s k og e n B o l i gs am e i e, a v h o l d e s t i rs d a g 2 7. a p r i l 2 0 1 0, k l. 1 8 : 3 0 p å B j ø r

Detaljer

Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt

Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt Hdn bd md mny 46-53% Rø snm/ sommol od.ps 74,84,/ f fsdsn jld Tlbd -onsd mnd 55% 7 od.ps 17,/s Nyll yllnlå Gndos Snd spm f msp so l so l % 50-57% GJELDER HELE APRIL 1 od.ps 32,/s GRØNNSAKER OG URTER od.ps

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S am B o B o l i g s am e i e, a v h o l d es o ns d a g 2 8. 04. 2 0 1 0, k l. 1 8. 3 0 i G r ef s e n m e n i g h e t s s

Detaljer

Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1

Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1 Løigforlg EKSMEN Mtmti - Eltro dmbr 6 OPPGVE ltrtiv. yttr prgfujor og "tigigtllbtrtig" f ut ) t ) f ut) t ) ft) ) )tigigtll ) 5-5) ) t -5) -5 - f ut ) 5t ) 5) -5) -5 f ut ) 5t ) f t) f f f f ut) t ut )

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

Newtons tredje lov. Kinematikk i to og tre dimensjoner

Newtons tredje lov. Kinematikk i to og tre dimensjoner Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00 Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.

Detaljer

ORDINÆR GENERALFORSAMLING 2010 AS TØYENPARKEN BOLIGSELSKAP TORSDAG 6. MAI 2010 I CAFE EDVARD MUNCH, MUNCHMUSEET

ORDINÆR GENERALFORSAMLING 2010 AS TØYENPARKEN BOLIGSELSKAP TORSDAG 6. MAI 2010 I CAFE EDVARD MUNCH, MUNCHMUSEET _ O R D I R N G E Æ N E R A L F O R S A M L I N G 2 0 1 0 A S T Ø Y E N P A R K E N B O L I G S E L S K A P T O R S D A G 6. M A I I C A F E E D V A R D M U N C H, M U N C H M U S E E T _ I n n k a l l

Detaljer

Tillegg nr 1 til Grunnprospekt datert 27. mai 2015 i henhold til EU's Kommisjonsforordning nr 809/2004

Tillegg nr 1 til Grunnprospekt datert 27. mai 2015 i henhold til EU's Kommisjonsforordning nr 809/2004 Tllegg nr 1 l Grunnprospek daer 27. ma 2015 henhold l EU's Kommsjonsforordnng nr 809/2004 Tlreelegger Oslo, 25. jun 2015 Uarbede samarbed med DNB Markes 1 av 7 Ord med sor forboksav som benyes llegg l

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Oppgave 3. Skisse til løsning Eksamen i Reservoarteknikk 14. desember, a) Se forelesningene. b) Fra Darcys lov,

Oppgave 3. Skisse til løsning Eksamen i Reservoarteknikk 14. desember, a) Se forelesningene. b) Fra Darcys lov, Skisse til løsning Eksamen i Reservoarteknikk 14 desember 2006 Oppgave 3 a) Se forelesningene b) Fra Darcys lov u = k dp µ dr Darcy-hastigheten u er uttrykt ved u r = q/a hvor tverrsnittsarealet A er gitt

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o rs am l i n g i, a v h o l d es o ns d a g 2 8. a p r i l 2 0 1 0, k l. 1 8. 0 0 i 1. e

Detaljer

Faun rapport 003-2011

Faun rapport 003-2011 Faun rappor 003-2011 Aldrsrgisrring og bsandsvurdring for lg på Ringrik r jaka 2010 Oppdragsgivr: -Ringrik kommun Forfar: Lars Erik Gangsi 1 Forord Rapporn for Ringrik r dn førs jg frdigsillr r jaka 2010.

Detaljer

Ukens tilbudsavis fra

Ukens tilbudsavis fra Ukns budsvs f Hvodn b mn budsvsn? Fo å b budsvsn så kkk du nn v hjønn, du kn kkk på pn nd på mnynjn. S næm på podukn? Du kn zoom nn på podukn vd å kkk på poduk md musn, fo å zoom bk kkk du n gng. Du kn

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

«hudøy er nok verdens beste sted! man får nye venner og minner for livet!» Sitat fra en av gutta på Hudøy. Har du

«hudøy er nok verdens beste sted! man får nye venner og minner for livet!» Sitat fra en av gutta på Hudøy. Har du «hudøy r nok vrdns bst std man får ny vnnr og minnr for livt» 2018 Sitat fra n av gutta på Hudøy Har du h ø r t om.. Dau Kjærligh mannsbukta, S y g i l d En r m m so i fr d Øy, Lag tsstin, Brattfj spissn,

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i R u d s h ø g d a V B / S, a v h o l d e s m a n d a g 1 6. m a r s k l. 1 8 : 0 0 p å L o f s r u d s k o l e, L i l l e a

Detaljer

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 9. augut d: 9- tall d klu fod: 6 kludt dlgg tall oppga: 4 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt

Detaljer

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 3. augut d: 9-4 tall d klu fod: 7 kludt dlgg tall oppga: 6 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 Ø s t e r d a l s g t 4-6 B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIERSITETET I ADER imsad E K S A M E N S O P P A E : A: MA-9 Mamaikk LÆRER: P nik ogsad Klass: Dao:.5. Eksamnsid a-il: 9.. Eksamnsoppgavn bså av ølgnd Anall sid: 5 inkl. osid vdlgg Anall oppgav: 5 Anall

Detaljer

(urettede) Grafer. Sterke og 2-sammenhengende komponeneter, DFS. Rettede grafer. Sammenhengende grafer

(urettede) Grafer. Sterke og 2-sammenhengende komponeneter, DFS. Rettede grafer. Sammenhengende grafer Strk o -smmnnn komponntr, DFS Grr (urtt o rtt) Dy Først-Søk (DFS) Smmnnn komponntr.. DFS Topolosk sortrn / Løkkr.. DFS Strkt smmnnn komponntr... DFS -smmnnn komponntr... DFS (urtt) Grr En r G=(V,E) står

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

Evaluering av NGU-dagen

Evaluering av NGU-dagen .. :: QustBk xport - Evlurin v NGU-n Evlurin v NGU-n Pulis rom.. to.. rsponss ( uniqu). Forrn på NGU-n vr li rlvnt 9 9,9 %, %,8 %,8 %, %, % Avr,9,,. Tmn or rupprit vr o, % %, % 8, %, %, %, % Avr, 9,8,

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk Sd v 8 NTNU Norgs tksk-turvtskpg uvrstt Fkutt for formsostkoog, mtmtkk og ktrotkkk Isttutt for dttkkk og formsosvtskp KONTINUASJONSEKSAEN I FAG SIF8 BILDETEKNIKK LØRDAG 6. AUGUST KL. 9.. Løsgsforsg - grfkk

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

ILLUSTRASJON 1 - UTEOPPHOLDSAREALER

ILLUSTRASJON 1 - UTEOPPHOLDSAREALER GAGTUL A1 A3 ILLUSTRASJOSPLA 14 15 A7 30 m BYGGGRS MOT JRBA 10 m OR SP BA R J +11,10 12 +11,75 15 sykkel plasser 1:12 15 13 1:9 16 RO A3 B BA JR T MO S LL F RASS T K TA tg 7e A1 G AV ÅD +8,59 30 A1 M G

Detaljer

Obj140. TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc) KAP 3 Ordbilde

Obj140. TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc) KAP 3 Ordbilde Obj140 RENDALEN KOMMUNE Fu kol Åpl NORSK fo 10. 2013/14 Lævk: KONTEKST bbok o kbok, Gylddl Nyok: 2 m hv uk v l bd md yok. D vl bl jobb md mmkk, kv, kv v k o l v ulk yoklu. Båd kk o kjølu. D vl bl vl u

Detaljer

Om pensum fra kap. 10. Hva er segmentering? Hva er segmentering? INF 2310 Digital bildebehandling

Om pensum fra kap. 10. Hva er segmentering? Hva er segmentering? INF 2310 Digital bildebehandling Om nsum fra a. IN Dgal bldbhandg Sgmnrng av bldr I-onsull rsg Efford: a..-. mr grundg nn boa.-. r nsum Kal boa nrodusrr mg sor ma, mn dr d svær ovrflads. I IN forlsr v bar om sgmnrng vd rsg, mn ar d grundgr

Detaljer

Velkommen INF 3/4130. Velkommen. Algoritmer: Design og effektivitet. Kvalitetssikring ved Ifi. Forelesere: Lærebok: Gruppelærer: Obliger:

Velkommen INF 3/4130. Velkommen. Algoritmer: Design og effektivitet. Kvalitetssikring ved Ifi. Forelesere: Lærebok: Gruppelærer: Obliger: Vlkommn Fols: INF 3/43 Dino Kbg, dino@ifi.uio.no Sin Kogdl, sink@ifi.uio.no P Kisinsn pk@ifi.uio.no Algoim: Dsign og ffkivi Læbok: Algoims: Squnil, Plll, nd Disibud, Knn A. Bmn nd Jom L. Pul. Til slgs

Detaljer

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 0 9 O r d i n æ r g e n e r a l f o rs am l i n g i D u r ud B o r e t t s l a g, a v h o l d e s t i r s d a g 5. m ai 2 0

Detaljer

All frukt og bær. Gjelder ikke tørket eller hermetisert frukt eller X-tra produkter som allerede er satt ned i pris

All frukt og bær. Gjelder ikke tørket eller hermetisert frukt eller X-tra produkter som allerede er satt ned i pris ! m m d G Nå gå kt! u f k g økl S gtaftg All fukt g bæ Gjld kk tøkt ll hmtt fukt ll X-ta pdukt m alld att nd p 39 Cp Mga nyglld XL-kyllng Hl. Råvkt 1,15 kg. P tk Fk lakflt M/knn. U/bn. P kg Et utvalg Blnda-pdukt

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 Høgskolen i Gjøvik vd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving OPPGVE Husk at N {alle naturlige tall} { 0,,,,... }, Z {alle heltall} {...,,,0,,,,... }, R {alle reelle tall} og

Detaljer