Tutorial lectures on hydrodynamics instabilities

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Tutorial lectures on hydrodynamics instabilities"

Transkript

1 Tuoril leures o hdrodmis isiliies Leure oes preseed he Isiue of Lser Eieeri. Os Uiversi (4--6-(7--6 Jvier Sz Reio ETSI Aeroáuios. Uiversidd Poliéi de Mdrid

2 Coes Leure: The lssil Rleih-Tlor (RT isili. 3 Pheomeolo of he isili. Iompressile fluids: Heurisi derivio of he lier isili rowh re (Seod Newo Lw; lsis mehod (dispersio relio; Awood umer effes fiie hiess effes. Exmples. Compressile fluids. Dispersio relio. Iroduio o olier lssil RT isili. Pheomeolo. Lzer models pproh. Leure : Lier live RT isili 4 D lio fro sruure. Isori model d orol models.silizio mehisms. Heurisi derivio of he dispersio relio i shrp lio fros (Seod Newo Lw. Lier lsis mehod. Froude umer depedee. The riil surfe proximi effes (lo wveleh perurio d Ldu isili. Leure 3: No lier live RT isili 6 Shrp lio fro model: Therml equio momeum equio d ime evoluio equio of he ierfe. Sile mode perurios: surio mpliude iversio of spie ule smmer o lier uoff wve umer smpoi ule veloi. Referees: S. Boder Phs. Rev. Le (974. H. Te K. Mim L. Mohierh d R. Morse Phs Fluids (985. H. J. Kull Phs. Fluids B 7 (989. J. Sz Phs. Rev. Le (994. R. Bei e. l Phs. Plsms 3844 (995. A. Piriz J. Sz d L. Iñez Phs. Plsms 4 7 (997. J. Sz J. Rmirez R. Rmis R. Bei d R. P. J. Two Phs. Rev. Le (89 95 (. P. Clvi d L. Msse Phs. Plsms 69 (4.

3 THE CLASSICAL RT INSTABILITY 3

4 Pheomeolo of he isili (* η ( << λ = π η η γ η η e γ γ Visosi Surfe esio η η 3 loη.λ lo h α ( α.65 * - Lord Rleih Pro. Lodo Mh. So. 4 (883 7; G. Tlor Pro. R. So. A (95 9; D. J. Lewis Pro. R. So. A (95 8. Aelered fluid lers : P P > P 4

5 Rleih-Tlor isili Geophsis Asrophsis Teholoil ppliios: Ieril Cofieme Fusio (ICF x Iompressile fluids d uiform desi. ν = ( v v v + = p + 5

6 Seod Newo Lw: m = F λ = π ξ ξ = ξ + ξ + ξ 3 3 ξ = Ce γ ξ ξ Awood umer γ A T = AT = + > γ=± A T Usle. RT modes < γ=± i T A Sle. Grvi wves Mehod: ν = d ( v v v + = p + Equilirium soluio: v = p= p ( p + = Ierfes: Perured soluio: p v v v ix+ γ ix+ γ ( e = ( x e v + iv = x γ v = ip x γ v = p ix + j ξ e γ 6

7 Mehod: Soluio for eh fluid ler: p p = j+ j j d p = Ae + Be i vx = ( Ae + Be γ v = ( Ae Be γ Boudr odiios: = p + ξ p p + ξ oious j j j v oious d v = γξ j =± vriles mus eouded Compii odiio ->Dispersio relio : A B A D( γ = B ξ j How he sperum is?: For eh vlue we hve differe vlues of γ : γ γ. The umer of vlues m e ifiie u i se he sperum is disree. ( D de ( γ = Adved omme: Lple rsform i : Poles of K (disree sperum: e γ (*Brhe pois of K (oiuum sperum: α γ e (* E. O PRL 98 K( se s ds 7

8 Exmple : A+ ξ = B+ ξ A= B= γξ γ γ p = Ae p = Be ( A B = ξ γ γ A T = AT = + Exmple : d ξ ξ p Ae Be = + d d A+ B+ ξ = Ae + Be + ξ = d d ( A B = γξ ( Ae Be = γξ γ γ d d e e A γ B = ξ ξ d d γ e e 4 γ = γ =± γ =± i γ = ξ = ξ d e RT γ = ξ = ξ d e GW 8

9 Compressile fluids: p = d ξ p ξ Equilirium soluio: Perured soluio: = p + p / = os p = p ( + / d = ( + / d /( /( d = p/ = ( + / d = p ix+ γ ix+ γ = + e p = p + pe ix+ γ v = ( v v e x Equios: γ + ( v + iv = x γ v = p + γ v = ip x p = Boudr odiios: p + ξ = v = γξ ; = p + ξ = v = γξ ; = d Dispersio relio: γ ( + + ( = p p p γ ( + p p = = d p = A Hper( γ + B Lue( γ D( γ d = 9

10 Dispersio relio: γ ( + + ( = p p p We loo for iompressile modes! γ ( + p p = = d v ( v iv γ γ+ + + x = ( + p p = ( + / / ( / d γ p = C + d e d 4 γ = ( γ = γ = 4 ( γ D ( SM γ d = Nolier lssil RT isili p os Hrmois eerio (sri i he wel olier phse. Suhrmoi sde. Bules d spies show differe ime ehvior. Bule ompeiio.

11 v = φ r Δ φ = ( α x ξ r = φ ( φ = ξ φ + os Wel o-lier resuls ξ ( x η os x + η os x + η os3x η ξl ξl 4 η ξl ( ξl e γ γ = 3 η3 ξ 8 3 L mpliude 3...

12 Spie ule smmer s spie mpliude: ule mpliude: ξ + ξ s L L ξ ξ L L lo S lier heor lo Lo wveleh modes eerio = + γ ( γ + γ ξ = ξ ( ξ ( e γ γ ( γ+ γ γ ( +

13 Bule ompeiio. Aelerio of ule fro..8 h h h h = ( α.65 α v = φ x r Δ φ = ( α ξ r = φ ( φ = ξ φ + os 3

14 LINEAR ABLATIVE RT INSTABILITY 4

15 D lio fro sruure: re Lser d L v T L T v D lio fro sruure: Isori model T v v = v = m v v = p+ T T mt ( T = KT T 5 T T L / ( / / ( / L ( L 5 T KT mt = KT L = (..3 μm L 5m v v Fr = (.5 = << L M T / L T T ( + e ( L / L ( e Miimum desi rdie sle leh L = L + m + ( / 5

16 Cold ompressed re: α α P/ = P / = os + ( v = P+ O M ( ( d L L v T BC : P( = d( = P( = = P v ( = d ( = d ( v ( = = v α / = / ( + / α ( p p d p = α OM ( α d ( + ( v = v α d ( α d = d v α Lier live RTI: Silizio mehisms. Sli Lws π lio surfe ξ Δ m < Δ p < Δ m > Δ p > flow he ( << m = >> / V V m Δpd ξ 3 ( + ξ ( ξ Δ p d m ξ Hdrosi pressure Dmil pressure Alio: Fire polishisi. Vorii 6

17 Lier live RTI: silizio mehisms π ξ Δ m < Δ p < flow Δ m > Δ p > he ξ e γ lio surfe Therml pressure Roe effe 4V V γ + γ + AT + r r Fire polishi + Vorii V V γ = + + A VV + r + r T r = L / ( / A T r V = V = + r r uoff L F < /( r T v Lier lsis mehod: Isori model ( M << MF r << T v Equilirium soluio v= v = m v v= p+ T T mt ( T KT T 5 = Perured soluio Perured quiies re expded s ix e γ + 5h ODS γ + ( v + v + iv = γ x v + = p+ γ v + = ip ( T + T = x 5 ( ( vt KT T = = ouded modes = + 3 ouded modes Numeril eievlue prolem for γ γ L F( L Fr = v 7

18 v v Alil model: Isori model ( L << ξ e = ( / L v = v = Ve + φ ( + V v = p p + = x V = iae = Ae p = ( γ + V Ae / Q = p ( + ξ + V m Cold reio γ+ ix Ho reio ix+γ m e ix+γ Q e / Mss lio Momeum V γ + ( + f Vγ + q = ( L / Q ( L / q / V ξ m f V ξ q( γ f ( γ? Alil model: Isori model ( L << / ˆ γ( L / /( V << γ Sli: v T p / Normlized vriles: F = F( η + F ( η γ + ; η ˆ q q q = + ˆ γ + f = f + f γ + ˆ ( << v Eievlue prolem for: ( q f ( q f q f q / Γ (+ / ( < q < ξ e γ+ ix Ho reio ix+γ m e ix+γ Q e Momeum Mss lio re 5h ODS γ + ( v + v + iv = γ x v + = p+ γ v + = ip ( T + T = x 5 ( ( vt KT T = 8

19 Alil model: Dispersio relio ( L << V γ + ( + f Vγ + q = ( L / / q q q = + ˆ γ + f = f + V γ + ( + f + q V + = γ / ( L /( q / ( q Γ (+ / m ( V ξ f xq ( V ω r = Blow-off o lio desi rio Q p ( L / V ( ξ ( q q γ / + ˆ / iv L q + qˆ ω ( / ( ξ ( γ uoff: F ( L = ( > / r / q Fr Exesio of he lil model: (for ever F r vlue A T Awood umer effes r = + r ( = ( q / ( = r L Corol model = L Lerl he rspor he lio fro: (sed i SBM f + L ( + L ( + L + r LF r ( + L γ = AT V + r + r r + r Fr < < 9

20 Cuoff wveumer versus Froude umer V = F r Lerl he rsp. Sle leh desi- A umer orreios Roe effe-vor.ov. Fire polishi-vor.ov A umer orreios.. L = F r Cuoff wve umer versus Froude umer.5.. V β =.75.5 γ emp = βv + L m.5. β = F r

21 Ldu-Drrieus isili V Δ p < Δ p > < ( << γ γ LD LDRT V V + q V ( F / >> r >> γ / ( L Ldu-RT isili i ICF : M Criil surfe V T T I II III L Isori pproximio wih / d ever leh muh lrer h L. Reio I iompressile d poeil flow ( V = m. e. / Reio II : T = T ( / = ( / / u = u / ( / where ( / = L/. Reio III : = T = T u = u

22 Ldu-RT isili i ICF : Alio surfe Criil surfe M I II III x ξ e γ ix ξ e + γ ix+ V γ + ( + f Vγ + q = ( L / / i v V m x + ξ = ( + γξ Q ( QL ( / q = ξ ξ / / u( V ( m f V ( ξ qγ (? f( γ? Ldu-RT isili i ICF : Alio surfe Criil surfe M I II III x s ix ix ( ( ξ ξ e / ξe ξ e γ ix ξ e + γ ix+ + ( v = v + v v = p+ e Pv ( KT T = Iδ 5 ( m v ix+ γ ( v = θ + vr + γξe e ix I mv θ v r γξe e δ 5P + + ( + = ( = v r + = + v v v p e / ( θ = os. ( θ T

23 Ldu-RT isili i ICF : M Perured equios ( < s < : γ vr m (( ξ ξ/ θ/ s + ( ssθ θ+ ( s( ξ ξ/ + ξ = s γiv + v iv = rx s rx p (( s ξ ξ / + ξ ( + γu + γ uθ u ( ξ ξ / + u ( uθ s γv + v u + u v = p r r s s r s uθ uθ u ssθ u s ( u su sθ γu sθ γ + s s (( γs+ u su + + γu( ξ ξ / + γ ξ v + iv = s r rx Ldu-RT isili i ICF : M Boudr odiios: s + θ = sθ + = m / m + ( ξ ξ/ i m v r = vrx = ( + γξ p = Q θ = s θ = ( ξ ξ / s ( p ξ u v + = + u + iv r γξ ( ξ rx γ γ Q( γ m ( γ ξ ( γ 3

24 Ldu-RT isili i ICF : M Resoluio mehod: ( / ˆ = O ( F r = O( >> γ /( u >> ˆ/ Q q= q ˆ + qγ + u ( ξ m f = f ˆ + fγ + V ( ξ ˆ/ γ ˆ γ = u d ll perured quiies re perured i he sme w The ssem of ODE is ierivel solved q ( ˆ f ( ˆ q ( ˆ f ( ˆ Ldu-RT isili i ICF : M Dispersio relio: q= q + q ˆ γ + V γ + ( + f Vγ + q = / ( L / f = f + f ˆ γ + qv γ + + = ( + f+ q Vγ / ( L / Vorii: ω v + iγξ + iv rx r ˆ/ + iω ˆ ω( s = = q ˆ qγ + ( ξ u + xp = m ω( s = 4

25 Ldu-RT isili i ICF : qv γ + + = ( + f+ q Vγ / ( L /.5 q 5 L = 5/ = f 5.5 q Ldu isili Silizio F r / ˆ ˆ ˆ e e + + ˆ q ˆ = + ( ( ( / osh ˆ + osh ˆ Γ Γ = ξ f = h( q + h( = ξ osh( Ldu isili i ICF : ( F >> r γ V q ( ( L / / <.7 ( q < Ldu isili >.7 ( q > Osillios / ˆ ˆ ˆ e e + + ˆ q ˆ ( = + ( ( ( / osh ˆ + osh ˆ Γ Γ = q q / >> = = Γ (+ / (.67 = 5/ << q ( / 5

26 NONLINEAR ABLATIVE RAYLEIGH-TAYLOR INSTABILITY 6

27 Lier live RTI: silizio mehisms π ξ Δ m < Δ p < flow Δ m > Δ p > he lio surfe Therml pressure Roe effe d ξ d ξ 4 Vξ V ξ d d uoff L F < /( r Fire polishi + Vorii Nolier model 7

28 Cold reio Ve + φ Δ φ = r ( α x ξ m r = φ + V e m / Mss lio re ( p φ = ξ φ V φ p = q m q / Ho reio x ξ T = P 5 ( Pv KT T = + ( v = ( v v v + p v = + v (/5 K T r ( θ = KT /5 m m = + θ = θ ( r = θ ( l θ vr l θ θ ( x = = Mss lio re : m = m θ 8

29 Ho reio v = m θ + vr ( θ = KT /5 m ξ ( ω e z = vr ω+ ( m θ + vr ω = x v r = φ + Ve τ vr + φ ω( χ ( χ = HC.. of. θ Δ ψ = ω ( χ φ = ( ψ e ψ e x x e θ+ iχ dθ ωdχ = θ Coforml mp ( x ( χ θ d FT o χ φ ( i + τ θ Lier heor : ω = φ ξ = e iχ d ( x x x χ No-lier roe effe: Δ φ = Momeum flux : q= p + m / x ξ h h q flow Δ θ = h q m m m ω dχ = ( + h? 9

30 Resorifore x ξ flow v = m + v θ r ( v + p ω v v / m θ / L θ q p ( dθ + m ωdχ q p m m + m d ( l ω χ IFT o ( l = ( χ q ( m m + m ω Ali surfe equios: Δ φ = Ve + φ ξ x r = φ m / V e ( flow θ = θ = Δ θ = φ = ξ ( φ V φ m = m θ m m V ωdχ θ + iχ e dθ ω d χ = θ ( l φ ( i + τ iχ e d χ θ 3

31 Sile mode resuls Wel o-lier resuls Clssil RTI 3 η ξl ξl 4 η ξl 3 3 η3 ξl 8 ( /( 3 η ξl ξl 4( η ( ξl 3 3 η3 ( 4 ( 4 /3 ξl 8 ( < ξ ( x η os x + η os x + η os3x + 3 ( ( / / ( ξl e γ mpliude 3... / /4 3/4 < / < < < < 3/4 3

32 Iversio of spie ule smmer spie mpliude: ( (/ ξ ξ + s L L ule mpliude: ξ L( (/ ξ L < < < > / ( ( / / lier heor < / Nolier expoeil rowh. Surio mpliude. lssil 5 μm μm 4 μm F = 4.5 λ = μm r.5 λ..5 μm μm S (.5μm..5.5λ γ =.8 3

33 .86 No lier exp. rowh ( ξ. λ. < ξ. λ.. Simulios ART D I V II I V > V.λ. ( s. ( s V III > V II ξ λ...λ. ( s No lier isili for ξ ej >. Bifurio dirm ξe( x = ξej os( jx j= + 3 ξ ξ ( ξ ξ Lier heor shows: ξ ( x ξ os( x e e 33

34 No lier isili for >. Bifurio dirm ξe( x = ξej os( jx j=.. ξ ej π π / Full olier isili ( > =.5 ule 34

35 .86 No lier isili ( >. Simulios ART D ξ λ...λ. ( s ξ λ...λ Asmpoi ule veloi V /3 V super uoff V sv = = s = > 3V 3 35

36 Sili reios:.5 hs / λ F = 5 r / Muli mode resuls 36

37 Lo wveleh modes eerio / γ( γ+ γ ( ξ + = + ξ( ξ( ( γ+ γ γ γ( γ + γ ( e γ + γ γ = Lo wveleh modes eerio ξ = ξ( ξ ( G G = = op op = op / ART SIMUL. MULTI D SIMUL. Full olier heor Wel olier heor.5 Clssil: = / op

38 Bule ompeiio Aelerio of ule fro.4 λ = λ h h h h = α ( α.6 38

39 Aelerio of ule fro λ = λ h h h h = α ( α.6 Aelerio of ule fro λ = λ h.5 h h h = α ( α.3 39

40 Aelerio of ule fro α Fr=5 Fr= Fr=. Fr= h h =α / SC Aelerio of ule fro : ( α = α / SC.7 Fr=3.6 Fr=5 α h h = C V 3 ( h h =α Fr= Fr= C = 3α. / s

41 4

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp)

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp) HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI Dixit-Stiglitz-Krugman modellen Åge Haugslett Vedlegg til Masteroppgave i - Samfunnsøkonomi ( stp) Vedlegg kap,.. VEDLEGG KAPITTEL KapModATilf.mcd. Den enklestet

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

EKSAMEN I FAG SIF4002 FYSIKK. Mandag 5. mai 2003 Tid: Sensur uke 23.

EKSAMEN I FAG SIF4002 FYSIKK. Mandag 5. mai 2003 Tid: Sensur uke 23. side 1 av 5 (bokmål) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Arnljot Elgsæter, 73940078 EKSAMEN I

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:

Detaljer

Løsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004

Løsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004 NTNU Side 1 av 6 Institutt for fysi Faultet for naturvitensap og tenologi Løsningsforslag til esaen i TFY405 Kvanteeani 1. august 004 Dette løsningsforslaget er på 6 sider. Oppgave 1. To-diensjonal eletron-gass

Detaljer

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 01.. 4.. 1 Ÿ Œ œ ˆ ˆ Š Œ ˆˆ ˆÄ ˆƒƒ Œˆ Œ Š.. ³μ μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö ˆ 70 Ÿ Œ œ ˆ ˆ Š Œ ˆˆ ˆÄ 7 ˆ ˆ IFW- ˆˆ ˆ Œ Œ Œ ˆˆ 79 Š ˆ 80 ˆ Š ˆ 81 E-mail: neznamov@vniief.ru

Detaljer

145± ±175 St 52 S ± ±225

145± ±175 St 52 S ± ±225 SNG V VKTG GNNG, DT, TB OG GU KP.. NNDNNG Pll: l o 5,, og. 5:, 6, 5,, 6,. :,.5, 6,, 5,.5,, 5, 6, 8,. :,..5,, 6, 8,,., 5, 8,.5, 5.5,, 5, 5, 56, 6, 7, 8, 9,. :,.6,.,.8,.5,.,, 5, 6, 7, 8, 9,,.,.,.6, 5, 6.5,

Detaljer

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006 NTNU Side av 3 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY836 KVANTEFELTTEORI Fredag 9. juni 6 Dette løsningsforslaget er på 3 sider, pluss et vedlegg

Detaljer

Probema di Marek. (Problema dei quattro punti inaccessibili).

Probema di Marek. (Problema dei quattro punti inaccessibili). ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI "In Meoria dei Morti per La Patria" Viale Enrico Millo, 1-16043 Chiavari Laboratorio di Topografia - G.P.S. - G.I.S Anno scolastico 2009-2010 Soario

Detaljer

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK

Detaljer

Formelsamling Bølgefysikk Desember 2006

Formelsamling Bølgefysikk Desember 2006 Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelie fakultet Eksamen i: FYS4-Matematiske metoder i fysikk Dato: juni 9 Tid for eksamen: 9- Oppavesettet: sider Tillatte hjelpemidler: Elektronisk kalkulator,

Detaljer

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a.

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a. o o {rb} rprr på r år o prpp rpro r r rr rpro o r o or α r o or bor brp or b rr på ppr r r r r r rrr år på o oroooro o r or o br å r r pår r r orør p o b b år r å r o o o rprrr o p o rprrr o or op r r

Detaljer

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2 TFY4106 Fysikk Eksamen 9. juni 2016 (Foreløpig versjon pr 7. mai 2016.) FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00 Side 1 av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Kåre Olaussen Telefon: 9 36 52 Eksamen i fag 74327 RELATIVISTISK KVANTEMEKANIKK Fredag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,

Detaljer

Eksponensielle klasser

Eksponensielle klasser Eksponensielle klasser, de Jong & Heller, Kap. 3 Eksponensielle klasser STK3100-1. september 2008 Sven Ove Samuelsen En stokastisk variabel Y sies å ha fordeling i den eksponensielle fordelingsklasse dersom

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider.

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider. NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TEP4145

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6

TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6 TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes

Detaljer

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt. p = mv = mṙ. Konstant akselerasjon: v = v 0 +at

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt. p = mv = mṙ. Konstant akselerasjon: v = v 0 +at TFY4106 Fysikk Eksamen 17. desember 2014 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas forøvrig å

Detaljer

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N = FY1001/TFY4145 Mekanisk Fysikk ksamen 9. august 2016 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: v = at = 9.81 0.5 m/s = 4.9 m/s. (Kula er fortsatt i fritt fall, siden h = at 2 /2

Detaljer

Løsningsforslag Eksamen 9. desember 2006 TFY4250 Atom- og molekylfysikk /FY2045 Kvantefysikk

Løsningsforslag Eksamen 9. desember 2006 TFY4250 Atom- og molekylfysikk /FY2045 Kvantefysikk Eksamen TFY450/FY045 9. esember 006 - løsningsforslag 1 Løsningsforslag Eksamen 9. esember 006 TFY450 Atom- og molekylfysikk /FY045 Kvantefysikk Oppgave 1 a. Grunntilstanen ψ 1 (x) har ingen nullpunkter.

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag. Side 1 av 6. Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518)

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag. Side 1 av 6. Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (93518) EKSAMEN I NUMERISK LØSNING AV DIFFERENISALLIGNINGER (75316)

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

Løsningsforslag til eksamen i FY3404 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 2004

Løsningsforslag til eksamen i FY3404 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 2004 NTNU Side av 7 Institutt for fysikk Løsningsforslag til eksamen i FY30 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 200 Dette løsningsforslaget er på 7 sider. Oppgave. Prosesser i QED Tegn, i de tilfeller

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 7

INF3170 Logikk. Ukeoppgaver oppgavesett 7 INF3170 Logikk Ukeoppgaver oppgavesett 7 Unifisering I forelesning 10 så vi på en unifiseringsalgoritme som finner en mest generell unifikator for to termer. I automatisk bevissøk har vi imidlertid bruk

Detaljer

Plan. I dag. Neste uke

Plan. I dag. Neste uke Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Hydrostatisk ligevægt

Hydrostatisk ligevægt Hyosaisk ligevæg F g F P Gaviy ynge Pesse yk F g F P Hyosaisk ligevæg P Gm. μ P k m m Gm P B π Sjene amosfæe μ P k m m Gm P B π Sjene amosfæe H P g GM B m g k H μ ~ konsan isoem ykskalahøjen 3 H h H h

Detaljer

EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING

EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING NTNU Norges teknisk-naturvitenskapelige universitet Side 1 av 8 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3 FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte

Detaljer

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på: Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet

Detaljer

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Konteeksamen i AST1100, 8.januar 2009, 14.30 17.30 Oppgavesettet inkludert formelsamling er på 10 sider Tillatte hjelpemidler: medbrakt

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk Eksamen TFY45/FY45. desember 8 - løsningsforslag Løsningsforslag Eksamen. desember 8 TFY45 Atom- og molekylfysikk/fy45 Kvantefysikk Oppgave a. For x og E = E B < har den tidsuavhengige Schrödingerligningen

Detaljer

KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

Løsningsforslag til øving 6

Løsningsforslag til øving 6 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 6 Oppgave 1 a) Litt repetisjon: Generelt er hastigheten til mekaniske bølger gitt ved mediets elastiske modul

Detaljer

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 May 24, 2007 Oppgave 1 a) Lorentztransformasjonane er x = γ(x V t), t = γ(t V x), der γ = 1/ 1 V 2 Vi tar differensiala av desse

Detaljer

Litt GRUPPETEORI for Fys4170

Litt GRUPPETEORI for Fys4170 Litt GRUPPETEORI for Fys4170 GRUPPER: Ei gruppe G = {g i } er ei samling element med disse egenskapene: * multiplikasjon slik at g i g j G ; * et enhetselement g 0 = 1 slik at g i g 0 = g 0 g i = g i ;

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant.

a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant. NB: Alle deloppgavene teller like mye i vurderingen. Dvs. oppgave 1a teller like mye som oppgave 4. Oppgave 1 I en beholder er 50,0 mol luft avstengt av et stempel som kan bevege seg uten friksjon mot

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag: Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta

Detaljer

Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl

Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høst 2007 Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400. LØSNINGSFORSLAG 1) En masse er festet til ei fjær og utfører udempede

Detaljer

EKSAMEN I EMNE TFY4125 FYSIKK. Lørdag 20. august 2005 Tid: kl

EKSAMEN I EMNE TFY4125 FYSIKK. Lørdag 20. august 2005 Tid: kl Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Tore Lindmo, mob. 911 47 844 Studentnummer: Studieretning:

Detaljer

TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22

TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22 TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00

Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00 NTNU Side 1 av 6 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 5 eller 45 43 71 70 Eksamen i FY3403/TFY490 PARTIKKELFYSIKK Mandag 1. desember 005 09:00 13:00

Detaljer

Eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni :00 13:00

Eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni :00 13:00 NTNU Side av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 7 70 Eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006 09:00 3:00 Tillatte hjelpemidler:

Detaljer

Dimensjonering av betongbruer i bruksgrensetilstand

Dimensjonering av betongbruer i bruksgrensetilstand Dimensjonering av betongbruer i bruksgrensetilstand Evaluering av beregningsgrunnlaget i Eurokode-systemet og norsk praksis Synne Aasrum Midtgarden Bygg- og miljøteknikk Innlevert: desember 2015 Hovedveileder:

Detaljer

Copula goodness-of-fit testing

Copula goodness-of-fit testing Daniel Berg Universitetet i Oslo & Norsk Regnesentral DET 14. NORSKE STATISTIKERMØTET Sommarøya 19. -21. Juni 2007 Outline 1. 2. 2.1 Lovende tester 2.2 Cpit2-testen 3. 4. 5. C n C ρ C ρν v u v u v u C

Detaljer

MAT1110. Obligatorisk oppgave 1 av 2

MAT1110. Obligatorisk oppgave 1 av 2 30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner

Detaljer

EKSAMEN TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl Norsk utgave

EKSAMEN TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl Norsk utgave NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4160 BØLGEFYSIKK Mandag 3. desember

Detaljer

Computer Problem 1 TTK 4190 NavFart

Computer Problem 1 TTK 4190 NavFart Computer Problem 1 TTK 419 NavFart Frode Efteland efteland@stud.ntnu.no 3 mars 24 Innhold 1 Oppgave 1 - DSRV 4 1.1 a)forwardspeedmodell... 5 1.1.1 Simulinkmodell... 6 1.1.2 Matlabplott... 7 1.1.3 Resultat...

Detaljer

Arbeid og energi. Energibevaring.

Arbeid og energi. Energibevaring. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p

Detaljer

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.

Detaljer

Tegn og tekst. Posisjonssystemer. Logaritmer en kort repetisjon. Bitposisjoner og bitmønstre. Kapittel August 2008

Tegn og tekst. Posisjonssystemer. Logaritmer en kort repetisjon. Bitposisjoner og bitmønstre. Kapittel August 2008 Posisjonssystemer 10 5 (100 000) 10 4 (10 000) 10 3 (1 000) 10 2 (100) 10 1 (10) 10 0 (1) Tegn og tekst \yvind og ]se N{rb}? 2 7 (128) 2 6 (64) 2 5 (32) 2 4 (16) 2 3 (8) 2 2 (4) 2 1 (2) 2 0 (1) Kapittel

Detaljer

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 21. februar 2017 Klokkeslett: kl. 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Karl Rottmann:

Detaljer

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger

Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

UNIVERSITETET I OSLO. Konstanter og formelsamling finner du bakerst

UNIVERSITETET I OSLO. Konstanter og formelsamling finner du bakerst UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Avsluttende eksamen i AST1100, 4 desember 2007, 14.30 17.30 Oppgavesettet inkludert formelsamling er på 14 sider Konstanter og formelsamling

Detaljer

EKSAMEN I EMNE TTM4110 PÅLITELIGHET OG YTELSE MED SIMULERING. Mandag 14. desember 2005 Tid: 09:00 13:00

EKSAMEN I EMNE TTM4110 PÅLITELIGHET OG YTELSE MED SIMULERING. Mandag 14. desember 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for telematikk Side 1 av 12 Faglig kontakt under eksamen: Poul Heegaard (73 594321) EKSAMEN I EMNE TTM4110 PÅLITELIGHET OG YTELSE MED SIMULERING

Detaljer

Løsningsforslag øving 4

Løsningsforslag øving 4 TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.

Detaljer

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005 NTNU Side av 5 Institutt or ysikk Fakultet or ysikk, inormatikk og matematikk Eksamen gitt av Kåre Olaussen Dette løsningsorslaget er på 5 sider. Løsningsorslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag

Detaljer

Tegn og tekst. Om tegn og glyfer. Tegnkoder og kodetabeller Kode Noe som representerer noe annet. Et representert tegn kan vises på flere måter

Tegn og tekst. Om tegn og glyfer. Tegnkoder og kodetabeller Kode Noe som representerer noe annet. Et representert tegn kan vises på flere måter r s s {rb} ærb p br brp r bs srr på ppr sr sr ss r r r rrr år på s s s sr rr s ss r r s brs å sr r pår rss r rør sp b b år rss å r s s s rprsr ss på r år prspp rprss r rs rr rprss r s r α r s r br s rprsrr

Detaljer

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr en omfatter 1 Perspektiv I en omfatter 2 Perspektiv II en omfatter 3 Perspektiv III en omfatter 4 Perspektiv IV en omfatter 5 Perspektiv V en omfatter 6 Perspektiv VI en omfatter 7 Perspektiv VII en omfatter

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning. Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

Viskositetsløsninger

Viskositetsløsninger Viskositetsløsninger Problem: F x, u, Du, D 2 u = 0, x Ω R n. 1 Her blir F = F Ω, R, R n, Sn R, der Sn er mengden av symmetriske n n reelle matriser. Vi skriver F x, r, p, X. F kalles degenerert elliptisk

Detaljer

TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6

TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6 TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7 FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon

Detaljer

EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl Norsk utgave

EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl Norsk utgave NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1002 og TFY4160 BØLGEFYSIKK Onsdag

Detaljer

Equations fondamentales de la mécanique linéaire de la rupture

Equations fondamentales de la mécanique linéaire de la rupture //5 Aee A Equatios fodaetales de la écaique liéaie de la uptue A. Zeghloul MMAE appels d élasticité plae octio d Ai e vaiables coplees epésetatio des déplaceets et des cotaites Epessio du toseu des effots

Detaljer

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCouseWae http://ocw.mt.edu 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5 Please use the followng ctaton fomat: Maus Zahn, 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5. (Massachusetts

Detaljer

Eksamen i fag SIF 4002 FYSIKK mandag 3. mai 2001 Løsningsskisse

Eksamen i fag SIF 4002 FYSIKK mandag 3. mai 2001 Løsningsskisse Eksamen i fag SIF 4002 FYSIKK mandag 3 mai 2001 Løsningsskisse Oppgave 1 a Sammenheng vinkelhastighet-lineær hastighet: ω = v/r Energibevarelse: V pot = mgh 0 W kin = mv0 2/2 + Iω2 0 /2 Med innsatt Iω

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet er størst for små verdier

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9 FY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9 Hver oppgave teller 2.5% 1) Hva er bølgelengden til et foton med energi 100 ev? A) 0.12 nm B) 12 nm C) 0.12 µm D) 12 µm E) 0.12

Detaljer

Løsningsforslag FY105-eksamen 15. januar 2004

Løsningsforslag FY105-eksamen 15. januar 2004 Løsgsfoslag FY5-esae 5. jaua 4 Oppgae a) Newos.lo på losse g x x x+ x ed få x+ x Isa x() dffeesallgge: A s( + ϕ) + As( + ϕ) so se a x () As( ϕ) + e e løsg. Fa x ( ) Asϕ ϕ få : x() () A b) Toaleege l sysee

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer