Aksjeavkastningsparadoxet
|
|
- Torger Jensen
- 1 år siden
- Visninger:
Transkript
1 Aksjeavkastningsparadoxet Kjell Arne Brekke October 16, Mer om risikofrie sannsynligheter Vi skal nå tilbake til modellen vi studerte ovenfor, med to tidsperioder og en konsumvare i hver periode. Vi skal forenkle enda litt mer og anta at nyttefunksjonen er additiv, dvs at u i (c i0,c iω )=u i (c i0 )+ρu i (c iω ). Med komplette markeder finnes det priser på tilstandsbetinget krav på alle tilstander ω Ω, disse prisene betegnes ψ ω. Budsjettbetingelsen er da c i0 + X ψ ω c iω = e i0 + X ψ ω e iω og aktøren maksimerer forventet nytte u i (c i0 )+ρ X π iω u i (c iω ) Dette gir en lagrangefunksjon L = u i (c i0 )+ρ X h π iω u i (c iω )+θ i c i0 + X ψ ω c iω e i0 X i ψ ω e iω 1
2 og førsteordensbetingelser u 0 i0 (c i0) = θ i π iω ρu 0 i(c iω ) = θ i ψ ω der θ i er lagrangemultiplikatoren for i sin budsjettbetingelse. eliminere θ i : ρu 0 ψ ω = π i(c iω ) iω u 0 i0(c i0 ). La oss stoppe opp ved denne ligningen litt. Vi husker at X ψ ω = 1 1+r Vi kan her der r er obligasjonsrenten. Anta først at det bare er en tilstand og at obligasjonsrenten er null, og ρ =1.Davetviatπ iω =1=ψ ω. Ligningen ovenfor gir da at u 0 i(c i0 )=u 0 i(c i der vi har skrevet c i1 for konsumet i periode 1, siden det bare er en tilstand. Denne ligningen kan leses som at marginalnytten av konsum er det samme i begge tilstander. Med generell rente og ρ finner vi tilsvarende u 0 i (c i0) =ρ(1 + r)u 0 i (c i1) Dersom nå avkastningen på obligasjoner er høy, slik at r er stor og ρ(1 + r) > 1, såmådetbetyatu 0 i(c i0 ) >u 0 i(c i. Siden u 00 < 0, såmådetigjen bety at c i0 <c i1. Vi konsumerer altså mindre i dag enn i neste periode, og må da spare tilsvarende. Altså når pengene kaster mye av seg i banken, så lønner det seg å sette dem i banken. Dersom renten er liten eller vi legger liten vekt på framtidig konsum (ρ liten) slik at ρ(1 + r) < 1, så følger det på samme måten at c i0 >c i1. Med andre ord, når vi får lite igjen for pengene ved å sette dem i banken, så bruker vi mer av dem nå. 2
3 La oss så gå tilbake til formelen ovenfor. Vi innfører nå sannsynlighetene vi husker q ω = ψ ω (1 + r) og ser da at ρ(1 + r)u 0 q ω = π i(c iω ) iω u 0 i(c i0 ) Vi ser her at de risikofrie sannsynlighetene er justeringer av de subjektive sannsynlighetene. Summerer vi over alle ω ser vi at u 0 i (c i0) =ρ(1 + r)e [u 0 i ( c i1)] så i gjennomsnitt gjelder samme sammenheng som ved full sikkerhet. Men i dette tilfellet vil c iω være forskjellig i ulike tilstander. Noen tilstander gir et høyt konsum, og da er c iω u 0 i(c i0 ) > ρ(1 + r)u 0 i(c iω ) siden marginalnytten er avtagende. I dette tilfellet ser vi at q ω < π iω. Når c iω er lav derimot, så blir motsatt q ω > π iω. Risiko har bare betydning når u 00 < 0. Vi ser bortfra u 00 > 0, sombetyr at personen søker risiko. Det er nesten ingen grenser for hvor mye risiko en kan få, så adferden til en som er konsekvent risikosøkende vil bli temmelig ekstrem. Dersom u 00 =0, så vet vi at risikoaversjonen er lik 0, og personen ser da ikke på risiko i det hele tatt, og det er ikke noe behov for risikojustering. Når u 00 < 0, så gjenspeiler det at vi har ulik nytte av en krone ekstra avhengig av om den kommer i en tilstand der vi alt har mye eller i en tilstand derviharlite. Nårviregneromfraπ iω til q ω er det nettopp dette vi justerer for, ved at vi legger ekstra stor vekt på de inntektene som kommer når vi har lite penger ellers, dvs vi overvektlegger de tilstandene. Vi ser også at graden av risikoaversjon vil bestemme hvor stor forskjell det er på q ω og π iω. 3
4 2 Equity Premium Puzzle I det følgende skal vi gjøre enda en forenkling, som er langt mer troskydlig enn den kan virke. Vi skal anta at det bare er en investor i dette markedet. Han oppfører seg akkurat som investoren ovenfor, men han disponerer altså hele inntekten i samfunnet og konsumet hans blir lik total tigjengelig kosummengde. Han handler på samme måten som ovenfor med tilstandsbetingede papirer i et komplett marked. Denne ene investoren kaller vi den representative aktør. En slik forutsetning kan virke helt hinsidig, men det kan vises at de prisene vi finner er det samme som i et stort marked med mange aktører. Forutsetningen er at alle er enige om de subjektive sannsynlighetene og at nyttefunksjonen er pene og ikke altfor forskjellige. Jeg skal ikke gå inn på detaljene. Med en slik representativ aktør blir likevekten ψ ω = π ω ρ u0 (C ω ) u 0 ( ) Dersom vi kjøper et betinget krav på alle tilsatnder, får vi en sikker utbetaling. Det følger av det at X ψ ω = 1 1+r. Fra ligningen ovenfor gir dette at " u 0 ( ρe C = ρ X u0 (C ω ) π u 0 ω = 1. ( ) u 0 (C 0 ) 1+r f Samtidig sitter denne representative aktøren med en portefølje (markedsporteføljen) som gir avkastning x ω. Verdien på denne porteføljen er S 0 = X ψ ω x ω = X " π ω ρ u0 (C ω ) u 0 ( ) x u ω = ρe S 0 ( C 1. u 0 ( ) 4
5 Siden avkastningen på porteføljen er 1+ r = S 1 /S 0. Ligningen ovenfor kan derfor skrives Til sammen gir dette ρe " u 0 ( ρe C (1 + r) =1 u 0 ( ) E " u 0 ( C u 0 ( ) (1 + r f) " u 0 ( C u 0 ( ) ( r r f) Anta nå at nyttefunksjonen er av formen u(c) = 1 1 α c1 α = 1 = 0. som svarer til tilfellet ovenfor med α = 1 og A =0. Ligningene blir da B "Ã! α C1 ρe (1 + r f ) = 1 Husk her at E "Ã! α Cω ( r r f ) = 0 Cov(X, Y ) = E(X EX)(Y EY )=EXY EXEY EXY = EXEY Cov(X; Y ) slik at "Ã! α C1 ρe (1 + r f ) = 1 "Ã! α Ã! α Cω Cω E E( r r f )+Cov(, r) = 0 5
6 Dette blir enda klarer om vi antar at både g =ln( C 1 ), ˆr =ln(1+ r) og ˆr f =ln(1+r f ) er normalfordelt. (I praksis er heller ikke avkastningen på obligasjoner helt sikker, både fordi realavkastningen avhenger av inflasjonen og rentene endrer seg. Ligningene ovenfor blir imidlertid de samme selv om r f ikke er helt sikker.) Da kan en vise (jeg skal ikke gjøre det her) at formlene blir ln(ρ) αeg + 1 α 2 Var(g) 2αCov(g, ˆr f )+Var(ˆr f ) 2 = 0 E(ˆr ˆr f ) αcov(g, ˆr ˆr f )+ 1 2 [Var(ˆr)+Var(ˆr f)] = 0 Med data fra amerikansk økonomi har dette blitt estimert til ln(ρ) 0, 018α + 1 0, 00127α 2 +0, 0004α +0, = 0 0, 06 0, 0024α + 1 [0, , 003] 2 = 0 som igjen gir α = 0, 075 0, ln(ρ) = 0, 039 Det er to problemer med denne løsningen. For det første så må folk legge større vekt på framtidas enn dagens konsum, (ρ > 1). I motsatt fall skulle de ikke spare med de risikofrie rentene som en observerer. at α > 2, 5 blir ansett som svært lite plausiblet. investorene på børsen. Det andre er Såå risikoavers er ikke Estimeringer direkte på data vil gi at α > 15 og at ρ > 1. Det er det siste som kalles for Equity Premium Puzzle. Det som driver paradokset er at forskjellen mellom avkastningen på aksjer og obligasjoner er såpass stor. 6
7 Det som gjør at ρ blir såpass lav er at r f er så liten. Om vi ser bort fra usikkerhet blir den første ligningen ρ = 1, 018α 1+r f ln(ρ) = 0, 018 α r f for α > 0, 5. Vi ser av tilnærmingene ovenfor at dette regnestykket blir ikke helt nøyaktig, (det må korrigeres for at C er usikker) men poenget her er at vi forventer 2% høyere konsum om ett år, og da rimer det ikke helt at noen vi spare til 1% rente. Den siste observasjonen finnes det imiderltid mange forklaringer på. Hvorfor forutsatte vi i utgangspunktet at ρ < 1. Viserdaatomc 0 = c 1 = c, så vil en krone ekstra til konsum i periode 0 enn en krone til konsum i periode 1fordi u 0 (c) > ρu 0 (c). Det betyr at om konsumet er det samme i begge perioder og vi får en krone ekstra vil vi heller bruke den på konsum nå enn senere dersom ρ < 1. Det er langtfra opplagt at det er en rimelig forutsetning, og en forklaring som har støtteidataeratbådekonsumnivåogvekstgirnytte. Ideenhereratvi venner oss til de varene vi har i dag. Den første dagen du får et nytt møbel, reist ett sted, eller kanskje har funnet en ny spennende rett så gir det en ekstra glede, men etter hvert venner en seg til det og går lei. Nye møbler, andreretterellerenlengerreisemåtilforågisammegledenigjen. Deter derfor bra med et stadig voksende konsum, slik at den ekstra krona heller hadde blitt brukt til framtidig konsum. Noen god forklaring på forskjellen mellom aksjeavkastning og obligasjoner gir denne historien ikke. Det finne 7
8 også andre forklaringer, men jeg skal ikke gå inn på alle her, flere av dem blir litt for kompliserte for dette kurset. 8
Kapitalverdimodellen
Kapitalverdimodellen Kjell Arne Brekke October 23, 2001 1 Frontporteføljer En portefølje er en front-portefølje dersom den har minimal varians gitt avkastningen. Først, hva blir avkastning og varians på
Konsumentteori. Kjell Arne Brekke. Mars 2017
Konsumentteori Kjell Arne Brekke Mars 2017 1 Budsjettbetingelser Vi skal betrakter en konsument som kan bruke inntekten m på to varer. Konsumenten kjøper et kvantum x 1 av vare 1 til en pris p 1 per enhet,
La U og V være uavhengige standard normalfordelte variable og definer
Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser
Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 12. mars 2002
Usikkerhet, disposisjon Denne og neste forelesning: o Et individs beslutninger under usikkerhet o Varian kapittel 11 De to forelesningene deretter: o Markeder under usikkerhet, finansmarkeder o Frikonkurranse;
Nåverdi og pengenes tidsverdi
Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2015 Versjon 2.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har
Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 2014
Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 014 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og. Denne aktøren representerer mange aktører i
Mikroøkonomien med matematikk
Mikroøkonomien med matematikk Kjell Arne Brekke March 11, 2011 1 Innledning I Varian: Intermediate Microeconomics, er teorien i stor grad presentert med gurer og verbale diskusjoner. Da vi som økonomer
= 5, forventet inntekt er 26
Eksempel på optimal risikodeling Hevdet forrige gang at i en kontrakt mellom en risikonøytral og en risikoavers person burde den risikonøytrale bære all risiko Kan illustrere dette i en enkel situasjon,
Løsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
OPPGAVER TIL SEMINARET I SØK400 MIKROØKONOMISK TEORI, TREDJE AVDELING, VÅREN 2002
Økonomisk institutt Universitetet i Oslo OPPGAVER TIL SEMINARET I SØK400 MIKROØKONOMISK TEORI, TREDJE AVDELING, VÅREN 2002 Oppgave (Eksamen V-98, oppg. ) Betrakt et individ som maksimerer forventet nytte.
Oversikt over kap. 19 i Gravelle og Rees. Sett i forhold til resten av pensum:
Oversikt over kap. 19 i Gravelle og Rees Først et forbehold: Disse forelesningene er svært kortfattede i forhold til pensum og vil ikke dekke alt. Dere må lese selv! Sett i forhold til resten av pensum:
dg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013
Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013 Oppgave 1 Vi ser på en økonomi der det kun produseres ett gode, ved hjelp av arbeidskraft, av mange, like bedrifter. Disse kan representeres
Oversikt over kap. 20 i Gravelle og Rees
Oversikt over kap. 20 i Gravelle og Rees Tar opp forskjellige egenskaper ved markeder under usikkerhet. I virkeligheten usikkerhet i mange markeder, bl.a. usikkerhet om kvalitet på varen i et spotmarked,
Løsningsveiledning, Seminar 9
Løsningsveiledning, Seminar 9 Econ 3610/4610, Høst 2016 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og 2. Denne aktøren representerer mange aktører
ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3
ECON360 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 Diderik Lund Økonomisk institutt Universitetet i Oslo 9. september 20 Diderik Lund, Økonomisk inst., UiO () ECON360 Forelesning
Løsningveiledning for obligatorisk oppgave
Løsningveiledning for obligatorisk oppgave Econ 3610/4610, Høst 2016 Oppgave 1 a) Samfunnsplanleggeren ønsker å maksimere konsumentens nytte gitt den realøkonomiske rammen: c 1,c 2,x 1,x 2,z,N 1,N 2 U(c
Modeller med skjult atferd
Modeller med skjult atferd I dag og neste gang: Kap. 6 i GH, skjult atferd Ser først på en situasjon med fullstendig informasjon, ikke skjult atferd, for å vise kontrasten i resultatene En prinsipal, en
Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og
Veiledning til Obligatorisk øvelsesoppgave ECON 3610/4610 høsten 2009
Jon Vislie Oktober 009 Veiledning til Obligatorisk øvelsesogave ECON 360/460 høsten 009 Ogave. I den lukkede økonomien du betrakter er det to gruer av arbeidstakere; en grue vi kaller og en grue vi kaller.
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk 1 / Mikro 1 Eksamensdag: 14.06.01 Tid for eksamen: kl. 09:00 1:00 Oppgavesettet er på sider Tillatte hjelpemidler: Ingen tillatte
Modellrisiko i porteføljeforvaltning
Modellrisiko i porteføljeforvaltning Hans Gunnar Vøien 12. mai 2011 1/25 Innhold Problem og introduksjon Problem og introduksjon Lévyprosesser Sammenlikning GBM og eksponentiell NIG Oppsummering 2/25 Problem
Eksamensopppgaven. Oppgave 1. karakter: 1,7. Gjengitt av Geir Soland geiras@student.sv.uio.no. Figur 1. side 31
side 30 Eksamensopppgaven karakter: 1,7 Gjengitt av Geir Soland geiras@student.sv.uio.no Oppgave 1 A) Standard CAPM antar en risikofri rente som man kan låne og spare ubegrenset til, R f. Videre kan det
Stokastiske prosesser i kontinuerlig tid
Stokastiske prosesser i kontinuerlig tid Kjell Arne Brekke October 29, 2001 1 Brownsk bevegelse Vi starter med å definere en Brownsk bevegelse. Denne prosessen bruker vi så senere til å definere en større
Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen
Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris
c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte
Oppgave 1 (10 poeng) Finn den første- og annenderiverte til følgende funksjoner. Er funksjonen strengt konkav eller konveks i hele sitt definisjonsområde? Hvis ikke, bestem for hvilke verdier av x den
Oppsummering matematikkdel ECON 2200
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir
Veiledning til seminaroppgave uke 46 ECON 3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk
Jon Vislie ovember 007 Veiledning til seminaroppgave uke 46 ECO 360/460: Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forklar hva betingelsene () (5) uttrykker: () xp ( ) = cq ( ) () h = n+ (3) τ
Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.
FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2200 Matematikk 1/Mikro 1 (MM1) Eksamensdag: 19.05.2017 Sensur kunngjøres: 09.06.2017 Tid for eksamen: kl. 09:00 15:00 Oppgavesettet er på 6 sider
To-dimensjonale kontinuerlige fordelinger
To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}
Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
Finansmarkedet. Forelesning november 2016 Trygve Larsen Morset Pensum: Holden, kapittel 13
Finansmarkedet Forelesning 12 15. november 2016 Trygve Larsen Morset Pensum: Holden, kapittel 13 Finansmarkedet Funksjon Historie Finansobjekter Bankenes finansiering Bedriftenes finansiering Finanskrisen
Seminar 6 - Løsningsforslag
Seminar 6 - Løsningsforslag Econ 3610/4610, Høst 2016 Oppgave 1 Vi skal her se på hvordan en energiressurs - som finnes i en gitt mengde Z - fordeles mellom konsum for en representativ konsument, og produksjon
Nivåtettheten for ulike spinn i 44 Ti
7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.
Nåverdi og pengenes tidsverdi
Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 9. september 2014 Versjon 1.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har
Nr. 05 2012. Staff Memo. Dokumentasjon av enkelte beregninger til årstalen 2012. Norges Bank Pengepolitikk
Nr. 05 2012 Staff Memo Dokumentasjon av enkelte beregninger til årstalen 2012 Norges Bank Pengepolitikk Staff Memos present reports and documentation written by staff members and affiliates of Norges Bank,
UNIVERSITETET I OSLO. Løsningsforslag
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
Risikopremiemysteriet *
Risikopremiemysteriet * Jørgen Haug http://jorgen.dyn.dhs.org/ (publisert med samme tittel i Praktisk Økonomi & Finans, 1999, No. 3, s.96 103) Sammendrag: De første teoriene for fastsettelse av forventet
ECON2200: Oppgaver til for plenumsregninger
University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen
Oppgaveseminar 4 (kap 8-11)
Oppgaveseminar 4 (kap 8-11) Oppgave 4.1 (kap 4/7/8/9) Vi ser på en økonomi hvor individene lever i to perioder, hvor periode 1 er den yrkesaktive delen av livet, og periode er pensjonsperioden. Vi antar
BESLUTNINGER UNDER USIKKERHET
24. april 2002 Aanund Hylland: # BESLUTNINGER UNDER USIKKERHET Standard teori og kritikk av denne 1. Innledning En (individuell) beslutning under usikkerhet kan beskrives på følgende måte: Beslutningstakeren
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Indifferenskurver, nyttefunksjon og nyttemaksimering
Indifferenskurver, nyttefunksjon og nyttemaksimering Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2013 En indifferenskurve viser alle godekombinasjoner som en konsument er likegyldig (indifferent)
Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003
Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen
Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.
H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel
Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014
Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014 Oppgave 1 Vi skal i denne oppgaven se nærmere på en konsuments arbeidstilbud. Konsumentens nyttefunksjon er gitt ved: U(c, f) = c + ln f, (1)
Løsningsskisse. May 28, 2010
Løsningsskisse May 28, 200 Oppgave a) Det skal være lik avkastning på innenlandske og utenlandske plasseringer. Utenlands avkastning av en krone: Kjøpe Euro E Veksle tilbake etterpå E ( + i )E e t+ Lik
Finansmarkedet + finanspolitikk (fra sist) Forelesning 1. november 2017 Trygve Larsen Morset Pensum: Holden, kapittel 13
Finansmarkedet + finanspolitikk (fra sist) Forelesning 1. november 2017 Trygve Larsen Morset Pensum: Holden, kapittel 13 Sist forelesning Penger Sentralbankens renter Andre pengepolitiske virkemidler Finanspolitikk
Oppgave 11: Oppgave 12: Oppgave 13: Oppgave 14:
Oppgave 11: Ved produksjon på 100 000 enheter pr periode har en bedrift marginalkostnader på 1 000, gjennomsnittskostnader på 2 500, variable kostnader på 200 000 000 og faste kostnader på 50 000 000.
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk /Mikro (MM) Eksamensdag: 0.06.05 Sensur kunngjøres: 0.07.05 Tid for eksamen: kl. 09:00 5:00 Oppgavesettet er på 4 sider Tillatte
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Optimal long-term investment in general insurance
Optimal long-term investment in general insurance Didrik Saksen Bjerkan May 11, 2011 1 / 1 2 / 1 Introduksjon Ruinsannsynligheten for et forsikringsselskap med mulighet for å invistere deler av egenkapitalen
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er
Pengepolitikk under et inflasjonsmål
Professor Tommy Sveen BI 20. oktober, 2017 TS (BI) BST 1612 20. oktober, 2017 1 / 35 Introduksjon Litt om meg Siviløkonom fra BI (1993) og doktorgrad fra NHH (2001) Professor i makroøkonomi, jobbet på
FORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A
Dagens forelesning. Forelesning 10 og 11: Nåverdi og konsumentteori. Nåverdi og pengenes tidsverdi Konsumentteori del 1 (del 2 neste uke) Frikk Nesje
Innledning Dagens forelesning Forelesning 0 og : og konsumentteori Frikk Nesje og pengenes tidsverdi Konsumentteori del (del 2 neste uke) Universitetet i Oslo Kurs: ECON20 Pensum: K&W, kap 9 (berre app.)
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
Kapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
(8) BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2
Oppgave 1 i) Finn utrykket for RR-kurven. (Sett inn for inflasjon i ligning (6), slik at vi får rentesettingen som en funksjon av kun parametere, eksogene variabler og BNP-gapet). Kall denne nye sammenhengen
Forelesning i konsumentteori
Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene
BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2
Oppgave 1 a og c) b) Høy ledighet -> Vanskelig å finne en ny jobb om du mister din nåværende jobb. Det er dessuten relativt lett for bedriftene å finne erstattere. Arbeiderne er derfor villige til å godta
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30
Eksamen i STK4500 Vår 2007
Eksamen STK4500 Vår 2007 Prosjektoppgave. Det matematisk-naturvitenskapelige fakultet. Utlevering fredag 15. juni kl. 09.00. Innlevering mandag 18. juni kl. 15.00. Oppgaven skal innen fristen leveres pr.
Avkastningshistorikk
Avkastningshistorikk Hvilken avkastning er det rimelig å anta at Pensjon Pluss Langsiktig ville hatt med sin langsiktige måte å plassere pensjonspenger? Og hvilke forventninger er det rimelig å ha for
Sammenhenger mellom bredden i aksjeeierskapet og aksjeavkastning?
Sammenhenger mellom bredden i aksjeeierskapet og aksjeavkastning? Richard Priestley og Bernt Arne Ødegaard Handelshøyskolen BI April 2005 Oversikt over foredraget Empiriske spørsmål vi vil se på. Teoretisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.
d) Stigningen til gjennomsnittskostnadene er negativ når marginalkostnadene er større
Oppgave 11: Hva kan vi si om stigningen til gjennomsnittskostnadene? a) Stigningen til gjennomsnittskostnadene er positiv når marginalkostnadene er høyere enn gjennomsnittskostnadene og motsatt. b) Stigningen
Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og
Reelle tall på datamaskin
Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke
Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)
Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon
Kapittel 8 Mishkin. Asymmetrisk informasjon
Kapittel 8 Mishkin En sterk og voksende økonomi krever et velfungerende finansieringssystem for å allokere kapital fra sparere til selskaper og andre som kan investere pengene i gode prosjekter og på denne
ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6
ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 Diderik Lund Økonomisk institutt Universitetet i Oslo 30. september 2011 Vil først gå gjennom de fire siste sidene fra forelesning
Matematisk evolusjonær genetikk (ST2301)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det
Hvilke faktorer driver kursutviklingen på Oslo
Hvilke faktorer driver kursutviklingen på Oslo Børs? Resultater for perioden 1980-2006 Randi Næs Norges Bank Johannes Skjeltorp Norges Bank Bernt Arne Ødegaard Handelshøyskolen BI og Norges Bank FIBE,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Dato for utlevering: 16.09.2016 Dato for innlevering: 07.10.2016 innen kl. 15.00
Sensorveiledning Eksamen, Econ 3610/4610, Høst 2013
Sensorveiledning Eksamen, Econ 3610/4610, øst 2013 Oppgave 1 (70 %) a) Samfunnsplanleggerens maksimeringsproblem er gitt ved følgende: c 1,c 2,x 1,x 2,N 1,N 2 Ũ(c 1, c 2 ) gitt x 1 F (N 1 ) x 2 G(N 2 )
Obligatorisk øvelsesoppgave ECON 3610/4610 HØST 2007 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.)
Obligatorisk øvelsesoppgave ECON 36/46 HØST 7 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.) Oppgave. Betrakt en lukket økonomi der det produseres en vare, i mengde x, kun ved hjelp
EKSAMEN I MATEMATIKK 3 (TMA4110)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven
Obligatorisk oppgave. Gjennomgang
Obligatorisk oppgave. Gjennomgang Kjell Arne Brekke Økonomisk Institutt November 17, 2008 KAB (UiO) Oblig 08 November 17, 2008 1 / 9 Oppgave 1: Hovedpoenget å bli kjent med Penn World tables. Lite å gjennomgå.
Løsning til øving 8 for FY1004, høsten 2007
øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien
Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04
Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +
SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag
SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et
MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
Sensorveiledning ordinær eksamen Econ 3610/4610, Høst 2014
Sensorveiledning ordinær eksamen Econ 3610/4610, Høst 2014 Oppgaven er nok relativt lang, slik at mange kandidater ikke vil greie å besvare alle deloppgavene. Oppgave 1a) og 2a) er helt elementære, og
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
Løsningsforslag Eksamen M001 Våren 2002
Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Eksamensdag: Tirsdag 17. desember 2013 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet
Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3
Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1 Oppgave 1 For AR(2)-modellen: X t = 0.4X t 1 + 0.45X t 2 + Z t (der {Z t } er hvit søy med varians 1), finn γ(3), γ(4)
j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.
FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da
Praksis har vært å bruke følgende poenggrenser for de forskjellige karakterene på ECON2200:
Kjell Arne Brekke Vidar Christiansen Sensorveiledning ECON 00, Vår Vi gir oeng for hvert svar. Maksimalt oengtall å hver ogave svarer til den vekt som er ogitt i rosent. Maksimal total oengsum blir dermed
Forventning og varians.
Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret
ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5
ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 Diderik Lund Økonomisk institutt Universitetet i Oslo 23. september 2011 Vil først se nærmere på de siste sidene fra forelesning
Verdipapirfinansiering
Verdipapirfinansiering Securities AKSJEKREDITT Pareto Securities tilbyr i samarbeid med Pareto Bank en skreddersydd løsning for finansiering av verdipapirhandel. Med aksjekreditt får du som investor en
Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.
Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen
Forelesning 27. mars, 2017
Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme