Aksjeavkastningsparadoxet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Aksjeavkastningsparadoxet"

Transkript

1 Aksjeavkastningsparadoxet Kjell Arne Brekke October 16, Mer om risikofrie sannsynligheter Vi skal nå tilbake til modellen vi studerte ovenfor, med to tidsperioder og en konsumvare i hver periode. Vi skal forenkle enda litt mer og anta at nyttefunksjonen er additiv, dvs at u i (c i0,c iω )=u i (c i0 )+ρu i (c iω ). Med komplette markeder finnes det priser på tilstandsbetinget krav på alle tilstander ω Ω, disse prisene betegnes ψ ω. Budsjettbetingelsen er da c i0 + X ψ ω c iω = e i0 + X ψ ω e iω og aktøren maksimerer forventet nytte u i (c i0 )+ρ X π iω u i (c iω ) Dette gir en lagrangefunksjon L = u i (c i0 )+ρ X h π iω u i (c iω )+θ i c i0 + X ψ ω c iω e i0 X i ψ ω e iω 1

2 og førsteordensbetingelser u 0 i0 (c i0) = θ i π iω ρu 0 i(c iω ) = θ i ψ ω der θ i er lagrangemultiplikatoren for i sin budsjettbetingelse. eliminere θ i : ρu 0 ψ ω = π i(c iω ) iω u 0 i0(c i0 ). La oss stoppe opp ved denne ligningen litt. Vi husker at X ψ ω = 1 1+r Vi kan her der r er obligasjonsrenten. Anta først at det bare er en tilstand og at obligasjonsrenten er null, og ρ =1.Davetviatπ iω =1=ψ ω. Ligningen ovenfor gir da at u 0 i(c i0 )=u 0 i(c i der vi har skrevet c i1 for konsumet i periode 1, siden det bare er en tilstand. Denne ligningen kan leses som at marginalnytten av konsum er det samme i begge tilstander. Med generell rente og ρ finner vi tilsvarende u 0 i (c i0) =ρ(1 + r)u 0 i (c i1) Dersom nå avkastningen på obligasjoner er høy, slik at r er stor og ρ(1 + r) > 1, såmådetbetyatu 0 i(c i0 ) >u 0 i(c i. Siden u 00 < 0, såmådetigjen bety at c i0 <c i1. Vi konsumerer altså mindre i dag enn i neste periode, og må da spare tilsvarende. Altså når pengene kaster mye av seg i banken, så lønner det seg å sette dem i banken. Dersom renten er liten eller vi legger liten vekt på framtidig konsum (ρ liten) slik at ρ(1 + r) < 1, så følger det på samme måten at c i0 >c i1. Med andre ord, når vi får lite igjen for pengene ved å sette dem i banken, så bruker vi mer av dem nå. 2

3 La oss så gå tilbake til formelen ovenfor. Vi innfører nå sannsynlighetene vi husker q ω = ψ ω (1 + r) og ser da at ρ(1 + r)u 0 q ω = π i(c iω ) iω u 0 i(c i0 ) Vi ser her at de risikofrie sannsynlighetene er justeringer av de subjektive sannsynlighetene. Summerer vi over alle ω ser vi at u 0 i (c i0) =ρ(1 + r)e [u 0 i ( c i1)] så i gjennomsnitt gjelder samme sammenheng som ved full sikkerhet. Men i dette tilfellet vil c iω være forskjellig i ulike tilstander. Noen tilstander gir et høyt konsum, og da er c iω u 0 i(c i0 ) > ρ(1 + r)u 0 i(c iω ) siden marginalnytten er avtagende. I dette tilfellet ser vi at q ω < π iω. Når c iω er lav derimot, så blir motsatt q ω > π iω. Risiko har bare betydning når u 00 < 0. Vi ser bortfra u 00 > 0, sombetyr at personen søker risiko. Det er nesten ingen grenser for hvor mye risiko en kan få, så adferden til en som er konsekvent risikosøkende vil bli temmelig ekstrem. Dersom u 00 =0, så vet vi at risikoaversjonen er lik 0, og personen ser da ikke på risiko i det hele tatt, og det er ikke noe behov for risikojustering. Når u 00 < 0, så gjenspeiler det at vi har ulik nytte av en krone ekstra avhengig av om den kommer i en tilstand der vi alt har mye eller i en tilstand derviharlite. Nårviregneromfraπ iω til q ω er det nettopp dette vi justerer for, ved at vi legger ekstra stor vekt på de inntektene som kommer når vi har lite penger ellers, dvs vi overvektlegger de tilstandene. Vi ser også at graden av risikoaversjon vil bestemme hvor stor forskjell det er på q ω og π iω. 3

4 2 Equity Premium Puzzle I det følgende skal vi gjøre enda en forenkling, som er langt mer troskydlig enn den kan virke. Vi skal anta at det bare er en investor i dette markedet. Han oppfører seg akkurat som investoren ovenfor, men han disponerer altså hele inntekten i samfunnet og konsumet hans blir lik total tigjengelig kosummengde. Han handler på samme måten som ovenfor med tilstandsbetingede papirer i et komplett marked. Denne ene investoren kaller vi den representative aktør. En slik forutsetning kan virke helt hinsidig, men det kan vises at de prisene vi finner er det samme som i et stort marked med mange aktører. Forutsetningen er at alle er enige om de subjektive sannsynlighetene og at nyttefunksjonen er pene og ikke altfor forskjellige. Jeg skal ikke gå inn på detaljene. Med en slik representativ aktør blir likevekten ψ ω = π ω ρ u0 (C ω ) u 0 ( ) Dersom vi kjøper et betinget krav på alle tilsatnder, får vi en sikker utbetaling. Det følger av det at X ψ ω = 1 1+r. Fra ligningen ovenfor gir dette at " u 0 ( ρe C = ρ X u0 (C ω ) π u 0 ω = 1. ( ) u 0 (C 0 ) 1+r f Samtidig sitter denne representative aktøren med en portefølje (markedsporteføljen) som gir avkastning x ω. Verdien på denne porteføljen er S 0 = X ψ ω x ω = X " π ω ρ u0 (C ω ) u 0 ( ) x u ω = ρe S 0 ( C 1. u 0 ( ) 4

5 Siden avkastningen på porteføljen er 1+ r = S 1 /S 0. Ligningen ovenfor kan derfor skrives Til sammen gir dette ρe " u 0 ( ρe C (1 + r) =1 u 0 ( ) E " u 0 ( C u 0 ( ) (1 + r f) " u 0 ( C u 0 ( ) ( r r f) Anta nå at nyttefunksjonen er av formen u(c) = 1 1 α c1 α = 1 = 0. som svarer til tilfellet ovenfor med α = 1 og A =0. Ligningene blir da B "Ã! α C1 ρe (1 + r f ) = 1 Husk her at E "Ã! α Cω ( r r f ) = 0 Cov(X, Y ) = E(X EX)(Y EY )=EXY EXEY EXY = EXEY Cov(X; Y ) slik at "Ã! α C1 ρe (1 + r f ) = 1 "Ã! α Ã! α Cω Cω E E( r r f )+Cov(, r) = 0 5

6 Dette blir enda klarer om vi antar at både g =ln( C 1 ), ˆr =ln(1+ r) og ˆr f =ln(1+r f ) er normalfordelt. (I praksis er heller ikke avkastningen på obligasjoner helt sikker, både fordi realavkastningen avhenger av inflasjonen og rentene endrer seg. Ligningene ovenfor blir imidlertid de samme selv om r f ikke er helt sikker.) Da kan en vise (jeg skal ikke gjøre det her) at formlene blir ln(ρ) αeg + 1 α 2 Var(g) 2αCov(g, ˆr f )+Var(ˆr f ) 2 = 0 E(ˆr ˆr f ) αcov(g, ˆr ˆr f )+ 1 2 [Var(ˆr)+Var(ˆr f)] = 0 Med data fra amerikansk økonomi har dette blitt estimert til ln(ρ) 0, 018α + 1 0, 00127α 2 +0, 0004α +0, = 0 0, 06 0, 0024α + 1 [0, , 003] 2 = 0 som igjen gir α = 0, 075 0, ln(ρ) = 0, 039 Det er to problemer med denne løsningen. For det første så må folk legge større vekt på framtidas enn dagens konsum, (ρ > 1). I motsatt fall skulle de ikke spare med de risikofrie rentene som en observerer. at α > 2, 5 blir ansett som svært lite plausiblet. investorene på børsen. Det andre er Såå risikoavers er ikke Estimeringer direkte på data vil gi at α > 15 og at ρ > 1. Det er det siste som kalles for Equity Premium Puzzle. Det som driver paradokset er at forskjellen mellom avkastningen på aksjer og obligasjoner er såpass stor. 6

7 Det som gjør at ρ blir såpass lav er at r f er så liten. Om vi ser bort fra usikkerhet blir den første ligningen ρ = 1, 018α 1+r f ln(ρ) = 0, 018 α r f for α > 0, 5. Vi ser av tilnærmingene ovenfor at dette regnestykket blir ikke helt nøyaktig, (det må korrigeres for at C er usikker) men poenget her er at vi forventer 2% høyere konsum om ett år, og da rimer det ikke helt at noen vi spare til 1% rente. Den siste observasjonen finnes det imiderltid mange forklaringer på. Hvorfor forutsatte vi i utgangspunktet at ρ < 1. Viserdaatomc 0 = c 1 = c, så vil en krone ekstra til konsum i periode 0 enn en krone til konsum i periode 1fordi u 0 (c) > ρu 0 (c). Det betyr at om konsumet er det samme i begge perioder og vi får en krone ekstra vil vi heller bruke den på konsum nå enn senere dersom ρ < 1. Det er langtfra opplagt at det er en rimelig forutsetning, og en forklaring som har støtteidataeratbådekonsumnivåogvekstgirnytte. Ideenhereratvi venner oss til de varene vi har i dag. Den første dagen du får et nytt møbel, reist ett sted, eller kanskje har funnet en ny spennende rett så gir det en ekstra glede, men etter hvert venner en seg til det og går lei. Nye møbler, andreretterellerenlengerreisemåtilforågisammegledenigjen. Deter derfor bra med et stadig voksende konsum, slik at den ekstra krona heller hadde blitt brukt til framtidig konsum. Noen god forklaring på forskjellen mellom aksjeavkastning og obligasjoner gir denne historien ikke. Det finne 7

8 også andre forklaringer, men jeg skal ikke gå inn på alle her, flere av dem blir litt for kompliserte for dette kurset. 8

Kapitalverdimodellen

Kapitalverdimodellen Kapitalverdimodellen Kjell Arne Brekke October 23, 2001 1 Frontporteføljer En portefølje er en front-portefølje dersom den har minimal varians gitt avkastningen. Først, hva blir avkastning og varians på

Detaljer

Konsumentteori. Kjell Arne Brekke. Mars 2017

Konsumentteori. Kjell Arne Brekke. Mars 2017 Konsumentteori Kjell Arne Brekke Mars 2017 1 Budsjettbetingelser Vi skal betrakter en konsument som kan bruke inntekten m på to varer. Konsumenten kjøper et kvantum x 1 av vare 1 til en pris p 1 per enhet,

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 12. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 12. mars 2002 Usikkerhet, disposisjon Denne og neste forelesning: o Et individs beslutninger under usikkerhet o Varian kapittel 11 De to forelesningene deretter: o Markeder under usikkerhet, finansmarkeder o Frikonkurranse;

Detaljer

Nåverdi og pengenes tidsverdi

Nåverdi og pengenes tidsverdi Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2015 Versjon 2.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har

Detaljer

Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 2014

Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 2014 Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 014 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og. Denne aktøren representerer mange aktører i

Detaljer

Mikroøkonomien med matematikk

Mikroøkonomien med matematikk Mikroøkonomien med matematikk Kjell Arne Brekke March 11, 2011 1 Innledning I Varian: Intermediate Microeconomics, er teorien i stor grad presentert med gurer og verbale diskusjoner. Da vi som økonomer

Detaljer

= 5, forventet inntekt er 26

= 5, forventet inntekt er 26 Eksempel på optimal risikodeling Hevdet forrige gang at i en kontrakt mellom en risikonøytral og en risikoavers person burde den risikonøytrale bære all risiko Kan illustrere dette i en enkel situasjon,

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

OPPGAVER TIL SEMINARET I SØK400 MIKROØKONOMISK TEORI, TREDJE AVDELING, VÅREN 2002

OPPGAVER TIL SEMINARET I SØK400 MIKROØKONOMISK TEORI, TREDJE AVDELING, VÅREN 2002 Økonomisk institutt Universitetet i Oslo OPPGAVER TIL SEMINARET I SØK400 MIKROØKONOMISK TEORI, TREDJE AVDELING, VÅREN 2002 Oppgave (Eksamen V-98, oppg. ) Betrakt et individ som maksimerer forventet nytte.

Detaljer

Oversikt over kap. 19 i Gravelle og Rees. Sett i forhold til resten av pensum:

Oversikt over kap. 19 i Gravelle og Rees. Sett i forhold til resten av pensum: Oversikt over kap. 19 i Gravelle og Rees Først et forbehold: Disse forelesningene er svært kortfattede i forhold til pensum og vil ikke dekke alt. Dere må lese selv! Sett i forhold til resten av pensum:

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013

Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013 Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013 Oppgave 1 Vi ser på en økonomi der det kun produseres ett gode, ved hjelp av arbeidskraft, av mange, like bedrifter. Disse kan representeres

Detaljer

Oversikt over kap. 20 i Gravelle og Rees

Oversikt over kap. 20 i Gravelle og Rees Oversikt over kap. 20 i Gravelle og Rees Tar opp forskjellige egenskaper ved markeder under usikkerhet. I virkeligheten usikkerhet i mange markeder, bl.a. usikkerhet om kvalitet på varen i et spotmarked,

Detaljer

Løsningsveiledning, Seminar 9

Løsningsveiledning, Seminar 9 Løsningsveiledning, Seminar 9 Econ 3610/4610, Høst 2016 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og 2. Denne aktøren representerer mange aktører

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 ECON360 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 Diderik Lund Økonomisk institutt Universitetet i Oslo 9. september 20 Diderik Lund, Økonomisk inst., UiO () ECON360 Forelesning

Detaljer

Løsningveiledning for obligatorisk oppgave

Løsningveiledning for obligatorisk oppgave Løsningveiledning for obligatorisk oppgave Econ 3610/4610, Høst 2016 Oppgave 1 a) Samfunnsplanleggeren ønsker å maksimere konsumentens nytte gitt den realøkonomiske rammen: c 1,c 2,x 1,x 2,z,N 1,N 2 U(c

Detaljer

Modeller med skjult atferd

Modeller med skjult atferd Modeller med skjult atferd I dag og neste gang: Kap. 6 i GH, skjult atferd Ser først på en situasjon med fullstendig informasjon, ikke skjult atferd, for å vise kontrasten i resultatene En prinsipal, en

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

Veiledning til Obligatorisk øvelsesoppgave ECON 3610/4610 høsten 2009

Veiledning til Obligatorisk øvelsesoppgave ECON 3610/4610 høsten 2009 Jon Vislie Oktober 009 Veiledning til Obligatorisk øvelsesogave ECON 360/460 høsten 009 Ogave. I den lukkede økonomien du betrakter er det to gruer av arbeidstakere; en grue vi kaller og en grue vi kaller.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk 1 / Mikro 1 Eksamensdag: 14.06.01 Tid for eksamen: kl. 09:00 1:00 Oppgavesettet er på sider Tillatte hjelpemidler: Ingen tillatte

Detaljer

Modellrisiko i porteføljeforvaltning

Modellrisiko i porteføljeforvaltning Modellrisiko i porteføljeforvaltning Hans Gunnar Vøien 12. mai 2011 1/25 Innhold Problem og introduksjon Problem og introduksjon Lévyprosesser Sammenlikning GBM og eksponentiell NIG Oppsummering 2/25 Problem

Detaljer

Eksamensopppgaven. Oppgave 1. karakter: 1,7. Gjengitt av Geir Soland geiras@student.sv.uio.no. Figur 1. side 31

Eksamensopppgaven. Oppgave 1. karakter: 1,7. Gjengitt av Geir Soland geiras@student.sv.uio.no. Figur 1. side 31 side 30 Eksamensopppgaven karakter: 1,7 Gjengitt av Geir Soland geiras@student.sv.uio.no Oppgave 1 A) Standard CAPM antar en risikofri rente som man kan låne og spare ubegrenset til, R f. Videre kan det

Detaljer

Stokastiske prosesser i kontinuerlig tid

Stokastiske prosesser i kontinuerlig tid Stokastiske prosesser i kontinuerlig tid Kjell Arne Brekke October 29, 2001 1 Brownsk bevegelse Vi starter med å definere en Brownsk bevegelse. Denne prosessen bruker vi så senere til å definere en større

Detaljer

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris

Detaljer

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte Oppgave 1 (10 poeng) Finn den første- og annenderiverte til følgende funksjoner. Er funksjonen strengt konkav eller konveks i hele sitt definisjonsområde? Hvis ikke, bestem for hvilke verdier av x den

Detaljer

Oppsummering matematikkdel ECON 2200

Oppsummering matematikkdel ECON 2200 Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir

Detaljer

Veiledning til seminaroppgave uke 46 ECON 3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk

Veiledning til seminaroppgave uke 46 ECON 3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk Jon Vislie ovember 007 Veiledning til seminaroppgave uke 46 ECO 360/460: Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forklar hva betingelsene () (5) uttrykker: () xp ( ) = cq ( ) () h = n+ (3) τ

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2200 Matematikk 1/Mikro 1 (MM1) Eksamensdag: 19.05.2017 Sensur kunngjøres: 09.06.2017 Tid for eksamen: kl. 09:00 15:00 Oppgavesettet er på 6 sider

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Finansmarkedet. Forelesning november 2016 Trygve Larsen Morset Pensum: Holden, kapittel 13

Finansmarkedet. Forelesning november 2016 Trygve Larsen Morset Pensum: Holden, kapittel 13 Finansmarkedet Forelesning 12 15. november 2016 Trygve Larsen Morset Pensum: Holden, kapittel 13 Finansmarkedet Funksjon Historie Finansobjekter Bankenes finansiering Bedriftenes finansiering Finanskrisen

Detaljer

Seminar 6 - Løsningsforslag

Seminar 6 - Løsningsforslag Seminar 6 - Løsningsforslag Econ 3610/4610, Høst 2016 Oppgave 1 Vi skal her se på hvordan en energiressurs - som finnes i en gitt mengde Z - fordeles mellom konsum for en representativ konsument, og produksjon

Detaljer

Nivåtettheten for ulike spinn i 44 Ti

Nivåtettheten for ulike spinn i 44 Ti 7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.

Detaljer

Nåverdi og pengenes tidsverdi

Nåverdi og pengenes tidsverdi Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 9. september 2014 Versjon 1.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har

Detaljer

Nr. 05 2012. Staff Memo. Dokumentasjon av enkelte beregninger til årstalen 2012. Norges Bank Pengepolitikk

Nr. 05 2012. Staff Memo. Dokumentasjon av enkelte beregninger til årstalen 2012. Norges Bank Pengepolitikk Nr. 05 2012 Staff Memo Dokumentasjon av enkelte beregninger til årstalen 2012 Norges Bank Pengepolitikk Staff Memos present reports and documentation written by staff members and affiliates of Norges Bank,

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Risikopremiemysteriet *

Risikopremiemysteriet * Risikopremiemysteriet * Jørgen Haug http://jorgen.dyn.dhs.org/ (publisert med samme tittel i Praktisk Økonomi & Finans, 1999, No. 3, s.96 103) Sammendrag: De første teoriene for fastsettelse av forventet

Detaljer

ECON2200: Oppgaver til for plenumsregninger

ECON2200: Oppgaver til for plenumsregninger University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen

Detaljer

Oppgaveseminar 4 (kap 8-11)

Oppgaveseminar 4 (kap 8-11) Oppgaveseminar 4 (kap 8-11) Oppgave 4.1 (kap 4/7/8/9) Vi ser på en økonomi hvor individene lever i to perioder, hvor periode 1 er den yrkesaktive delen av livet, og periode er pensjonsperioden. Vi antar

Detaljer

BESLUTNINGER UNDER USIKKERHET

BESLUTNINGER UNDER USIKKERHET 24. april 2002 Aanund Hylland: # BESLUTNINGER UNDER USIKKERHET Standard teori og kritikk av denne 1. Innledning En (individuell) beslutning under usikkerhet kan beskrives på følgende måte: Beslutningstakeren

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Indifferenskurver, nyttefunksjon og nyttemaksimering

Indifferenskurver, nyttefunksjon og nyttemaksimering Indifferenskurver, nyttefunksjon og nyttemaksimering Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2013 En indifferenskurve viser alle godekombinasjoner som en konsument er likegyldig (indifferent)

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel

Detaljer

Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014

Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014 Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014 Oppgave 1 Vi skal i denne oppgaven se nærmere på en konsuments arbeidstilbud. Konsumentens nyttefunksjon er gitt ved: U(c, f) = c + ln f, (1)

Detaljer

Løsningsskisse. May 28, 2010

Løsningsskisse. May 28, 2010 Løsningsskisse May 28, 200 Oppgave a) Det skal være lik avkastning på innenlandske og utenlandske plasseringer. Utenlands avkastning av en krone: Kjøpe Euro E Veksle tilbake etterpå E ( + i )E e t+ Lik

Detaljer

Finansmarkedet + finanspolitikk (fra sist) Forelesning 1. november 2017 Trygve Larsen Morset Pensum: Holden, kapittel 13

Finansmarkedet + finanspolitikk (fra sist) Forelesning 1. november 2017 Trygve Larsen Morset Pensum: Holden, kapittel 13 Finansmarkedet + finanspolitikk (fra sist) Forelesning 1. november 2017 Trygve Larsen Morset Pensum: Holden, kapittel 13 Sist forelesning Penger Sentralbankens renter Andre pengepolitiske virkemidler Finanspolitikk

Detaljer

Oppgave 11: Oppgave 12: Oppgave 13: Oppgave 14:

Oppgave 11: Oppgave 12: Oppgave 13: Oppgave 14: Oppgave 11: Ved produksjon på 100 000 enheter pr periode har en bedrift marginalkostnader på 1 000, gjennomsnittskostnader på 2 500, variable kostnader på 200 000 000 og faste kostnader på 50 000 000.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk /Mikro (MM) Eksamensdag: 0.06.05 Sensur kunngjøres: 0.07.05 Tid for eksamen: kl. 09:00 5:00 Oppgavesettet er på 4 sider Tillatte

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Optimal long-term investment in general insurance

Optimal long-term investment in general insurance Optimal long-term investment in general insurance Didrik Saksen Bjerkan May 11, 2011 1 / 1 2 / 1 Introduksjon Ruinsannsynligheten for et forsikringsselskap med mulighet for å invistere deler av egenkapitalen

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Pengepolitikk under et inflasjonsmål

Pengepolitikk under et inflasjonsmål Professor Tommy Sveen BI 20. oktober, 2017 TS (BI) BST 1612 20. oktober, 2017 1 / 35 Introduksjon Litt om meg Siviløkonom fra BI (1993) og doktorgrad fra NHH (2001) Professor i makroøkonomi, jobbet på

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

Dagens forelesning. Forelesning 10 og 11: Nåverdi og konsumentteori. Nåverdi og pengenes tidsverdi Konsumentteori del 1 (del 2 neste uke) Frikk Nesje

Dagens forelesning. Forelesning 10 og 11: Nåverdi og konsumentteori. Nåverdi og pengenes tidsverdi Konsumentteori del 1 (del 2 neste uke) Frikk Nesje Innledning Dagens forelesning Forelesning 0 og : og konsumentteori Frikk Nesje og pengenes tidsverdi Konsumentteori del (del 2 neste uke) Universitetet i Oslo Kurs: ECON20 Pensum: K&W, kap 9 (berre app.)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

(8) BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2

(8) BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2 Oppgave 1 i) Finn utrykket for RR-kurven. (Sett inn for inflasjon i ligning (6), slik at vi får rentesettingen som en funksjon av kun parametere, eksogene variabler og BNP-gapet). Kall denne nye sammenhengen

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2

BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2 Oppgave 1 a og c) b) Høy ledighet -> Vanskelig å finne en ny jobb om du mister din nåværende jobb. Det er dessuten relativt lett for bedriftene å finne erstattere. Arbeiderne er derfor villige til å godta

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

Eksamen i STK4500 Vår 2007

Eksamen i STK4500 Vår 2007 Eksamen STK4500 Vår 2007 Prosjektoppgave. Det matematisk-naturvitenskapelige fakultet. Utlevering fredag 15. juni kl. 09.00. Innlevering mandag 18. juni kl. 15.00. Oppgaven skal innen fristen leveres pr.

Detaljer

Avkastningshistorikk

Avkastningshistorikk Avkastningshistorikk Hvilken avkastning er det rimelig å anta at Pensjon Pluss Langsiktig ville hatt med sin langsiktige måte å plassere pensjonspenger? Og hvilke forventninger er det rimelig å ha for

Detaljer

Sammenhenger mellom bredden i aksjeeierskapet og aksjeavkastning?

Sammenhenger mellom bredden i aksjeeierskapet og aksjeavkastning? Sammenhenger mellom bredden i aksjeeierskapet og aksjeavkastning? Richard Priestley og Bernt Arne Ødegaard Handelshøyskolen BI April 2005 Oversikt over foredraget Empiriske spørsmål vi vil se på. Teoretisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

d) Stigningen til gjennomsnittskostnadene er negativ når marginalkostnadene er større

d) Stigningen til gjennomsnittskostnadene er negativ når marginalkostnadene er større Oppgave 11: Hva kan vi si om stigningen til gjennomsnittskostnadene? a) Stigningen til gjennomsnittskostnadene er positiv når marginalkostnadene er høyere enn gjennomsnittskostnadene og motsatt. b) Stigningen

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

Kapittel 8 Mishkin. Asymmetrisk informasjon

Kapittel 8 Mishkin. Asymmetrisk informasjon Kapittel 8 Mishkin En sterk og voksende økonomi krever et velfungerende finansieringssystem for å allokere kapital fra sparere til selskaper og andre som kan investere pengene i gode prosjekter og på denne

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 Diderik Lund Økonomisk institutt Universitetet i Oslo 30. september 2011 Vil først gå gjennom de fire siste sidene fra forelesning

Detaljer

Matematisk evolusjonær genetikk (ST2301)

Matematisk evolusjonær genetikk (ST2301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det

Detaljer

Hvilke faktorer driver kursutviklingen på Oslo

Hvilke faktorer driver kursutviklingen på Oslo Hvilke faktorer driver kursutviklingen på Oslo Børs? Resultater for perioden 1980-2006 Randi Næs Norges Bank Johannes Skjeltorp Norges Bank Bernt Arne Ødegaard Handelshøyskolen BI og Norges Bank FIBE,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Dato for utlevering: 16.09.2016 Dato for innlevering: 07.10.2016 innen kl. 15.00

Detaljer

Sensorveiledning Eksamen, Econ 3610/4610, Høst 2013

Sensorveiledning Eksamen, Econ 3610/4610, Høst 2013 Sensorveiledning Eksamen, Econ 3610/4610, øst 2013 Oppgave 1 (70 %) a) Samfunnsplanleggerens maksimeringsproblem er gitt ved følgende: c 1,c 2,x 1,x 2,N 1,N 2 Ũ(c 1, c 2 ) gitt x 1 F (N 1 ) x 2 G(N 2 )

Detaljer

Obligatorisk øvelsesoppgave ECON 3610/4610 HØST 2007 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.)

Obligatorisk øvelsesoppgave ECON 3610/4610 HØST 2007 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.) Obligatorisk øvelsesoppgave ECON 36/46 HØST 7 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.) Oppgave. Betrakt en lukket økonomi der det produseres en vare, i mengde x, kun ved hjelp

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

Obligatorisk oppgave. Gjennomgang

Obligatorisk oppgave. Gjennomgang Obligatorisk oppgave. Gjennomgang Kjell Arne Brekke Økonomisk Institutt November 17, 2008 KAB (UiO) Oblig 08 November 17, 2008 1 / 9 Oppgave 1: Hovedpoenget å bli kjent med Penn World tables. Lite å gjennomgå.

Detaljer

Løsning til øving 8 for FY1004, høsten 2007

Løsning til øving 8 for FY1004, høsten 2007 øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien

Detaljer

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04 Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Sensorveiledning ordinær eksamen Econ 3610/4610, Høst 2014

Sensorveiledning ordinær eksamen Econ 3610/4610, Høst 2014 Sensorveiledning ordinær eksamen Econ 3610/4610, Høst 2014 Oppgaven er nok relativt lang, slik at mange kandidater ikke vil greie å besvare alle deloppgavene. Oppgave 1a) og 2a) er helt elementære, og

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Eksamensdag: Tirsdag 17. desember 2013 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1 Oppgave 1 For AR(2)-modellen: X t = 0.4X t 1 + 0.45X t 2 + Z t (der {Z t } er hvit søy med varians 1), finn γ(3), γ(4)

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

Praksis har vært å bruke følgende poenggrenser for de forskjellige karakterene på ECON2200:

Praksis har vært å bruke følgende poenggrenser for de forskjellige karakterene på ECON2200: Kjell Arne Brekke Vidar Christiansen Sensorveiledning ECON 00, Vår Vi gir oeng for hvert svar. Maksimalt oengtall å hver ogave svarer til den vekt som er ogitt i rosent. Maksimal total oengsum blir dermed

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 Diderik Lund Økonomisk institutt Universitetet i Oslo 23. september 2011 Vil først se nærmere på de siste sidene fra forelesning

Detaljer

Verdipapirfinansiering

Verdipapirfinansiering Verdipapirfinansiering Securities AKSJEKREDITT Pareto Securities tilbyr i samarbeid med Pareto Bank en skreddersydd løsning for finansiering av verdipapirhandel. Med aksjekreditt får du som investor en

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

Forelesning 27. mars, 2017

Forelesning 27. mars, 2017 Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme

Detaljer