Frekvensanalyse av likestrømsmotor med diskret regulator og antialiasing filter

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Frekvensanalyse av likestrømsmotor med diskret regulator og antialiasing filter"

Transkript

1 C:\Per\Fag\Styresys\SANNOV\13LØSØV2.wpd Fag SO507E Styresystemer HIST-AFT Feb 2012 PHv Løsning heimeøving 2 Sanntid Revidert sist: 8/2-13 NB! Matlab har vært under endring de siste årene. Mer og mer baserer seg på LTImodeller. Mange metoder som ikke kan bruke LTI-modeller er på vei ut. Det gjelder bl a kommandoene c2dm og dlsim. Disse kommandoene finnes ikke lenger i hjelpeteksten i Help-vinduet, men de finne fortsatt i Matlab. Hjelp kan du få ved å skrive help c2dm og help dlsim i kommandovinduet. I stedet for disse kommandoene er det like greit å bruke LTI-modeller og kommandoene c2d og lsim. Oppgave 1 Frekvensanalyse av likestrømsmotor med diskret regulator og antialiasing filter Den langsomme regulatoren fra heimeøving 1 brukes til å regulere turtallet til en likestrømsmotor. Samplingstida ble funnet til være 0,021 sek. a) Bruk metoden med å analogisere regulatoren: a) Åpen sløyfefunksjon uten filter: Matlab taklet ikke tidsforsinkelser før, men i de siste utgavene av Control Toolbox finnes det en datastruktur som heter LTI-modell som takler tidsforsinkelser. Simulink takler også tidsforsinkelser. Ingen normale Matlab-kommandoer tar tidsforsinkelser som argument, men kommandoene som brukes på LTI-modeller som f eks tf, ss, zpk kan utvides med tidsforsinkelse. Normalt er det derfor nødvendig å bruke en Padèapproksimasjon i stedet for tidsforsinkelsen. Siden prosessen her er av tredje orden kan vi klare oss med en første ordens Padè-approksimasjon. (Tidsforsinkelsen er lenger enn den tredje lengste tidskonstanten, så vi klarer oss ikke med å erstatte tidsforsinkelsen med en enkel tidskonstant.) Når vi bruker Matlab til å gjøre beregningene for oss kan vi godt bruke en Padè-approksimasjon av høyere orden enn vi ville brukt ved handrekning. I

2 Løsningsforslag heimeøving 2 i Sanntid 2 eksempelet under er det brukt 3. ordens Padè-approksimasjon. Det er tre forskjellige metoder du kan bruke. 1) Direkte i Matlabs kommando-vindu med LTI-strukturer. 2) Direkte i Matlabs kommando-vindu eller med de samme kommandoene i ei tekstfil på tradisjonelt vis. 3) Ved hjelp av Simulink og phlinmod. 1) Med LTI-strukturer: >> a=tf([2],[ ],'iodelay',0.0365) 2 exp(-0.036*s) * s^ s + 1 >> b=tf([1.1],[0.02 1]) s + 1 >> c=a*b 2.2 exp(-0.036*s) * s^ s^ s + 1 >> bode(c); NB! phbode virker ikke direkte med en LTI-modell. Du må bruke vanlig bode som vist over. Derimot kan du hente ut verdiene fra LTI-modellen manuelt og bruke dem i phbode: >> phbode(c.num{1},c.den{1},'tau',c.iodelay);

3 Løsningsforslag heimeøving 2 i Sanntid 3 Av figuren ser vi at fasekryssfrekvensen, ù = 8 db = 2, = 22 rad/sek og forsterkingsmarginen, ÄK 2) Kommandoer samla i ei tekstfil: NB! phbode tar tidsforsinkelse direkte sjøl om det ikke er gjort her. F eks phbode([2],[1 2 1], tau,0.5); %STov1a1 clf; %Opptegning av bodediagram med analogisert regulator: %Motor og likeretter uten tidsforsinkelsen: [tm,nm]=series([2],[0.03 1],[1],[0.2 1]); %Tidsforsinkelsen totalt (tredje ordens pade-approksimasjon): [ttau,ntau]=pade(0.0365,3); %Turtallsmåler: tml=[1.1]; nml=[0.02 1]; %Åpen sløyfe med Kp=1: [t,n]=series(tm,nm,ttau,ntau); [t,n]=series(t,n,tml,nml); %Opptegning i bodediagram med phbode uten filter: phbode(t,n); Bodediagrammet blir som vist over. 3) 1) Ved hjelp av Simulink: Simulinkmodellen er kalt: ov2_1a.mdl Fra Matlabs kommandovindu: [t,n,z,p]=phlinmod('ov2_1a') phbode(t,n); Bodediagrammet blir som vist for første alternativ. b) Åpen sløyfefunksjon med antialiasing-filter:

4 Løsningsforslag heimeøving 2 i Sanntid 4 M-fila blir nå når vi tegner opp åpen sløyfefunksjon både med og uten filter for sammenlikningas skyld: 1) Med LTI-strukturer: >> a=tf([2],[ ],'iodelay',0.0365); >> b=tf([1.1],[0.02 1]); >> e=tf([1],[ ]) s^ s + 1 >> f=a*b*e 2.2 exp(-0.036*s) * e-008 s^ e-006 s^ s^ s^ s + 1 >> bode(f); NB! phbode virker ikke direkte med en LTI-modell. Du må bruke vanlig bode som vist over. Derimot kan du hente ut verdiene fra LTI-modellen manuelt og bruke dem i phbode: >> phbode(f.num{1},f.den{1},'tau',f.iodelay); Av figuren ser vi nå at fasekryssfrekvensen med filter er redusert, ù forsterkingsmarginen med filter er redusert, ÄK = 5 db = 1, = 17 rad/sek og

5 Løsningsforslag heimeøving 2 i Sanntid 5 2) Kommandoer samla i ei tekstfil: %STov1a2 clf; %Opptegning av bodediagram med analogisert regulator: %Motor og likeretter uten tidsforsinkelsen: [tm,nm]=series([2],[0.03 1],[1],[0.2 1]); %Tidsforsinkelsen totalt (tredje ordens pade-approksimasjon): [ttau,ntau]=pade(0.0365,3); %Turtallsmåler: tml=[1.1]; nml=[0.02 1]; %Åpen sløyfe med Kp=1: [t,n]=series(tm,nm,ttau,ntau); [t,n]=series(t,n,tml,nml); %Opptegning i bodediagram med phbode uten filter: phbode(t,n); %Inkluderer filteret; d=0.707; w0=47.6; %[t,n]=series(t,n,[1],[1/(w0^2) 2*d/w0 1]); [t,n]=series(t,n,[1],[ ]); hold on; phbode(t,n); title('frekvensanalyse med og uten 2. ordens filter'); 3) Ved hjelp av Simulink: Simulinkmodellen her er kalt: ov2_1b.mdl Fra Matlabs kommandovindu: [t,n,z,p]=phlinmod('ov2_1a') phbode(t,n); hold on; [t,n,z,p]=phlinmod('ov2_1b') phbode(t,n); Bodediagrammet blir som vist forførste alternativ. c) Sammenlikning med og uten filter: Filteret fører til at fasekryssfrekvensen reduseres og at forsterkingsmarginen reduseres. Resultatet er at sløyfa blir tregere med filter enn uten. Vi må ha med antialiasing-filteret. Resultatene våre ville blitt feil om vi bare hadde kutta ut antialiasing-filteret fra utrekningene.

6 Løsningsforslag heimeøving 2 i Sanntid 6 d) Anbefalte innstillinger for PI-regulator etter Ziegler-Nichols tommelfingerregler: Fra b): K k = ÄK = 1,8 og T k = 2ð/ù 180 = 2ð/17 = 0,37 [sek] K = K * 0,45 = 1,8 * 0,45 = 0,8 i p k k T = T * 0,85 = 0,37 * 0,85 = 0,31 [sek] e) (Ikke spurt om:) Sprangresponsen ved et sprang i referansen med PI-regulatoren: Med Simulink: Det kan også gjøres fra Matlabs kommandovindu: %Stov1b %Forutsetter at STov1a2 kjøres først clf; %sprangrespons med PI-regulator: kp=0.85; ti=0.31; tr=[kp*ti kp]; nr=[ti 0]; %Åpen sløyfefunskjon: [tmr,nmr]=series(t,n,tr,nr); %Følgeforholdet: [tc,nc]=cloop(tmr,nmr); step(tc,nc); title('sprangrespons med filter og PI-regulator'); grid;

7 Løsningsforslag heimeøving 2 i Sanntid 7 Som vi ser blir innsvingningsforløpet sånn omtrent minimum areal. I Simulink er det enkelt å simulere med digital regulator direkte. Her er filteret satt i tilbakekoplinga. Det er kanskje litt mer rett enn det som er gjort i kommandofila over hvor filteret er satt i direktefunksjonen. Legg merke til at her er det brukt en digital regulator med samplingstid, h = 0,0215 sek. Tidsforsinkelsen for prosessen er nå bare 0,005 sek. På figuren under er både sprangresponsen for regulaeringssløyfa med den analoge regulatoren og ekstra tidsforsinkelse tekna opp sammen med responsen for den digitale regulatoren med tidforsinkelsen til prosessen. Som du ser er det vedlig liten forskjell på de to kurvene.

8 Løsningsforslag heimeøving 2 i Sanntid 8 Oppgave 2 Z-planet og pulstog u(k) er et pulstog hvor alle u(k)=1 for alle k 0 og u(k)=0 ellers. Bruker Matlab og dlsim til å rekne ut verdiene for y(k) for 0 k<8:» u=[1,1,1,1,1,1,1,1]; >> BlokkZ2=tf([1],[1-0.7],1);» y=lsim(blokkz2,u) y = Bruker Matlab til å plotte verdiene (Matlab antar holding på utgangen): lsim(blokkz2,u)

9 Løsningsforslag heimeøving 2 i Sanntid 9 Oppgave 3 Z-planet og pulstog Må først gjøre om differenslikningene til overføringsfunksjoner i z-planet for å få brukt dlsim i Matlab. Denne omgjøringa er ganske enkel om man bruker forskyvingssatsen: -n u(k-n) = u(k)*z dvs u(k-1) = u(k)*z, u(k-2) = u(k)*z, u(k-3) = u(k)*z osv a) Matlabkommandoer: u=[ ]; BlokkZ3a=tf([1],[1 1],1); y=lsim(blokkz3a,u) For å slippe å få alle tallene under hverandre i ei kolonne og i stedet få dem på ei rekke brukes transponering av y: x=y' x = lsim(blokkz3a,u)

10 Løsningsforslag heimeøving 2 i Sanntid 10 b) u=[ ]; BlokkZ3b=tf([1 1 1],[ ],1); y=lsim(blokkz3b,u); x=y' x = lsim(blokkz3b,u);

11 Løsningsforslag heimeøving 2 i Sanntid 11 c) u=[ ]; BlokkZ3c=tf([ ],[1 0 0],1); y=lsim(blokkz3c,u); x=y' x = Columns 1 through Columns 8 through y=lsim(blokkz3c,u); d)» u=[ ];» [y]=dlsim([1 0],[1-1 -1],u);» x=y' u=[ ]; BlokkZ3d=tf([1 0],[1-1 -1],1); y=lsim(blokkz3d,u); x=y' x = lsim(blokkz3d,u);

12 Løsningsforslag heimeøving 2 i Sanntid 12 Oppgave 4 Fra s-planet til z-planet Bruker Matlab-kommandoen c2dm med 'zoh' til å finne H(z) for hver av blokkene under. a) Samplingsintervall 1 sek >> sys4a=tf([3],[1 1]) s + 1 >> sys4az=c2d(sys4a,1,'zoh') %Her er det satt inn samplingstid lik 1 sys4az = z Sample time: 1 seconds Discrete-time transfer function. b) Samplingsintervall 0,5 sek sys4b=tf([3],[1 1]); sys4bz=c2d(sys4b,0.5,'zoh') %Her er det satt inn h lik 0,5 sys4bz = z Sample time: 0.5 seconds

13 Løsningsforslag heimeøving 2 i Sanntid 13 c) Samplingsintervall 2 sek sys4c=tf([3],[2 4]); sys4cz=c2d(sys4c,2,'zoh') %Her er det satt inn h lik 2 sys4cz = z Sample time: 2 seconds Discrete-time transfer function. d) Samplingsintervall 0,1 sek sys4d=tf([3],[1 0 0]); sys4dz=c2d(sys4d,0.1,'zoh') %Her er det satt inn h lik 0.1 sys4dz = z z^2-2 z + 1 Sample time: 0.1 seconds e) Samplingsintervall 0,5 sek sys4e=tf([4],[1 0 9]); sys4ez=c2d(sys4e,0.1,'zoh') %Her er det satt inn h lik 0.1 sys4ez = z z^ z + 1 Sample time: 0.5 seconds f) Samplingsintervall 1 sek sys4f=tf([5],[5 2 0]); sys4fz=c2d(sys4f,0.1,'zoh') %Her er det satt inn h lik 0.1 sys4ez = z z^ z Sample time: 1 seconds

14 Løsningsforslag heimeøving 2 i Sanntid 14 g) Samplingsintervall 1 sek sys4g=tf([3 5 3],[1 1 1]) 3 s^2 + 5 s s^2 + s + 1 sys4gz=c2d(sys4g,1,'zoh') 3 z^ z z^ z Sampling time: 1

ù [rad/sek] h O [db] o o o o o o o o o o o

ù [rad/sek] h O [db] o o o o o o o o o o o D:\Per\Fag\Regtek\Oppgavebok\4 Løsning på øving\reglov6_2014.wpd Fag TELE2001 Reguleringsteknikk HIST,EDT Juni -14 PHv Løsningsforslag oppgavene 24 og 25 (Øving 6) Oppgave 24 Innjustering i frekvensplanet.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi C:\Per\Fag\Regtek\Eksamen\Eksamen11\LX2011DesEDT212T.wpd HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato Fag 20.desember 2011 LØSNINGSFORSLAG EDT212T Reguleringsteknikk grunnkurs Dato: 11.11.12

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Eksamensdato Fag Dato: 17.11.10 C:\Per\Fag\Regtek\Eksamen\Eksamen10\LX2011jan.wpd HØGSKOLEN I SØR-TRØNDELAG AVD. FOR INGENIØR OG NÆRINGSMIDDELFAG INSTITUTT FOR ELEKTROTEKNIKK 7. januar 2011 LØSNINGSFORSLAG

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Eksamensdato Fag Dato: 11.12.14 \\hjem.hist.no\pgis\mine dokumenter\backup\fag\reguleringsteknikk\2014\eksamen\lx2014des_korrigert.wpd HØGSKOLEN I SØR-TRØNDELAG AVD. FOR INGENIØR OG NÆRINGSMIDDELFAG INSTITUTT

Detaljer

Lineær analyse i SIMULINK

Lineær analyse i SIMULINK Lineær analyse i SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 20.12 2002 1 2 Lineær analyse i SIMULINK Innhold 1 Innledning 7 2 Kommandobasert linearisering av modeller 9

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 15.desember 2014 Varighet/eksamenstid: 0900-1400 Emnekode: Emnenavn: TELE2001-A Reguleringsteknikk Klasse: 2EL 2FE Studiepoeng:

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Simulink øving 3 Utarbeidet: PHv Revidert sist Fredrik Dessen 2015-09-11 Hensikten med denne oppgaven er at du skal bli bedre kjent

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Simulering i MATLAB og SIMULINK

Simulering i MATLAB og SIMULINK Simulering i MATLAB og SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 13. november 2004 1 2 TechTeach Innhold 1 Simulering av differensiallikningsmodeller 7 1.1 Innledning...

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7. januar 2011 Varighet/eksamenstid: 0900-1300 Emnekode: Emnenavn: Klasse: EDT212T Reguleringsteknikk grunnkurs 2EL Studiepoeng:

Detaljer

Del 1: Leksjon Det anbefales å kjøre igjennom denne før dere begynner med oppgaven.

Del 1: Leksjon Det anbefales å kjøre igjennom denne før dere begynner med oppgaven. SO526E Multivariable Reguleringssystemer Øving 5 HiST-AFT aug 29 Pål Gisvold Innlevering: se framdriftsplan Tema: Matlab Identification Toolbox Del 1: Leksjon Det anbefales å kjøre igjennom denne før dere

Detaljer

Løsningsforslag oppgavene (Øving 3)

Løsningsforslag oppgavene (Øving 3) D:\Per\Fag\Regtek\Oppgavebok\4 Løsning på øving\reglov3_2014.wpd Fag TELE2001 Reguleringsteknikk HIST,EDT Okt 14 PHv,DA,PG Løsningsforslag oppgavene 10-15 (Øving 3) Bare oppgave 10, 13, 14 og 15 er en

Detaljer

SCE1106 Control Theory

SCE1106 Control Theory Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, October 26, 2006 SCE1106 Control Theory Exercise 6 Task 1 a) The poles of the open loop system is

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons. Stavanger, 29. september 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 Fiskelabben G-116/G-118 Uke 16: Onsdag

Detaljer

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo SIMULERINGSNOTAT Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01 Laget av Torbjørn Morken Øyvind Eklo Høgskolen i Sør-Trøndelag 2015 Sammendrag Simulering av nivåregulering av tank ved

Detaljer

Utledning av Skogestads PID-regler

Utledning av Skogestads PID-regler Utledning av Skogestads PID-regler + +?!?!! (This version: August 0, 1998) 1 Approksimasjon av dynamikk (Skogestads halveringsregel) Vi ønsker å approksimere høyre ordens dynamikk som dødtid. Merk at rene

Detaljer

Løsningsforslag Dataøving 2

Løsningsforslag Dataøving 2 TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene

Detaljer

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av Per Hveem og Kåre Bjørvik Kapittelnummering og eksempelnummering stemmer ikke overens med det står i boka. 1 5.1 Fra overføringsfunksjon

Detaljer

Simuleringsnotat. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6. av Stian Venseth og Kim Joar Øverås

Simuleringsnotat. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6. av Stian Venseth og Kim Joar Øverås av Stian Venseth og Kim Joar Øverås Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6 Sammendrag I dette arbeidsnotatet vil det bli komme frem hvordan vi har jobbet med modellering og simulering

Detaljer

EDT211T Reguleringsteknikk PC-øving nr 1. NB: Det lønner seg å kjøre gjennom leksjonen før du tar fatt på selve øvingen på siste side.

EDT211T Reguleringsteknikk PC-øving nr 1. NB: Det lønner seg å kjøre gjennom leksjonen før du tar fatt på selve øvingen på siste side. Høgskolen i Sør-Trøndelag Avdeling for Teknologi Institutt for Elektroteknikk Klasse 2EA Studieretning for automatisering EDT211T Reguleringsteknikk PC-øving nr 1 NB: Det lønner seg å kjøre gjennom leksjonen

Detaljer

Sammenlikningav simuleringsverktøyfor reguleringsteknikk

Sammenlikningav simuleringsverktøyfor reguleringsteknikk Presentasjon ved NFA-dagene 28.-29.4 2010 Sammenlikningav simuleringsverktøyfor reguleringsteknikk Av Finn Haugen (finn.haugen@hit.no) Høgskolen i Telemark Innhold: Eksempler på min egen bruk av simuleringsverktøy

Detaljer

Control Engineering. MathScript. Hans-Petter Halvorsen

Control Engineering. MathScript. Hans-Petter Halvorsen Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,

Detaljer

Løsningsforslag øving 8

Løsningsforslag øving 8 K405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 8 a Vi begynner med å finne M 2 s fra figur 2 i oppgaveteksten. M 2 s ω r 2 ω h m sh a sh R2 sr 2 ω K v ω 2 h m sh a sh R2 sr 2 h m sh a sh

Detaljer

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler MATLAB for STK1100 Matematisk institutt Univeristetet i Oslo Januar 2014 1 Enkel generering av stokastiske variabler MATLAB har et stort antall funksjoner for å generere tilfeldige tall. Skriv help stats

Detaljer

KYBERNETIKKLABORATORIET. FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW Temperaturmålinger BNC-2120

KYBERNETIKKLABORATORIET. FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW Temperaturmålinger BNC-2120 KYBERNETIKKLABORATORIET FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW LabVIEW Temperaturmålinger BNC-2120 Lampe/sensor-system u y I denne oppgaven skal vi teste et lampe/sensor-system som vist

Detaljer

41070 STABILITET I ELKRAFTSYSTEMER

41070 STABILITET I ELKRAFTSYSTEMER NTNU Gitt: 26.01.00 Fakultet for Elektroteknikk og telekommunikasjon Leveres: 09.02.00 Institutt for elkraftteknikk 1 41070 STABILITET I ELKRAFTSYSTEMER ØVING 13. Obligatorisk dataøving. Formål: - gi en

Detaljer

SAMMENDRAG (MARKUS) Regulatorparametre: Kp= 8 Ti= 13 KpFF= 0.19 TdFF= 5.14

SAMMENDRAG (MARKUS) Regulatorparametre: Kp= 8 Ti= 13 KpFF= 0.19 TdFF= 5.14 Avdeling for teknologi Program for elektrofag og fornybar energi 7004 Trondheim SIMULERINGSNOTAT Prosjekt i faget Styresystemer Sindre Åberg Mokkelbost, Markus Gundersen, Anders Nilsen, Even Wanvik og

Detaljer

Øving 1 ITD Industriell IT

Øving 1 ITD Industriell IT Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes

Detaljer

Tidsdiskrete systemer

Tidsdiskrete systemer Tidsdiskrete systemer Finn Haugen TechTeach 22.juli2004 Innhold 1 Tidsdiskrete signaler 2 2 Z-transformasjonen 3 2.1 Definisjon av Z-transformasjonen... 3 2.2 Egenskaper ved Z-transformasjonen... 4 3 Differenslikninger

Detaljer

Program for elektro- og datateknikk

Program for elektro- og datateknikk D:\Per\Fag\Regtek\Oppgavebok\2b Simulinkøvinger\06_SIMULI1_2014a_v2.wpd Program for elektro- og datateknikk Utarbeidet: PHv Fag TELE2001 Reguleringsteknikk Revidert sist: PHv, Sept 2014 Simulink øving

Detaljer

Løsningsforslag til prøveeksamen i fag SIG50 Signalbehandling

Løsningsforslag til prøveeksamen i fag SIG50 Signalbehandling Løsningsforslg til prøveeksmen i fg SIG50 Signlbehndling (Våren-0) Av Finn Hugen (fglærer). 4. februr 00. 1. Det må smples med smplingsfrekvens høyere enn gnger signlfrekvensen for t nedfolding skl unngås,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi STYRESYSTEMER OG REGULERINGSTEKNIKK

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi STYRESYSTEMER OG REGULERINGSTEKNIKK HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 26. mai 2014 Varighet/eksamenstid: 09.00-15.00 Emnekode: Emnenavn: Klasse(r): TELE2008A STYRESYSTEMER OG REGULERINGSTEKNIKK 2EA Studiepoeng:

Detaljer

Artikkelserien Reguleringsteknikk

Artikkelserien Reguleringsteknikk Finn Haugen (finn@techteach.no) 18. november, 2008 Artikkelserien Reguleringsteknikk Dette er artikkel nr. 7 i artikkelserien Reguleringsteknikk: Artikkel 1: Reguleringsteknikkens betydning og grunnprinsipp.

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 Veiledning : Fiskelabben G-116/G-118

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I Et reguleringssystem består av en svitsjstyrt (PWM) motor-generatorenhet og en mikrokontroller (MCU) som

Detaljer

c;'1 høgskolen i oslo

c;'1 høgskolen i oslo I c;'1 høgskolen i oslo lemne: I I Gruppe(r) Kvbem~ti!

Detaljer

Motor - generatoroppgave II

Motor - generatoroppgave II KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.17 OPPG.NR.: R113 Motor - generatoroppgave II Et reguleringssyste består av en svitsjstyrt (PWM) otor-generatorenhet og en ikrokontroller (MCU) so åler

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emneode: ID30005 Emne: Industriell I Dato: 5.2.204 Esamenstid: l. 0900 til l. 300 Hjelpemidler: re A4-ar (ses sider) med egne notater. "ie-ommuniserende" alulator. Faglærer: Robert Roppestad Esamensoppgaven:

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emnekode: ITD30005 Emne: Industriell IT Dato: 16.12.2015 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Tre A4-ark (seks sider) med egne notater. "ikke-kommuniserende" kalkulator. Faglærer: Robert

Detaljer

Løsningsforslag til eksamen i TELE2001-A Reguleringsteknikk

Løsningsforslag til eksamen i TELE2001-A Reguleringsteknikk Løsningsforslag til esamen i TELE1-A Reguleringsteni 3.6.15 Ogave 1 a) Reguleringsventil: Vi ser av resonsen i figur at dette er en første-ordens rosess med tidsforsinelse. s Ke Da har vi: hv s Vi må finne

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 9. Løsningsforslag Matematikk 000 Øvingsoppgaver i numerikk leksjon 9 Løsningsforslag Oppgave Integral som en sum av rektangler a) 3 f(x) dx = 3 x 3 dx = [ ] 3 3 + x3+ = [ x 4 ] 3 4 = 34 = 20. 4 b) 0.5 f() + 0.5 f(.5) +

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 5. mai 01 Varighet/eksamenstid: 09.00-14.00 Emnekode: Emnenavn: Klasse(r): EDT11T STYRESYSTEMER OG REGULERINGSTEKNIKK EA Studiepoeng:

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Case: Analyse av passive elektriske filtre

Case: Analyse av passive elektriske filtre HØGSKOEN I SØR-TRØNDEAG AVDEING FOR TEKNOOGI PROGRAM FOR EEKTRO- OG DATATEKNIKK N7004 TRONDHEIM Telefon jobb: 735 59584 Mobil: 911 77 898 kare.bjorvik@hist.no http://www.edt.hist.no/ Kåre Bjørvik, 15.

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Løsningsforslag, Tank 4 øving 1 Utarbeidet av Erlend Melbye 2015-09-07 Revidert sist Fredrik Dessen 2015-09-07 1 Oppstart av Tank

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc.

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc. Frequency Response and Stability Analysis Hans- Pe9er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy SpesialElfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver University College of Southeast Norway Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Innledning... 3 2 Minste kvadraters metode... 4 3 Validering...

Detaljer

EKSAMEN. Tre A4-ark (seks sider) med egne notater. "ikke-kommuniserende" kalkulator.

EKSAMEN. Tre A4-ark (seks sider) med egne notater. ikke-kommuniserende kalkulator. e, Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD30005 Industriell IT Dato: 16.12.2015 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Tre A4-ark (seks sider) med egne notater. "ikke-kommuniserende" kalkulator.

Detaljer

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk Høgskolen i Telemark. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no). Løsningsforslag til sluttprøven i emne IA3 Automatiseringsteknikk Sluttprøvens dato: 5. desember 04. Varighet 5 timer. Vekt

Detaljer

Control Engineering. Stability Analysis. Hans-Petter Halvorsen

Control Engineering. Stability Analysis. Hans-Petter Halvorsen Control Engineering Stability Analysis Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie,

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 1 Løsningsforslag Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i kommandovinduet når vi utfører operasjonene. >> 2+2 4 >> -2 1

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 TTK5 Reguleringsteknikk, Vår Løsningsforslag øving Oppgave Vi setter inntil videre at τ = e τs. a) Finn først h s) gitt ved h s) = T i s T s) + T i s) ) ) ) ) + ζ s ω + s ω Vi starter med amplitudeforløpet.

Detaljer

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING Denne øvelsen inneholder følgende momenter: a) En prosess, styring av luft - temperatur, skal undersøkes, og en

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 3 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære om hvordan

Detaljer

ITGK - H2010, Matlab. Repetisjon

ITGK - H2010, Matlab. Repetisjon 1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne

Detaljer

Reguleringsstrukturer

Reguleringsstrukturer Kapittel 11 Reguleringsstrukturer Dette kapitlet beskriver diverse reguleringsstrukturer for industrielle anvendelser. I strukturene inngår én eller flere PID-reguleringssløyfer. 11.1 Kaskaderegulering

Detaljer

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,

Detaljer

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc.

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc. Stabilitetsanalyse Hans- Pe/er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy Spesial@lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner 2.orden

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre,

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 16. Sept. Noen oppstartsproblemer

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 4 Løsningsforslag Oppgave 1 Funksjonsler b) Kommandoen ` help FunksjonenMin' gjør at dette blir skrevet til skjerm: Funksjonen f(x)=sin(x) - x^. Funksjonen

Detaljer

MATLABs brukergrensesnitt

MATLABs brukergrensesnitt Kapittel 3 MATLABs brukergrensesnitt 3.1 Brukergrensesnittets vinduer Ved oppstart av MATLAB åpnes MATLAB-vinduet, se figur 1.1. MATLAB-vinduet inneholder forskjellige (under-)vinduer. De ulike vinduene

Detaljer

Slik skal du tune dine PID-regulatorer

Slik skal du tune dine PID-regulatorer Slik skal du tune dine PID-regulatorer Ivar J. Halvorsen SINTEF, Reguleringsteknikk PROST temadag Tirsdag 22. januar 2002 Granfos Konferansesenter, Oslo 1 Innhold Hva er regulering og tuning Enkle regler

Detaljer

MAT 1110: Oblig 1, V-12, Løsningsforslag

MAT 1110: Oblig 1, V-12, Løsningsforslag MAT 0: Oblig, V-2, Løsningsforslag Oppgave: a Jacobi-matrisen er F (x, y u x v x u y v y 3x 2 2 3y 2 b Lineariseringen i punktet a er gitt ved T a F(x F(a + F (a(x a. I vårt tilfelle er a ( 2, 2, og vi

Detaljer

MathScript. Hans- Pe1er Halvorsen, M.Sc.

MathScript. Hans- Pe1er Halvorsen, M.Sc. MathScript Hans- Pe1er Halvorsen, M.Sc. Ja! De1e er et IA fag dvs. både AutomaFsering og InformaFkk! Arbeidslivet krever anvendt kunnskap! Tilstandsrom- modeller Dataverktøy SpesialFlfelle MathScript LabVIEW

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Simulink øving 1 Utarbeidet: PHv Revidert sist Fredrik Dessen 2015-09-03 Hensikten med denne øvingen er at du skal bli kjent med

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Hva gjør disse skriptene? a) Skriptet lager plottet vi ser i gur 1. Figur 1: Plott fra oppgave 1 a). b) Om vi endrer skriptet

Detaljer

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen.

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen. SLUTTPRØVE EMNE: EE407 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 0..0 PRØVETID, fra - til (kl.): 9.00.00 Oppgavesettet består av følgende: Antall sider (inkl. vedlegg): 0

Detaljer

Kalmanfilter på svingende pendel

Kalmanfilter på svingende pendel Kalmanfilter på svingende pendel Rolf Henriksen og Torbjørn Houge Institutt for teknisk kybernetikk NTNU 2005 Vi skal se på hvordan Kalmanfilteret fungerer på et velkjent eksempel, den svingende pendel

Detaljer

6,((OHNWULVNH0RWRUGULIWHU.RUWIDWWHWLQQI ULQJL6LPXOLQN DY5LFKDUG/XQG

6,((OHNWULVNH0RWRUGULIWHU.RUWIDWWHWLQQI ULQJL6LPXOLQN DY5LFKDUG/XQG 6,((OHNWULVNH0RWRUGULIWHU.RUWIDWWHWLQQI ULQJL6LPXOLQN DY5LFKDUG/XQG 'HWWH QRWDWHW HU PHQW n JL HQ NRUWIDWWHW LQQI ULQJ L 0DWODEV 6LPXOLQN WRROERNV 6LPXOLQN HU HW EORNNEDVHUW SURJUDP IRU G\QDPLVNH V\VWHP

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

Simuleringseksempel. Vi ønsker å simulere følgende system (vanntank) i MathScript: Matematisk modell:

Simuleringseksempel. Vi ønsker å simulere følgende system (vanntank) i MathScript: Matematisk modell: Simuleringseksempel Vi ønsker å simulere følge system (vanntank) i MathScript: Matematisk modell: Vi har funnet følge matematiske modell for systemet: [ ] der: er nivået i tanken er pådragssignalet til

Detaljer

Plotting av data. Kapittel 6. 6.1 Plott med plot-funksjonen

Plotting av data. Kapittel 6. 6.1 Plott med plot-funksjonen Kapittel 6 Plotting av data MATLAB har mange muligheter for plotting av data. Vi skal her konsentrere oss om de viktigste funksjonene og kommandoene for 2-dimensjonale plott. Plottefunksjoner listes opp

Detaljer

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.)

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Av Jo Skjermo (basert på Alf Inge Wang sin versjon om JSP). 1. Utførelse av kode i kommando/kalkulatormodus Et dataprogram består oftest

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

Stabilitetsanalyse i MATLAB og LabVIEW

Stabilitetsanalyse i MATLAB og LabVIEW Stabilitetsanalyse i MATLAB og LabVIEW Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 21.12 2002 1 2 TechTeach Innhold 1 Stabilitetsanalyse i MATLAB og LabVIEW 7 1.1 MATLAB... 7 1.1.1

Detaljer

Test av USB IO-enhet. Regulering og HMI.

Test av USB IO-enhet. Regulering og HMI. Høgskolen i Østfold Avdeling for informasjonsteknologi Lab Industriell IT Fag ITD 30005 Industriell IT Laboppgave 3. Gruppe-oppgave Test av USB IO-enhet. Regulering og HMI. Skal gjennomføres i løpet av

Detaljer

Prøveeksamen 2. Elektronikk 24. mars Løsningsforslag

Prøveeksamen 2. Elektronikk 24. mars Løsningsforslag Prøveeksamen Elektronikk 4. mars øsningsforslag OPPGAVE a) V SB 8 V/ 8 8 V/56 3,5 mv. b) xc 9 Utgangsspenning V o (9/56) 8 V 6 V. c) Utgangsspenning V o skal være lik for påtrykk x. Offset-feilen i SB

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

Frequency Response and Stability Analysis

Frequency Response and Stability Analysis Control Engineering Frequency Response and Stability Analysis Hans-Petter Halvorsen Dataverktøy Spesialtilfelle MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/

Detaljer

Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet

Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet Prosjektet består av 4 arbeidspakker: (versjon 14.09.2017) Prosjektet er et gruppearbeid og alle arbeidspakkene

Detaljer

En innføring i MATLAB for STK1100

En innføring i MATLAB for STK1100 En innføring i MATLAB for STK1100 Matematisk institutt Universitetet i Oslo Februar 2017 1 Innledning Formålet med dette notatet er å gi en introduksjon til bruk av MATLAB. Notatet er først og fremst beregnet

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon

Detaljer

48 Praktisk reguleringsteknikk

48 Praktisk reguleringsteknikk 48 Praktisk reguleringsteknikk Figur 2.18: Simulering av nivåreguleringssystemet for flistanken. Regulatoren er en PI-regulator. (Resten av frontpanelet for simulatoren er som vist i figur 2.14.) Kompenseringsegenskaper:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter)

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter) DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Master i Teknologi Kybernetikk/Signalbehandling Vårsemesteret, 2010 Åpen / Konfidensiell Forfatter: Ben Ove Landa (signatur

Detaljer

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013

Noen MATLAB-koder. 1 Plotte en vanlig funksjon. Fredrik Meyer. 23. april 2013 Noen MATLAB-koder Fredrik Meyer 23. april 2013 1 Plotte en vanlig funksjon Anta at f : [a, b] R er en vanlig funksjon. La for eksempel f(x) = sin x+x for x i intervallet [2, 5]. Da kan vi bruke følgende

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu. 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Summer og for-løkker a) 10 i=1 i 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 10 2 = 1 + 4 + 9 + 16 + 25 + 36

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

Kapittel august Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 2.

Kapittel august Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 2. Institutt for geofag Universitetet i Oslo 28. august 2012 Kommandovinduet Det er gjennom kommandovinduet du først og fremst interagerer med MatLab ved å gi datamaskinen kommandoer når >> (kalles prompten

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

01 Laplace og Z-transformasjon av en forsinket firkant puls.

01 Laplace og Z-transformasjon av en forsinket firkant puls. Innholdsfortegnelse 0 Laplace og Z-transformasjon av en forsinket firkant puls.... 0 Sampling og filtrering og derivering av en trekant strømpuls... 03_Digitalt Chebyshev filter... 3 04 Digitalisering

Detaljer

Reguleringsteknikk med LabVIEW og MathScript eksempler

Reguleringsteknikk med LabVIEW og MathScript eksempler Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Reguleringsteknikk med LabVIEW og MathScript eksempler HANS- PETTER HALVORSEN, 2013.11.08 Faculty

Detaljer

Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14.

Kapittel Oktober Institutt for geofag Universitetet i Oslo. GEO En Introduksjon til MatLab. Kapittel 14. og Institutt for geofag Universitetet i Oslo 17. Oktober 2012 i MatLab En funksjon vil bruke et gitt antall argumenter og produsere et gitt antall resultater og : Hvorfor Først og fremst bruker vi når

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

Matlab-tips til Oppgave 2

Matlab-tips til Oppgave 2 Matlab-tips til Oppgave 2 Numerisk integrasjon (a) Velg ut maks 10 passende punkter fra øvre og nedre del av hysteresekurven. Bruk punktene som input til Matlab og lag et plot. Vi definerer tre vektorer

Detaljer