Spesiell relativitetsteori

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Spesiell relativitetsteori"

Transkript

1 Spesiell relativitetsteori FYS-MEK

2 man tir uke 21 uke 22 uke forelesning: spes. relativitet gruppe 5: gravitasjon+likevekt Ingen datalab forelesning: repetisjon gruppe 5: spes. relativitet Eksamensverksted Entropia EKSAMEN ons gruppe 1, 7: spes. relativitet tor fre forelesning: spes. relativitet gruppe 6: spes. relativitet gruppe 2, 3, 4, 8: spes. relativitet

3 Spesiell relativitetsteori Einsteins mirakelår år gammel patentbehandler ved det sveitsiske patentbyrået i Bern i 1905 publiserte han fire artikler: forklaring av Brownske bevegelser forklaring av den fotoelektriske effekten spesiell relativitetsteori forklarte forhold mellom masse og energi Albert Einstein ( ) FYS-MEK

4 Oppfatninger ved slutten av 1800 tallet: bølger trenger et medium for å forplante seg verdensrommet må være fylt av eter slik at lysbølger kan forplante seg må være overalt: vi ser stjerne planetene går gjennom uten motstand konsekvens: jorden beveger seg relativ til eteren lysets hastighet på jorden er avhengig av retning relativ til eteren FYS-MEK

5 100 m access number: C To personer kan svømme akkurat like rask. Bent svømmer 100 m langs elvebredden fra A til B og tilbake, først mot og så med strømningen. Carl svømmer 100 m fra A til C og tilbake i rett vinkel til strømningen. Hvem kommer tilbake først? 1. Bent. 2. Carl. 3. Begge kommer samtidig. A 100 m B FYS-MEK

6 4 m/s 100 m Bevegelse relativ til et medium C strømningshastighet: u = 3 m/s hastighet til svømmer relativ til vannet: v = 5 m/s tid for å svømme fra A til C t AC = d v = 100 m 4 m/s = 25 s tid for å svømme fra C til A t CA = d v = 100 m 4 m/s = 25 s 3 m/s 2 m/s 8 m/s 3 m/s A 100 m B tid for å svømme fra A til B t AB = d v u = 100 m 2 m/s = 50 s t ACA < t ABA tid for å svømme fra B til A t BA = d v + u = 100 m 8 m/s = 12.5 s FYS-MEK

7 Michelson Morley eksperiment 1887 påvise effekten av jordens bevegelse gjennom eteren C A B t ABA = t ACA = d c u + d c + u = 2d c 2 u 2 < t ABA 2dc c 2 u 2 c 2 u 2 u c forventet å se interferens fant ingen effekt: lyshastigheten er den samme uansett hvilken retning den måles FYS-MEK

8 nå kommer Albert Einstein: Newtons lover er de samme i alle inertialsystemer Hvorfor krever lysbølger et spesielt referansesystem tilknyttet ti eteren? FYS-MEK

9 Einsteins postulatene 1. Fysikkens lover er de samme i alle inertialsystemer. 2. Lyshastigheten er den samme i alle inertialsystemer, og er uavhengig av observatørens bevegelse. Newtons mekanikk er ikke lenger gyldig får å beskrive hvordan lys oppfører seg. FYS-MEK

10 Galileo transformasjon to koordinatsystemer: S (f.eks. jorden) S (f.eks. romskip) S beveger seg relativ til S med hastighet u langs x aksen, hvor x og x aksene er parallelle O og O er på samme sted ved tid t=0 vi beskriver posisjonen til et partikkel P i system S: i system S : Galileo transformasjon: x x ut y y z z r ( x, y, z) r ( x, y, z) v v x v v x y v y z v z u hva hvis partikkelen er et foton som beveger seg med lyshastighet? c c u Einsteins 2. postulat: c c hvis Einsteins 2. postulat er riktig, så må vi modifisere Galileo transformasjonen er tiden den samme i S og S? FYS-MEK

11 Definisjon av hendelse En hendelse er en begivenhet (noe) som kan lokaliseres i rom og tid dvs. gis koordinater (x,y,z,t). Definisjon av samtidighet To hendelser er samtidige dersom de inntreffer ved samme tid i ett og samme system S. S x z y FYS-MEK

12 access number: En nabo snekker i hagen. Du merker at det er en liten forsinkelse mellom når du ser at han slår på en spiker og når du hører lyden. Når inntreffer hendelsen hammeren treffer spikeren? 1. idet du hører hammeren treffe spikeren. 2. idet du ser hammeren treffe spikeren. 3. ingen av de to z S x y lydbølger lysbølger FYS-MEK

13 Måling av lyshastighet omløpstid til Jupitermåne Io: 42.5 h variasjon i løpet av året: formørkelse kommer for tidlig når Jorden nærmest Jupiter for sent når Jorden er lenger bort Io Jupiter Jorden Ole Rømer 1676 Christiaan Huygens 1678 med baneradius til Jorden c = km/s FYS-MEK

14 Måling av lyshastighet Léon Focault 1850 ω s c = km/s I dag: Definisjon: c = m/s 1 meter: Avstanden lys tilbakelegger i del av en sekund. FYS-MEK

15 Samtidighet Mathilde lyn treffer begge endene av en vogn og bakken ved siden Alexander Mathilde beveger seg mot lysbølgen som kommer fra fremre enden av vognen og bort fra lysbølgen som kommer fra bakre enden. FYS-MEK

16 Mathilde ser lyset fra den fremre enden først; hun konkluderer at lynet har truffet den fremre enden først. Alexander ser lyset kommer samtidlig fra begge endene; han konkluderer at lynet har truffet begge endene samtidlig. (Lyset fra den bakre enden har ikke ennå kommet til Mathilde.) to hendelser: lyn treffer fremre enden lyn treffer bakre enden Hendelsene er samtidig i system S (Alexander), men ikke samtidig i system S (Mathilde) FYS-MEK

17 Tidsintervaller speil Mathilde befinner seg i toget (system S ) og maler tidsintervall mellom to hendelser: 1. et lysglimt er sendt ut fra en kilde i O 2. lyset er påvist i en detektor på samme sted etter refleksjon av et speil i avstand d kilde Hun måler: t 2d c Alexander står på plattformen. I system S inntreffer de to hendelser på forskjellige steder. Lyset beveger seg med samme hastighet, men distansen er lenger. Δt = 2l c = 2 c d 2 + uδt 2 2 = t 2 + u t c 2 vi definerer: t t γ = 1 1 u2 c 2 t 2 = t 2 u t c 2 t = t 1 u2 c 2 det kreves at γ 1 u c FYS-MEK

18 Tidsdilatasjon Et tidsintervall som er målt mellom to hendelser i et referansesystem der posisjonen er identisk for begge hendelser, kalles egentid. speil kilde En observatør som er i ro i samme system måler et tidsintervall t 0. En observatør som beveger seg med konstant fart u relativ til den første måler et tidsintervall: t t 0 t 0 1 u c t t 0 tidsdilatsjon Tidsdilatasjonen er ikke relatert til tiden lyset trenger for å komme til observatøren. I systemet som beveger seg inntreffer de to hendelser på forskjellige steder. FYS-MEK

19 access number: Mathilde flyr i et romskip med v = 0.6 c. I øyeblikket hun flyr forbi Alexander på jorden starter begge to sin klokke. Litt senere flyr Mathilde forbi en romstasjon. Hennes klokke viser t = 1.0 s. Hva viser klokken til Alexander? A M A. 0.8 s B. 1.0 s C s M 1. hendelse: Mathilde flyr forbi Alexander (Alexander flyr forbi Mathilde) 2. hendelse: Mathilde flyr forbi romstasjonen (Romstasjonen flyr forbi Mathilde) I system romskip inntreffer begge hendelser på samme sted og Mathilde måler egentiden t 0 = 1.0 s. Alexander beveger seg med fart v = 0.6 c relativ til Mathilde og han maler tidsintervallet: t A t 1.0 s s FYS-MEK

20 access number: Når Mathilde flyr forbi Alexander med v = 0.6 c vinker han til henne. Mathilde måler at Alexander vinker i ett sekund. Hvor lenge har han vinket? M A. 0.8 s B. 1.0 s C s A 1. hendelse: Alexander begynner å vinke 2. hendelse: Alexander slutter å vinke I system jorden inntreffer begge hendelser på samme sted og Alexander måler egentiden t 0. Mathilde beveger seg med fart v = 0.6 c relativ til Alexander og hun maler tidsintervallet: t t s Alexander måler tidsintervallet: 1 2 v t0 t 1 2 t c 0.8 s FYS-MEK

21 Eksempel: myoner Myoner er elementærpartikler som kan oppstår når høyenergetisk kosmisk stråling treffer på jordens atmosfæren (i ~15 km høyde). Pga. den høyenergetisk kosmisk stråling har myoner høy hastighet: v c ~150 myoner / (s m 2 ) på bakken henfall: e e gjennomsnittlig levetid målt i laboratoriet 2.2 μs hvor lenge kommer myonet i sin levetid? x v s m/s 660 m Hvordan er det mulig at myoner treffer bakken? FYS-MEK

22 Eksempel: myoner Vi har blandet referansesystemer! levetid er målt i referansesystem til myonet strekning gjennom atmosfæren er målt i jordens referansesystem hendelse 1: myon oppstår hendelse 2: myon henfaller i system tilknyttet myonet: begge hendelser inntreffer på samme sted tidsintervallet er egentid t 0 = τ = 2.2 μs Jorden beveger seg med v = c relativ til myonet, sett fra jorden er levetid til myonet: t t 2.2 μs μs hvor lenge kommer myonet i jordens referansesystem? x t v s m/s 14.7 km FYS-MEK

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 014. Løsningsforslag til øving 1 Oppgave 1 a) I følge Galileo: (S = Sam, S = Siv, T = Toget) I følge Einstein: Dermed: Her har vi brukt

Detaljer

Einsteins relativitetsteori

Einsteins relativitetsteori Einsteins relativitetsteori Grunnprinsipper og relativistisk tid Øyvind G. Grøn Ingeniørenes hus, 8. mars 2010 Grunnlaget for det 20. århundrets fysikk Kvantemekanikken er teorien for fenomener på atomært

Detaljer

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff Innholdsfortegnelse Tvillingparadokset-8.4 2 Simulering Relativitetsteori 3 Veiledning til simulering Relativitetsteori 4 Oppgavetekst

Detaljer

Om flo og fjære og kunsten å veie Månen

Om flo og fjære og kunsten å veie Månen Om flo og fjære og kunsten å veie Månen Jan Myrheim Institutt for fysikk NTNU 28. mars 2012 Innhold Målt flo og fjære i Trondheimsfjorden Teori for tidevannskrefter Hvordan veie Sola og Månen Friksjon

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

Artikkel 7: Navigering til sjøs uten GPS

Artikkel 7: Navigering til sjøs uten GPS Artikkel 7: Navigering til sjøs uten GPS Hvordan kan navigatøren bestemme posisjonen uten GPS? I 1714 utlovet Det engelske parlament 20000 pund (en formidabel sum den gangen) som belønning for den som

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Einstein og relativitetsteorien et hundreårsjubileum

Einstein og relativitetsteorien et hundreårsjubileum Einstein og relativitetsteorien et hundreårsjubileum Øyvind G. Grøn Bergen astronomiforening 16. april 2015 Einsteins far, Herman Einstein Einsteins mor, Pauline Einstein Albert Einstein var født 14. mars

Detaljer

Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen,

Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen, I partikkelfysikken (CERN) studeres materiens minste byggestener og alle kreftene som virker mellom dem. I astrofysikken studeres universets sammensetting (stjerner og galakser) og utviklingen fra Big

Detaljer

Repetisjon 20.05.2015

Repetisjon 20.05.2015 Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Introduksjon til partikkelfysikk. Trygve Buanes

Introduksjon til partikkelfysikk. Trygve Buanes Introduksjon til partikkelfysikk Trygve Buanes Tidlighistorie Fundamentale byggestener gjennom historien De første partiklene 1897 Thomson oppdager elektronet 1919 Rutherford oppdager protonet 1929 Skobeltsyn

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN

MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN Institutt for fysikk, NTNU 5. april 2005 FY003/TFY455 Elektromagnetisme MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN (orienteringsstoff; ikke pensum til eksamen) Utgangspunkt: Anta at i kjenner til

Detaljer

Newtons (og hele universets...) lover

Newtons (og hele universets...) lover Newtons (og hele universets...) lover Kommentarer og referanseoppgaver (2.25, 2.126, 2.136, 2.140, 2.141, B2.7) Newtons 4 lover: (Gravitasjonsloven og Newtons første, andre og tredje lov.) GL: N I: N III:

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 a) Skriv tallet 2460000 på standardform. b) Regn ut: 3 3 3 2 81 4 + 12 5 + 8 + 4 3 c) Løs likningssystemet: 2x y = 3 x+ 2y = 4 d) Løs ulikheten: 2 2x + 2x+ 4 0 e) Løs

Detaljer

Fysikk 1-16.09.14 - Kapittel 1,5 og 8

Fysikk 1-16.09.14 - Kapittel 1,5 og 8 Fysikk 1-16.09.14 - Kapittel 1,5 og 8 Løsningsskisser og kommentarer. Oppgave 1 Oppgave 2 Forklar hva vi legger i begrepet fysikk. Fysikk er et fagområde som tar for seg stoff og energi, og prøver å beskrive

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Kortfattet løsningsforslag / fasit

Kortfattet løsningsforslag / fasit 1 Kortfattet løsningsforslag / fasit Ordinær eksamen i FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF / FY-ME 100 Eksamensdag onsdag 8. juni 2005 (Versjon 10. juni kl 1520) 1. Forståelsesspørsmål

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 6: Teleskoper Innhold Op>kk og teleskop Linse- og speilteleskop De vik>gste egenskapene >l et teleskop Detektorer og spektrometre Teleskop for andre bølgelengder enn

Detaljer

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer) 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Masterclass i partikkelfysikk

Masterclass i partikkelfysikk Masterclass i partikkelfysikk Katarina Pajchel på vegne av Maiken Pedersen, Erik Gramstad, Farid Ould-Saada Mars, 18 2011 Innholdsfortegnelse Det I: Masterklass konseptet Det II: Teori Introduksjons til

Detaljer

De vik=gste punktene i dag:

De vik=gste punktene i dag: AST1010 En kosmisk reise Forelesning 6: Teleskoper De vik=gste punktene i dag: Op=kk og teleskop Linse- og speilteleskop De vik=gste egenskapene =l et teleskop Detektorer og spektrometre Teleskop for andre

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

1 Leksjon 2: Sol og måneformørkelse

1 Leksjon 2: Sol og måneformørkelse Innhold 1 LEKSJON 2: SOL OG MÅNEFORMØRKELSE... 1 1.1 SOLFORMØRKELSEN I MANAVGAT I TYRKIA 29. MARS 2006... 1 1.2 DELVIS SOLFORMØRKELSE I KRISTIANSAND 31. MAI 2003... 4 1.3 SOLFORMØRKELSE VED NYMÅNE MÅNEFORMØRKELSE

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

Regnbuen. Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? E.H.Hauge

Regnbuen. Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? E.H.Hauge Regnbuen Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? Eksperimenter, tenkning, matematiske hjelpemidler, forklaringer, mysterier, klassiske teorier, nyere teorier.

Detaljer

Notat 3: Magnetfelt og magnetisme som relativistisk fenomen (orienteringsstoff; ikke pensum til eksamen)

Notat 3: Magnetfelt og magnetisme som relativistisk fenomen (orienteringsstoff; ikke pensum til eksamen) nst. for fysikk 202 TY455/Y003 Elektr. & magnetisme Notat 3: Magnetfelt og magnetisme som relatiistisk fenomen (orienteringsstoff; ikke pensum til eksamen) Utgangspunkt: Anta at i kjenner til Coulombs

Detaljer

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

Oppgaver i naturfag 19-åringer, fysikkspesialistene

Oppgaver i naturfag 19-åringer, fysikkspesialistene Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle

Detaljer

Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten

Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Dette er en tese som handler om egenskaper ved rommet og hvilken betydning disse har for at naturkreftene er slik vi kjenner dem. Et

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Er naturkonstantene konstante?

Er naturkonstantene konstante? Er naturkonstantene konstante? Jan Myrheim Institutt for fysikk NTNU 18. mars 2009 Er naturkonstantene konstante? 1. Unnskyld hva var spørsmålet? To eksempler: lyshastigheten, Newtons 2. lov 2. Enhetssystemet

Detaljer

EKSAMEN Styring av romfartøy Fagkode: STE 6122

EKSAMEN Styring av romfartøy Fagkode: STE 6122 Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Løsningsforslag 16. mars 2015 Tidsfrist: 23. mars 2015 klokken 14.00 Oppgave 1 Her skal vi se på hvordan man kan sikte seg inn på stridsvogner i bevegelse. Ved t = 0 befinner

Detaljer

Sør-Trøndelag fylkeskommune http://sortrondelag.ksys.no Fakturamottak Pb. 2375 Sluppen, 7004 TRONDHEIM Erling Skakkesgate 14,

Sør-Trøndelag fylkeskommune http://sortrondelag.ksys.no Fakturamottak Pb. 2375 Sluppen, 7004 TRONDHEIM Erling Skakkesgate 14, Tir 10. nov. 2015 kl. 09:10 Rockheim trinn: 1, antall: 22, buss tur: 08:30 retur: 10:10 7010 TRONDHEIM Tir 10. nov. 2015 kl. 12:10 Rockheim trinn: 1, antall: 22, buss tur: 11:30 retur: 13:10 Ons 11. nov.

Detaljer

Hvorfor mørk materie er bare tull

Hvorfor mørk materie er bare tull Hvorfor mørk materie er bare tull En sammenligning av MOND og CDM Karsten Kvalsund 1 2 1 Institutt for fysikk NTNU 2 Trondheim Astronomiske Forening 28 oktober 2008 Kepler Kepler beskriver planetbanene

Detaljer

De vikdgste punktene i dag:

De vikdgste punktene i dag: AST1010 En kosmisk reise Forelesning 8: De indre planetene og månen del 2: Jorden, månen og Mars De vikdgste punktene i dag: Jorden: Bane, atmosfære, geologi, magneielt. Månen: Faser og formørkelser. Atmosfære

Detaljer

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1017 Matematikk 2T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1017 Matematikk 2T Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen!

Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen! Professor Elgarøy avslører: Hva DU bør repetere før AST1100-eksamen! Jeg burde starte med noen blomstrende ord om at målet med å ta et kurs er å lære mest mulig og å utvikle seg personlig, ikke å gjøre

Detaljer

Det er ingen ting i veien for at et proton/ nøytron kan danne forening med mer enn ett proton/ nøytron på den måten som er vist på skissen ovenfor. Skissen nedenfor viser for eksempel hvordan fire protoner/

Detaljer

MÅLING AV TYNGDEAKSELERASJON

MÅLING AV TYNGDEAKSELERASJON 1. 9. 2009 FORSØK I NATURFAG HØGSKOLEN I BODØ MÅLING AV TYNGDEAKSELERASJON Foto: Mari Bjørnevik Mari Bjørnevik, Marianne Tymi Gabrielsen og Marianne Eidissen Hansen 1 Innledning Hensikten med forsøket

Detaljer

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner

Detaljer

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg

Detaljer

UTFORDRINGER KNYTTET TIL ELEVENES LÆRING AV RELATIVITETSTEORI. Prosjektoppgave i fysikkdidaktikk. Av Ragnhild Hansen

UTFORDRINGER KNYTTET TIL ELEVENES LÆRING AV RELATIVITETSTEORI. Prosjektoppgave i fysikkdidaktikk. Av Ragnhild Hansen Universitetet i Bergen, mai 2005 UTFORDRINGER KNYTTET TIL ELEVENES LÆRING AV RELATIVITETSTEORI Prosjektoppgave i fysikkdidaktikk Av Ragnhild Hansen Innholdsliste KAP. 1 INNLEDNING...1 1.1 Elevenes forståelse

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Øving 16. mars 2015 Tidsfrist: 23. mars 2015 klokken 14.00 Oppgave 1 Her skal vi se på hvordan man kan sikte seg inn på stridsvogner i bevegelse. Ved t = 0 befinner vi

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Læreplan i fysikk - programfag i studiespesialiserende utdanningsprogram

Læreplan i fysikk - programfag i studiespesialiserende utdanningsprogram Læreplan i fysikk - programfag i studiespesialiserende Fastsatt som forskrift av Utdanningsdirektoratet 3. april 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og forskningsdepartementet

Detaljer

AST1010 En kosmisk reise. Innhold. Asteroider 9/15/15

AST1010 En kosmisk reise. Innhold. Asteroider 9/15/15 AST1010 En kosmisk reise Forelesning 10: Rusk og rask i solsystemet: Dvergplaneter, asteroider, meteoroider, kometer. Innhold Asteroidebeltet mellom Mars og Jupiter De to hovedtypene av meteoriher Dvergplaneter

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: 15. november 2012 Tid for eksamen:0900-1200 Oppgavesettet er på 2

Detaljer

Fysikk & ultralyd www.radiolog.no Side 1

Fysikk & ultralyd www.radiolog.no Side 1 Side 1 LYD Lyd er mekaniske bølger som går gjennom et medium. Hørbar lyd har mellom 20 og 20.000 svingninger per sekund (Hz) og disse bølgene overføres ved bevegelser i luften. Når man for eksempel slår

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE

Detaljer

AST1010 En kosmisk reise. Innhold. Jupiter 9/15/15. Forelesning 9: De store gassplanetene og noen av deres måner

AST1010 En kosmisk reise. Innhold. Jupiter 9/15/15. Forelesning 9: De store gassplanetene og noen av deres måner AST1010 En kosmisk reise Forelesning 9: De store gassplanetene og noen av deres måner Innhold Jupiter og de fire galileiske månene Saturn og Titan Uranus Neptun Jupiter 3 1 Sentrale mål Masse 1.9 x 10

Detaljer

MELLOM HIMMEL OG JORD

MELLOM HIMMEL OG JORD MELLOM HIMMEL OG JORD Laboratorium med verdensrommet som tema Barnas Kulturhus vår 2011 Tenk å sveve midt i rommet løsrevet fra gulv og tak. Flyr tankene avgårde uten kontakt med bakken? Ting føles og

Detaljer

Historien om universets tilblivelse

Historien om universets tilblivelse Historien om universets tilblivelse i den første skoleuka fortalte vi historien om universets tilblivelse og for elevene i gruppe 1. Her er historien Verden ble skapt for lenge, lenge siden. Og det var

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

Perseidene 2015 fra Norge

Perseidene 2015 fra Norge Perseidene 2015 fra Norge Av Birger Andresen, Trondheim Astronomiske Forening (www.taf-astro.no) 2015 antas å bli et godt år for den flotte meteorsvermen Perseidene, i hvert fall for de som bor så langt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen

Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen Nat104 / Grimstad Forelesningsnotater Våren 2011 Netons 3 lover UiA / Tarald Peersen 1 Netons 3 lover 1.1 Forelesning: Netons tre fundamentale lover for bevegelse I leksjon 1 lærte vi språket som beskriver

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av skoleåret. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1 1

Detaljer

Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter

Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter Lærerveiledning Passer for: Varighet: Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter Blikk mot himmelen er et skoleprogram der elevene får bli kjent med dannelsen av universet, vårt solsystem og

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth side 1 av 8 Fysikk 3FY (Alf Dypbukt) Racerbilkjøring Mål: Regne ut alt vi kan ut i fra de målingene vi tar. Innledning: I denne rapporten har vi gjort diverse utregninger, basert på tall vi har fra et

Detaljer

Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013 Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand

Detaljer

Disposisjon til kap. 3 Energi og krefter Tellus 10

Disposisjon til kap. 3 Energi og krefter Tellus 10 Disposisjon til kap. 3 Energi og krefter Tellus 10 Energi Energi er det som får noe til å skje. Energi måles i Joule (J) Energiloven: Energi kan verken skapes eller forsvinne, bare overføres fra en energiform

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

Fullstendig fasit 7 Bølger og stråler rundt oss 7.1 Bølger 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.2 Lyd 7.2.

Fullstendig fasit 7 Bølger og stråler rundt oss 7.1 Bølger 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.2 Lyd 7.2. 7 Bølger og stråler rundt oss 7.1 Bølger 7.1.1 En bølgebevegelse er svingninger som brer seg. Når en lydbølge brer seg, er det molekylene i det stoffet bølgen brer seg i, som svinger. 7.1.2 Se figuren

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Aktuelle praktiske innslag (elevøvelser) under privatisteksamen i realfag

Aktuelle praktiske innslag (elevøvelser) under privatisteksamen i realfag Aktuelle praktiske innslag (elevøvelser) under privatisteksamen i realfag Fag: Offentlig fagkode Naturfag for yrkesfaglige utdanningsprogram NAT1001 1. Gjennomføre en undersøkelse der en indentifiserer

Detaljer

Newton Realfagsenter Nannestad. Versjon: KAN/2009-02-20

Newton Realfagsenter Nannestad. Versjon: KAN/2009-02-20 Versjon: KAN/2009-02-20 1. Raketter, romturisme og verdens kappløp 2. Teleskoper 3. Stellarium 4. Jorden THE NEWTON TEAM Kjell Arnt Nystøl (Kjemi) Theresa Myran (Biokjemi) Runar Andreassen (Biologi) Andreas

Detaljer

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen.

Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. Oppgave 3 (2 poeng) Antall elever 5 10 Pris per elev (kroner) 600 100 Noen elever skal leie en hytte. Prisen per elev er omvendt proporsjonal med antall elever som blir med på hytteturen. a) Tegn av tabellen

Detaljer

Oppgave 1.1 Kjør rett fram Programmere roboten til å kjøre rett fram ved å bruke begge motorer. Deretter rygge tilbake.

Oppgave 1.1 Kjør rett fram Programmere roboten til å kjøre rett fram ved å bruke begge motorer. Deretter rygge tilbake. Lego Mindstorms EV3 Del 1 Generell programmering med blokker for å kjøre rett fram og svinge, samt bruk av løkker for å gjenta en bevegelse. Roboten skal være satt opp med standardoppsett. Oppgave 1.1

Detaljer

Fysikkolympiaden 1. runde 26. oktober 6. november 2015

Fysikkolympiaden 1. runde 26. oktober 6. november 2015 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 6. oktober 6. november 05 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10

Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10 Individuell skriftlig eksamen i Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10 ORDINÆR EKSAMEN 13.12.2010. Sensur faller innen 06.01.2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag

Detaljer

Eksamen 28.05.2008. AA6516 Matematikk 2MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 28.05.2008. AA6516 Matematikk 2MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 8.05.008 AA656 Matematikk MX Privatistar/Privatister Nynorsk/Bokmål Oppgave I hele oppgave skal du på hvert delspørsmål velge mellom alternativ I og alternativ II. Du skal bare regne ett av alternativene,

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert

Detaljer

FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 )

FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) Hvorfor holder enkelte dropper seg oppe? Ved å benytte beregning.m på små dråpestørrelser, kan man legge til merke at for at en dråpe

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

Løsningsforslag til prøve i fysikk

Løsningsforslag til prøve i fysikk Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

5:2 Tre strålingstyper

5:2 Tre strålingstyper 58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon

Detaljer