Gauss-eliminasjon og matrisemultiplikasjon

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Gauss-eliminasjon og matrisemultiplikasjon"

Transkript

1 DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente, og inngår i pensum i faget RF5100 Lineær Algebra ved Westerdals Høyskole (tidl NITH) Innhold 1 Litt om matrisemultiplikasjon 1 11 Begrepet lineærkombinasjon 1 12 Matrisemultiplikasjon på søyle-form 2 13 Matrisemultiplikasjon på rad-form 2 2 Radoperasjoner uttrykt ved matrise-operasjoner 3 21 Tilfelle 1: Ombyttingsmatriser 3 22 Tilfelle (ii): Rad-kombinasjoner 5 3 Gauss-eliminasjon uttrykt ved matriser 6 31 Gjenbruk av radoperasjoner I 7 32 Gjenbruk av radoperasjoner II 8 4 Den inverse matrisen 10

2 1 Litt om matrisemultiplikasjon I dette kapittelet skal vi se At vi kan beskrive Gauss-eliminasjon ved hjelp av matrisemultiplikasjon At Gauss-eliminasjon kan hjelpe oss til å behandle matriser V ser på to matriser X og Y slik at matriseproduktet Y X er definert, dvs at antall søyler i Y er lik antallet rader i X Vi skriver opp X på søyle-og radform: Her er r i rad nr i X, mens x j er søyle nr j i X X er altså tydeligvis en n m-matrise, siden matrisen har n rader og m søyler 11 Begrepet lineærkombinasjon Før vi setter i gang med diskusjonen er det praktisk å etablere begrepet lineærkombinasjon Hvis x 1, x 2, x 3 er tre vektorer og k 1, k 2, k 3 er tre skalarer, så kalles kombinasjonen k 1 x 1 + k 2 x 2 + k 3 x 3 for lineærkombinasjonen av x 1, x 2 og x 3 med koeffesienter k 1, k 2 og k 3 Her må vi huske på at det ikke er alle vektorer det gir mening å kombinere på denne måten: Det gir for eksempel liten mening å legge en vektor med 3 komponenter sammen med en vektor med 2 komponenter Vektorer som vi kan legge sammen noe uformelt sies å tilhøre samme vektorrom 1 Vi kan også snakke om villkårlige lineærkombinasjoner: Hvis x 1,, x n er vektorer som tilhører samme vektorrom og k 1,, k n er skalarer, så er k 1 x k n x n lineærkombinasjonen av x 1,, x n med koeffesienter k 1,, k n Denne lineærkombinasjonen ligger i samme vektorrom som x 1,, x n, pr definisjon av begrepet vektorrom 12 Matrisemultiplikasjon på søyle-form Her skriver vi X på søyleform: X = [ x 1 x 2 x n ] Dette lar oss fremstille matriseproduktt Y X på følgende måte: 1 Vektorromsbegrepet er vanligvis definert på en helt annen måte, men vi forbeholder oss retten til å bruke begrepet på en uformell måte her

3 Y X = [ Y x 1 Y x 2 Y x n ] Hvis du vil kontrollere at dette stemmer, kan du sjekke hva element i, j i denne matrisen blir, og sammenligne med den vanlige definisjonen av matriseproduktet Nøkkelobservasjon Matriseproduktet Y X fremkommer ved at vi bruker matrisen Y til å transformere hver enkelt søyle i X 13 Matrisemultiplikasjon på rad-form Her skriver vi opp Y på radform: Når vi også skriver X på rad-form, og så kan vi fremstille rad i i Y X slik: r 1 r 2 Y = r n r i = [ y i1 y i2 y in ] q 1 q 2 X =, q n r i X = y i1 q 1 + y i2 q y in q n Denne raden er altså en lineærkombinasjon av radene q 1,, q n i X, med koeffesienter y i1,, y in Nøkkelobservasjon Radene i matrisen Y er oppskrifter på hvordan vi skal danne radene i Y X som lineærkombinasjoner av radene i X

4 2 Radoperasjoner uttrykt ved matrise-operasjoner La oss si at vi skal løse et ligningsystem, og at vi har dannet koeffesientmatrisen X Når vi løser ligningssystemet, tillater vi oss å gjøre tre ulike operasjoner: (i) Bytte om to rader i X (ii) Erstatte en rad q i i X med en lineærkombinasjon aq i + bq j, der a 0 (iii) Skalere en rad i X med en skalar a 0 Legg merke til at denne operasjonen faller inn under tilfelle (ii), når vi setter b = 0 Vi har, i seksjon?? sett at det er en klar sammenheng mellom radoperasjoner og matrisemultiplikasjon Nå skal vi tydeliggjøre dette i de tre tilfellene over 21 Tilfelle 1: Ombyttingsmatriser Oppgave 1: Regn ut matriseproduktene (i) [ ] [ ] (ii) a b c (iii) Vi ser på dette som operasjoner på matrisen til høyre Beskriv kort hva som skjer med radene til denne matrisen 211 Teoretisk drøfting La oss si at vi ønsker å bytte om rad i med rad j i matrisen X, ved å gange med en matrise y 11 y 12 y 1k y 21 y 22 y 2k Y = y k1 y k2 y kk Hvis q k representerer rad k i X og q i representerer rad i i Y X, så har vi, som over n q i = y i1 q y ik q n = y ik q k Når vi krever at q i = q j, må alle y i1,, y ik = 0, unntatt y ij = 1 Når vi ser på rad j q j i Y X på samme måte, ser vi at y j1,, y jk = 0, unntatt y ji = 1 På tilsvarende måte kan vi overbevise oss om at de resterende elementene i Y må k=1

5 være lik 0, unntatt diagonalelementene y ii som må være lik 1, siden q k = q k, når k i, j Eksempel: Hvis X har 4 rader, og vi ønsker å bytte om de to nederste radene, kan vi altså bruke matrisen Y 1 = Hvis X har 2 rader, som vi ønsker å bytte om, kan vi altså bruke matrisen [ ] 0 1 Y 2 = 1 0 Oppgave 2: Overbevis deg om at matrisene Y 1 og Y 2 gjør det teksten lover 212 Sidespor: Ombyttingsmatriser er reverserbare Hvis vi bytter om rad i med rad j to ganger, havner vi tilbake til utgangspunktet Hvis Y er matrisen for ombytting av rad i med rad j, og X er en hvilken som helst matrise med like mange rader som Y, så er Y (Y X) = X Hvis vi feks lar X være identitetsmatrisen I, så får vi Y (Y I) = Y Y = I Det vil si: Hvis vi ganger matrisen med seg selv, så sitter vi igjen med identitetsmatrisen Vi vil ofte uttrykke dette som at Y 2 = I Nøkkelobservasjon: Ombytting er en reversibel operasjon, og ombyttinger kan reverseres ved at de blir gjentatt Dette er kanskje ekstremt opplagt, men det er en viktig observasjon å ha med seg videre 22 Tilfelle (ii): Rad-kombinasjoner Oppgave 3: Regn ut matriseproduktene (i) [ ] [ ] 1 1 a 0 1 b (ii) q q q q 4 Her er a og b skalarer, mens q 1,, q 4 er rad-vektorer Beskriv så kort hva som skjer med radene i matrisene på høyre side av produktene

6 Hvis vi ønsker at rad i q i i Y X skal være lik aq i + bq j, så må rad i i Y se slik ut: [ 0 0 a 0 0 b 0 0 ] plass i plass j Altså: Element i er lik a, element j er lik b Resten er lik 0 Eksempel: Hvis X er en matrise med 4 rader, så vil feks matrisen Y = erstatte rad 2 i X med 2q 1 + 4q Sidespor: Radkombinasjonsmatriser er reverserbare La oss si at vi erstatter raden q i med kombinasjonen q i = aq i + bq j Denne operasjonen kan vi reversere ved å erstatte q i med kombinasjonen siden 1 a q i a b q j, 1 a q i a b q j, = 1 a (aq i + bq j ) b a q j = bq i + b a q j b a q j = q i Det betyr at hvis Y er matrisen som erstatter rad i med kombinasjonen aq i +bq j og Y er natrisen som erstatter rad i med kombinasjonen 1/aq i b/aq j, og vi gjør de to operasjonene etter hverandre, så vil Y (Y X) = X Dette betyr at Y Y = I Men, legg merke til at det er en uuttalt forutsetning her: Skalaren a må være forskjellig fra 0 Nøkkelobservasjon: Radkombinasjonsoperasjonen q i aq i + bq j er reversibel, under forutsetning av at a 0

7 3 Gauss-eliminasjon uttrykt ved matriser Gauss-eliminasjon kan forstås som en serie radoperasjoner, der hver enkelt operasjon kan beskrives ved hjelp av matriser: Utgangspunkt: X 0 = X Steg 1: X 1 = Y 1 X 0 = Y 1 X Steg 2: X 2 = Y 2 X 1 = Y 2 (Y 1 X) Steg 3: X 3 = Y 3 X 2 = Y 3 Y 2 Y 1 X Steg n: X n = Y n X n 1 = Y n Y n 1 Y 1 X Dette skal bety: Matrise Y 1 representerer den første radoperasjonen, mens Y 2 representerer den andre, osv Resultatet etter n operasjoner kan skrives som et matriseprodukt X n = (Y n Y n 1 Y 1 )X Dette viser at vi står overfor to likeverdige muligheter: Utføre en rekke radoperasjoner Multiplisere X med matrisen (Y n Y n 1 Y 1 ) Vi kan så å si si at (Y n Y n 1 Y 1 ) er et sammendrag av en serie radoperasjoner Oppgave 4: Se på ligningsystemene og (I) 2x + 3y = 2, x y = 4 (II) 2x + 3y = 1, x y = 3 Løs I ved å gjøre radoperasjoner på koeffesientmatrisen Skriv så opp de tilhørende matrisene Y 1, Y 2, Y n, og regn ut produktet A = Y n Y n 1 Y 1 Regn ut matriseproduktene A [ ] 2 4 A [ ] 1 3 Løs (II) ved å gjøre radoperasjoner

8 31 Gjenbruk av radoperasjoner I La oss se på et ligningsystem a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a n1 x 1 + a n2 x a nn x n = b n Dette kan skrives som en matriseligning Ax = b, der a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn x 1 x 2 x = x n b 1 b 2 b = b n Hvis vi nå gjør en serie radoperasjoner på A 1 A A 1 A 2 A n = I = 1, 1 så får vi en tilsvarende sekvens av matriser Y 1, Y n slik at A 1 = Y 1 A, A 2 = Y 2 A 1 osv Hvis vi definerer så vil B = Y n Y n 1 Y 2 Y 1, BA = Y n Y n 1 Y 2 Y 1 A = A n = I Matrisen B kan vi nå bruke til å løse ligningen Ax = b Vi får siden BAx = Ix = x Ax = b BAx = Bb x = Bb, Konklusjonen er at vi kan bruke matrisen B til å løse ligningssystemet

9 Fortolkning Matrisen B er et sammendrag av de radoperasjonene som skal til for å omforme matrisen A til trappeformen I For å bestemme x, utfører vi de samme radoperasjonene på n 1-matrisen b Siden B er et sammendrag av disse radoperasjonene, holder det å regne ut Bb 32 Gjenbruk av radoperasjoner II Vi så over hvordan vi kunne ha veldig stor praktisk nytte av matrisen B = Y n Y n 1 Y 2 Y 1 Nå er vi på jakt etter en god algoritme for å regne ut B Algoritme 1 Definisjonen av B er nærmest en algoritme i seg selv: Utfør radoperasjoner, og skriv opp matrisene Y 1, Y 2,, Y n Gang deretter sammen matrisene, og bestem B = Y n Y n 1 Y 2 Y 1 Ulempen med denne algoritmen er at vi får veldig mange matriser å holde styr på, og at de fleste matriseelementene er lik enten 0 eller 1 Algoritme 2 Det er mulig å gjøre dette på en måte som er litt mer praktisk enn algoritme 1 Siden B = BI = (Y n Y n 1 Y 2 Y 1 )I, vet vi at B fremkommer ved å gjøre radoperasjonene representert ved Y 1,, Y n på I Dette gir oss følgende fremgangsmåte for å finne B: Utfør radoperasjoner for å forme A om til trappeformen I Når du bruker de samme radoperasjonene i den samme rekkefølgen på matrisen I, blir resultatet lik B Den mest praktiske fremgangmåten er å skrive opp en matrise med to blokker: [A I] Den første blokken er lik A, mens den andre blokken er identitetsmatrisen, dvs matrisen a 11 a 12 a 1n a 21 a 22 a 2n [A I] = a n1 a n2 a nn 0 0 1

10 Når vi gjør radoperasjoner, får vi en sekvens [A I] = [A 0 B 0 ] [A 1 B 1 ] [A n B n ] = [I B] Oppsummert gir dette følgende fremgangsmåte for å bestemme matrisen B: Utfør radoperasjoner på matrisen [A I] til det venstre kvadratet kommer på trappeform Da er det matrisen B vi sitter igjen med i det høyre kvadratet Eksempel Se på matrisen A = Denne matrisen dukker feks opp i forbindelse med ligningsystemet y + z = 1, x + z = 2, x + y = 2 Nå skal vi finne den tilhørende matrisen B Det kan vi gjøre ved følgende rad-operasjoner: /2 1/2 1/ /2 1/2 1/ /2 1/2 1/ /2 1/2 1/2 I dette tilfellet ender vi altså opp med 1/2 1/2 1/2 B = 1/2 1/2 1/2 1/2 1/2 1/2 4 Den inverse matrisen I diskusjonen over var B en matrise som fungerte som et sammendrag av radoperasjoner på en matrise a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn

11 bestående av koeffesientene på venstre side i et system av n ligninger i n ukjente Det som kjennetegner matrisen B er at a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a n1 x 1 + a n2 x a nn x n = b n BA = I Det er mulig å bevise at også $B(ABA) = B(A(BA)) = (BA) Dette kan skrives som en matriseligning der Ax = b,

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

RF5100 Lineær algebra Leksjon 2

RF5100 Lineær algebra Leksjon 2 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Løsningsforslag, Øving 11 8mai 201 Tidsfrist: 18mai 201 klokken 1400 Oppgave 1 Obs: I denne oppgaven reperesenterer vi vektorer med 1 n-matriser, altså radvektorer I hele

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

Vektorer og matriser

Vektorer og matriser DUMMY Vektorer og matriser Lars Sydnes 1.september 2014 OBS: UNDER UTVIKLING Oppgaver Det finnes passende oppgaver og løsningsforslag til dette notatet. 1 Innledning La oss se på et system av tre lineære

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

RF5100 Lineær algebra Løsningsforslag til prøveeksamen

RF5100 Lineær algebra Løsningsforslag til prøveeksamen RF5 Lineær algebra Løsningsforslag til prøveeksamen NITH 6. desember Oppgave (a) Jeg skal løse et system av tre ligninger med tre ukjente. Dette gjør jeg ved å utføre radoperasjoner på matrisen tilhørende

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Numerisk lineær algebra

Numerisk lineær algebra Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

En rekke av definisjoner i algebra

En rekke av definisjoner i algebra En rekke av definisjoner i algebra Martin Strand, martin.strand@math.ntnu.no 11. november 2010 Definisjonene som er gitt her, kommer i MA2201 Algebra og MA3201 Ringer og moduler. Forhåpentligvis blir det

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

EKSAMEN RF5100, Lineær algebra

EKSAMEN RF5100, Lineær algebra Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

Hvorfor er lineær algebra viktig? Linear

Hvorfor er lineær algebra viktig? Linear Lineær Algebra Hvorfor er lineær algebra viktig? Linear y = ax + b linje y = f(x) funksjon Taylor utvikling f(x) =f(x 0 )+f 0 (x 0 )(x x 0 )+ 1 2 f 00 (x 0 )(x x 0 ) 2 + f(x) f(x 0 )+f 0 (x 0 )(x x 0 )

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

Bytte om to rader La Matlab generere en tilfeldig (4 4)-matrise med heltallige komponenter mellom 10 og 10 ved kommandoen Vi skal underske hva som skj

Bytte om to rader La Matlab generere en tilfeldig (4 4)-matrise med heltallige komponenter mellom 10 og 10 ved kommandoen Vi skal underske hva som skj velse 2: Egenskaper ved determinanter av Klara Hveberg I denne velsen skal vi bruke Matlab til a studere hva elementre radoperasjoner gjr med determinanten til en matrise. Deretter skal vi se pa determinanten

Detaljer

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg, 25-26 2 John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg,

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Elementære eliminasjonsmatriser

Elementære eliminasjonsmatriser Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Diofantiske likninger Peer Andersen

Diofantiske likninger Peer Andersen Diofantiske likninger av Peer Andersen Peer Andersen 2013 Innhold Når en diofantisk likning har løsning... 3 Generell løsning av den diofantiske likningen... 4 Løsningsmetode når vi kjenner en spesiell

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A = Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Mandag 3. august 05 før forelesningen :30 Antall oppgaver: 5 Løsningsforslag Uttrykk følgende komplekse tall både

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

Løsningsforslag til noen oppgaver om Zorns lemma

Løsningsforslag til noen oppgaver om Zorns lemma Løsningsforslag til noen oppgaver om Zorns lemma Fredrik Meyer Her er et løsningsforslag på Oppgave 3 og Oppgave 5 i notatet om Zorns lemma. De to første oppgavene ble gjort på plenum. Oppgave 1. Vi skal

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 11.02.2016 Sjuende utkast Flere lineære likninger som samtidig skal oppfylles kalles lineære likningssystem. I prinsippet er løsing av lineære likningsystem enkelt, det benytter

Detaljer

x 1 x 3 = 0 4x 1 2x 4 = 0 2x 2 2x 3 x 4 = 0

x 1 x 3 = 0 4x 1 2x 4 = 0 2x 2 2x 3 x 4 = 0 1 Redoksligninger Balansering av redoksligninger kan utføres på flere måter. Mer kompliserte redokssystemer kan balanseres ved hjelp av en algebraisk metode. Ved å flytte koeffsientene for hvert molekyl

Detaljer

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40 Innlevering i BYFE/EMFE 1000 Oppgavesett 4 Innleveringsfrist: 8. mars klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) Om vi tenker oss at vi spiser x 1 hg banan, drikker x hg lettmelk og spiser

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

Fasit til Flervariabelanalyse med lineær algebra

Fasit til Flervariabelanalyse med lineær algebra Fasit til Flervariabelanalyse med lineær algebra Advarsel: Arbeidet med denne fasiten har gått fortere enn det burde, og feilprosenten er nok litt høyere enn vanlig. Finner du feil eller lurer på om noe

Detaljer