Uten hjelpemidler. 1 Rekker. 18 = 2 + 2d 18 2 = 2d. 2) Når følgen er geometrisk, er a a k 18 = 2 k 2. k 2 = 18 2 = 9

Størrelse: px
Begynne med side:

Download "Uten hjelpemidler. 1 Rekker. 18 = 2 + 2d 18 2 = 2d. 2) Når følgen er geometrisk, er a a k 18 = 2 k 2. k 2 = 18 2 = 9"

Transkript

1 Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3 Siden tllfølgen består v bre positive ledd er k = 3. k 3 b) ) Aritmetisk følge. i = + (i ) d i = + (i ) 8 = + 8i 8 i 8i ) Geometrisk følge. c) 8i i i = k i = 3 i 3 83 = 78 d) i = k i 39 3 = 3 i 3 i = (i ) ln 3 = ln 9 83 = ln 3 9

2 9 ln 3 9 ln 3 i = 9 ln 3 ln 3 i = 9 + = 0 Leddet 39 3 er ledd nr. 0 i følgen. OPPGAVE ) De ukentlige løpslengdene dnner en ritmetisk følge der = km og differnsen d = km. b) = + ( ) d = km + km = 7 km Nils løper 7 km den. uk. c) = + ( ) d = km + km = 3 km s ( ) ( km 3 km) s = 30 km Nils løper til smmen 30 km på disse ukene. OPPGAVE 3 ) ) Vi undersøker først om rekk er geometrisk ved å regne ut forholdet mellom ledd som følger etter hverndre. = = 3 = = Rekk er geometrisk med kvotient k =. Rekk konvergerer fordi k er et tll mellom og. Summen v rekken er d s = k = = = ) Vi undersøker først om rekk er geometrisk ved å regne ut forholdet mellom ledd som følger etter hverndre. = 3 =

3 3 = = Rekk er geometrisk med kvotient k =. Rekk divergerer fordi k ikke er et tll mellom og. Rekk hr derfor ingen sum. b) Vi kller det årlige beløpet som Synnøve må betle, for x. Summen v lle nåverdiene dnner en uendelig geometrisk rekke med k =,0. Siden k, vil rekk konvergere. Summen v rekk kn d uttrykkes ved x,0 x x s = = = = k,0 0,0,0 Denne summen må være lik lånebeløpet kr. Det gir oss denne likningen: x = ,0 x = 0, = 000 Synnøve må betle 000 kr i rente og vdrg hvert år «i ll evighet». Med hjelpemidler OPPGAVE ) Etter 7 døgn hr kroppen brutt ned mengden v virkestoff i den første tbletten til,8 mg 0,8 7 = 0,8 mg b) Mengden v virkestoff i kroppen etter den tbletten Mette tok for n døgn siden, er,8 mg 0,8 n Mengden v virkestoff i kroppen etter den tbletten Mette tok for n døgn siden, er,8 mg 0,8 n Mengden v virkestoff n døgn etter t hun tok den første tbletten, er s n n n,8 mg 0,8 +,8 mg 0,8 + +,8 mg 0,8 +,8 mg 0,8 Dette er en geometrisk rekke med =,8 mg 0,8 og kvotienten k = 0,8.

4 c) Vi skl finne den mengden virkestoff Mette hr i kroppen rett før hun tr den 7. tbletten. Det skjer seks døgn etter hun tok den første tbletten. s k k 0,8 s,8 mg 0,8 =,3 mg 0,8 Med CAS i GeoGebr kn vi få frm resulttet på ulike måter: Etter en uke hr Mette, mg virkestoff i kroppen. d) Mette hr mest virkestoff i kroppen rett etter t hun hr ttt en ny tblett. Det første leddet i rekk blir d,8 mg. Den uendelig geometriske rekk n n,8 mg,8 mg 0,8 +,8 mg 0,8 + +,8 mg 0,8 +,8 mg 0,8 hr kvotienten k = 0,8. Siden < k <, vil rekk konvergere mot summen s k,8 mg s = mg 0,8 Med CAS i GeoGebr kn vi få frm resulttet på ulike måter. Ettersom den totle virkestoffmengden som Mette etter hvert vil få i kroppen er mindre enn mg, vil denne mengden ikke være helseskdelig. OPPGAVE ) ) Beløpene vokser med vekstfktor,00. Vi summerer beløpene og får , , , ,00 3 Dette er en geometrisk rekke med ledd og kvotient k =,00. Vi bruker CAS i GeoGebr og får: D er summen k s 7 90 k Per hr 7 90 kr på kontoen etter måneder.

5 ) Vi setter inn i sumformelen sn = k n = 000,00 n, 00 I GeoGebr kn vi løse likningen slik: k og løser den likningen vi får. Per må spre i 3 måneder (3 år) for kunne kjøpe bilen. b) Dersom Ellen velger vbetling, er det 3 = 3 beløp som skl betles. En månedlig rente på 0, %, svrer til en månedlig vekstfktor på,00. Summen v nåverdiene utgjør en geometrisk rekke. 0kr,00 0kr +,00 0kr + 3, kr,00,00,00 Vi bruker CAS i GeoGebr og får 0kr ,00 0kr + 3,00 Ettersom summen v nåverdiene, 87,7 kr, er større enn kontntbetlingen 7900 kr, bør Ellen velge kontnt betling. OPPGAVE ) Det første året: Renter v kr er 0, kr = 00 kr Avdrget er 9 kr 00 kr = 3 9 kr Det ndre året: Restlånet er kr 3 9 kr = 089 kr Renter v 090 kr er 0, kr =,30 kr Avdrget er 9 kr kr = 88 kr

6 På nettsidene til Sinus S finner vi regnerket «Annuitetslån», som gir oss svrene på oppgve. b) Restlånet etter to terminer: 089 kr 88 kr = 0 kr Vi kller det nye terminbeløpet for T. D vil nåverdien v terminbeløpene være lik restlånet T T T 0 3,08,08,08 Vi løser denne likningen ved bruk v CAS. Det nye terminbeløpet er 9 89 kr. c) Anne betler i lt: 9 0 kr kr = kr d) Vi kn bruke regnerket «Serielån» fr nettsidene til Sinus S og lese v summen v de fem terminbeløpene.

7 Vi kn også regne ut summen v de fem beløpene slik:. Avdrgene på serielånet er kr 000 kr. Renter ved. termin: 0, kr = 00 kr.. terminbeløp: 000 kr + 00 kr = 00 kr Restlån før termin nr. : kr 000 kr = 000 kr Det femte terminbeløpet er d 000 kr + 80 kr = 7 80 kr Terminbeløpene i et serielån dnner en ritmetisk rekke. Summen v terminbeløpene er d gitt ved: s Anne ville h betlt tilbke i lt kr hvis lånet vr et serielån med 8 % årsrente.

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

YF kapittel 9 Økonomi Løsninger til oppgavene i læreboka

YF kapittel 9 Økonomi Løsninger til oppgavene i læreboka YF kapittel 9 Økonomi Løsninger til oppgavene i læreoka Oppgave 901 a Vekstfaktoren er 100 % + 3,0 % = 103,0 % = 1,030. 5000 1, 030 = 5150 Etter ett år hadde Adrian 5150 kr på kontoen. 5150 1, 030 = 5304,50

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

Kom i gang med Tett på Smartbok! Vi veileder deg steg for steg!

Kom i gang med Tett på Smartbok! Vi veileder deg steg for steg! Kom i gng med Tett på Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke fine funksjoner for god studieteknikk. Du kn mrkere gode nøkkelord og lge egne notter mens du lytter

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Kom i gang med Panorama Smartbok! Vi veileder deg steg for steg!

Kom i gang med Panorama Smartbok! Vi veileder deg steg for steg! Kom i gng med Pnorm Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke fine funksjoner for god studieteknikk. Du kn mrkere gode nøkkelord og lge egne notter mens du lytter

Detaljer

2P kapittel 5 Eksamenstrening

2P kapittel 5 Eksamenstrening P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1 Repetisjon i Mtemtikk, 4. desember 0: Komplekse tll og Derivsjon Komplekse tll. Regn ut og skriv på normlform i 5 + i b 8 i 7 + 5i c 5 + i 6 i. Regn ut og skriv på normlform d 4 i + i e i 5 + 4i eiπ 6

Detaljer

Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk

Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Innhold HVA ER REGULERINGSTEKNIKK... Generell bekrivele v et tyrt ytem... Ekemel: Amunden å ki til Sydolen.... Synd hn kom ldri til ydolen!... 6 EKSEMPEL

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

1P kapittel 8 Eksamenstrening

1P kapittel 8 Eksamenstrening Løsninger til oppgvene i ok 1P kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 Vi ytter ut 7,60 kr med 8 kr og 104 euro med euro. Det gir: 8 kr 4 300 kr. For fire overnttinger

Detaljer

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg!

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg! Kom i gng med Perspektiver Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke funksjoner for god studieteknikk. Du kn blnt nnet mrkere nøkkelord og lge notter mens du lytter

Detaljer

Kvalitetssikring av elektronisk pasientjournal - Skjema 1

Kvalitetssikring av elektronisk pasientjournal - Skjema 1 70778 EPJ Kvlitetssikring Skjem v. Hllvrd Lærum (tlf. 79886) Kvlitetssikring v elektronisk psientjournl - Skjem I dette spørreskjemet ønsker vi å få vite noe om din prktiske ruk v og ditt syn på elektronisk

Detaljer

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007 Msteroppgve i mtemtikkdidktikk Fkultet for relfg Ho/gskolen i Agder - V ren 2007 Integrl og integrsjon Roger Mrkussen Roger Mrkussen Integrl og integrsjon Msteroppgve i mtemtikkdidktikk Høgskolen i Agder

Detaljer

IKT-trapp for Lade skole

IKT-trapp for Lade skole IKT-trpp for Lde skole Vr mot ndre pi nettet som du vil t ndre skl vre mot deg. Vr forsiktig med i gi ut opplysninger om deg selv. Skl du mote noen du hr chftet med p5 nett? T med en voksen eller en venn.

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1 Forkurs i mtemtikk Kompendium v Amir Hshemi, UiB. Notter, eksempler og oppgver med fsit/løsningsforslg Mtemtisk Institutt UiB Innhold Sist oppdtert 07. juni 0 i Forord... Kpittel 0 Test deg selv... Oppgver

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Aveling for ingeniørutnning FAG : FOA192 Vieregåene nlyse og iskret mtemtikk KLASSAR : Mnge DATO : 21. mi 212 TAL PÅ OPPGÅVER 5 TAL PÅ SIDER 2 VEDLEGG Hjelpesetningr HJELPEMIDDEL Csio

Detaljer

Den foreliggende oppfinnelsen gjelder en tank for lagring av kryogenisk fluid, f.eks. kondensert naturgass (LNG).

Den foreliggende oppfinnelsen gjelder en tank for lagring av kryogenisk fluid, f.eks. kondensert naturgass (LNG). (12) Oversettelse v eurpeisk ptentskrift (11) NO/EP 227 B1 (19) NO NORGE (1) nt Cl. F17C 13/00 (06.01) Ptentstyret (21) Oversettelse publisert 14.03.17 (80) Dt fr Den Eurpeiske Ptentmyndighets publisering

Detaljer

Get filmleie. Brukerveiledning

Get filmleie. Brukerveiledning Get filmleie Brukerveiledning Innhold 4 Funksjoner for fjernkontroll 5 Hv er Get filmleie? 6 Hvilke filmer kn jeg leie? 6 Hv skl til for å få tjenesten? 7 Slik kontrollerer du tjenesten 7 Hv koster det

Detaljer

OSLO TINGRETT. Avsagt: Saksnr.: mot. 24.09.2015 i Oslo tingrett, Dommer: Tingrettsdommer. Torild Margrethe Brende. Saken gjelder:

OSLO TINGRETT. Avsagt: Saksnr.: mot. 24.09.2015 i Oslo tingrett, Dommer: Tingrettsdommer. Torild Margrethe Brende. Saken gjelder: OSLO TINGRETT DOM Avsgt: Sksnr.: 24.09.2015 i Oslo tingrett, 14-182338TVt-OTtR/05 Dommer: Tingrettsdommer Torild Mrgrethe Brende Sken gjelder: Gyldigheten v vedtk fr Klgenemnd for industrielle rettigheter.

Detaljer

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s)

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s) Integrl Kokeboken 4 3 4 6 8 log sinπ sinh π 4 + loglog loglog + C cos + sin π s e Γs n n s Γsζs π + sin +cos log + cos i Del I. Brøk................................... Trigonometriske funksjoner.....................

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin?

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin? 2357434042 A. Om din stilling Leger 1 11 Kryss v slik: Ikke slik: Klinisk stilling: Turnuslege Assistentlege Overlege B. Om din erfring med ruk v dtmskin 1 Eier du en dtmskin? J Nei 2 Hvor mnge fingre

Detaljer

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P-Y for elever og privtister Fgkode: MAT1001 Eksmensdto: 15. jnur 2013 Del 1: oppgve 1-5 Del 2: oppgve 6-10 Del 3: oppgve 11-12 I del 3 skl du gjøre oppgvene

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

R1 kapittel 8 Eksamenstrening

R1 kapittel 8 Eksamenstrening Løsninger til oppgvene i ok R kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler Oppgve E Hvis er et nullpunkt for De mulige nullpunktene for P, er konstntleddet 8 delelig med. P er

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

NORSK SCHNAUZER BOUVIER KLUBB S HELSE- OG GEMYTTUNDERSØKELSE 2004

NORSK SCHNAUZER BOUVIER KLUBB S HELSE- OG GEMYTTUNDERSØKELSE 2004 NORSK SCHNAUZER BOUVIER KLUBB S HELSE- OG GEMYTTUNDERSØKELSE 2004 Utført v vlsrådet 2003/2004 INNLEDNING NSBK s Gemytt og Helseundersøkelse ble sendt ut i jnur 2004, med svrfrist i februr 2004. Lister

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f ( ) e b) g ( ) 1 c) h( ) (3 1) e Oppgave (3 poeng) På figuren har vi tegnet grafen til en funksjon f gitt ved 3 f( ) k k, D f f a) Faktoriser

Detaljer

Matematikk Oppgavesamling

Matematikk Oppgavesamling Mtemtikk Oppgvesmling Odd T Heir Gunnr Erstd John Engeseth Ørnulf Borgn Per Inge Pedersen BOKMÅL Mtemtikk T Oppgvesmling er en del v læreverket Mtemtikk T. Verket dekker målene i læreplnen v 00 for Mtemtikk

Detaljer

Spare- og låneberegninger med 10bii Skrevet av Tore Bloch, Kristiansund N. Hjemmeside: www.tore-bloch.priv.no Oppdatert på søndag den 22 februar 2015.

Spare- og låneberegninger med 10bii Skrevet av Tore Bloch, Kristiansund N. Hjemmeside: www.tore-bloch.priv.no Oppdatert på søndag den 22 februar 2015. Spare- og låneberegninger med 10bii Skrevet av Tore Bloch, Kristiansund N. Hjemmeside: www.tore-bloch.priv.no Oppdatert på søndag den 22 februar 2015. Programmet 10BII er en finansiell kalkulator. Med

Detaljer

"Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MY etter R`94"

Matematikk med TI-83 på AF/ØKAD/VKI Eksempler som oppfyller målene i Læreplan for 2MY etter R`94 1 "Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MY etter R`94" Arbeidet bygger på Matematikk med TI-83 for GK og 2MX av samme forfatter. Mål og hovedmomenter. 1

Detaljer

Vurderingsrettleiing Vurderingsveiledning Desember 2007

Vurderingsrettleiing Vurderingsveiledning Desember 2007 Vurderingsrettleiing Vurderingsveiledning Desember 007 Mtemtikk sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Vurderingsveiledning til sentrlt gitt eksmen i Kunnsksløftet

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Kompendium av Amir Hashemi, HiB. Notater, eksempler og oppgaver med fasit/løsningsforslag Institutt for Matematikk og Statistikk, UiT, Høsten 2012

Kompendium av Amir Hashemi, HiB. Notater, eksempler og oppgaver med fasit/løsningsforslag Institutt for Matematikk og Statistikk, UiT, Høsten 2012 Forkurs i mtemtikk til MAT-, ugust Kompendium v Amir Hshemi, HiB. Notter, eksempler og oppgver med fsit/løsningsforslg Institutt for Mtemtikk og Sttistikk, UiT, Høsten Innhold Forord... Kpittel Test deg

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Knøttene: Med barnet i sentrum

Knøttene: Med barnet i sentrum Knttene: Med brnet i sentrum Om oss: Læringsverkstedet Knttene brnehge er en 2-bse brnehge, med 5 lders-delte brnegrupper. Brnehgen er privt og hr c 110 plsser. På Knttene legger vi vekt på: Omsorg/vennskp

Detaljer

Renteregning. Innledning

Renteregning. Innledning Renteregning Innledning Renteregnings-teknikker Sluttverdi og nåverdi av ett enkelt beløp Sluttverdi og nåverdi av flere like og ulike beløp Nåverdi av endelig og uendelig rekke Renter og avdrag på annuitetslån

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Problemløsning eller matematiske idéer i undervisningen?

Problemløsning eller matematiske idéer i undervisningen? Prolemløsning eller mtemtiske idéer i undervisningen? n Lksov Något som oft förekommer i diskussionen om skolns mtemtikundervisning är vvägningen melln prolemlösning och teori. I denn rtikel poängterr

Detaljer

Fagstoff til eksamen. Matematikk S2

Fagstoff til eksamen. Matematikk S2 Matematikk S2 Fagstoff til eksamen Innhold på ndla.no er nå tilgjengelig i PDF- eller epub-format som hjelpemidler til eksamen. Disse filene kan lagres på egen datamaskin og leses i digitalt format, eller

Detaljer

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 3ln( x ) b) g( x) x ln(3 x ) Oppgave ( poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen.

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer

Vurderingsveiledning 2010

Vurderingsveiledning 2010 Vurderingsveiledning 00 Mtemtikk, sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Bokmål Vurderingsveiledning til sentrlt gitt skriftlig eksmen 00 Denne veiledningen

Detaljer

FORSVARETS PERSONELLSERVICE POSTBOKS 6481 ETTERSTAD, 0605 OSLO TLF: 21 07 57 00

FORSVARETS PERSONELLSERVICE POSTBOKS 6481 ETTERSTAD, 0605 OSLO TLF: 21 07 57 00 FORSVARETS PERSONELLSERVICE POSTBOKS 6481 ETTERSTAD, 0605 OSLO TLF: 21 07 57 00 VILKÅR FOR BOLIGLÅN I FORSVARTES PERSONELLSERVICE Gjelder lån med 1. prioritets pant i selveier bolig, fritidsbolig og borettslag.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Lokalt gitt eksamen 2010

Lokalt gitt eksamen 2010 Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 28. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 9 Del 3: oppgve 12 13

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Implementering av miljøinformasjon i en BIM modell Forprosjektrapport

Implementering av miljøinformasjon i en BIM modell Forprosjektrapport Implementering v miljøinformsjon i en BIM modell Forprosjektrpport 02.04.2009 Høgskolen i Østfold H09B12 Chrlotte Dngstorp Ove-Eirik Krogstd Ain Josefine Stene Lrs-Christin Thowsen HØGSKOLEN I ØSTFOLD

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer