Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Størrelse: px
Begynne med side:

Download "Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT"

Transkript

1 Elektrisitetslære TELE002-A 3H HiST-AFT-EDT Øving 3; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er rett; tre av dei er feil. a) Når ei stjernekopla, symmetrisk trefaselast dreg 756 W, vil den same lasta kopla i trekant dra: C: 2268 W ; P Y 3 U 2 Φ Z U 2 Z jf. P Δ 3 U 2 Z b) Kva for ei av desse utsegnene er feil når det gjeld fasekompensering av ei reaktiv last? B: Fasekompensering fører til redusert straum i lasta. Nei, generatorspenninga som er påtrykt lasta er den same i det ukompenserte og det kompenserte tilfellet. (I praksis kan straumen auka noko pga. redusert tap i overføringsnettet.) c) Kva for ei utsegn er feil om ei serieresonanskopling? D: Straumen i spolen er større eller mindre enn i kondensatoren avhengig av om frekvensen ligg under eller over resonansfrekvensen. Nei, kontinuitetsprisippet seier at straumen er den same overalt i ei straumsløyfe som ikkje har forgreiningar. d) Kva for ei utsegn er feil for ein ideell transformator med viklingstalbrøk lik 2:. B: Straumen på sekundærsida vert halvert i høve til primærsida. N p I p N s I s I s I p N p /N s I p 2 e) Eit digitalt multimeter med 4 siffer viser 6,45 V når me måler spenninga over ein komponent. I databladet for multimeteret står det oppgjeve at ved spenningsmåling er usikkerheita: 0,4 % + 3 d, der d er oppløysinga for måleområdet. elativ usikkerheit for denne målinga vert då: C: ±0,58 % (6,45 V 0,4 % + 3 0,0) / 6,45 V

2 Oppgåve Teori i kap. 7.4 Figuren viser eit AC-ekvivalentskjema for ein transistorforsterkar. U er inngangsspenninga (signalet som skal forsterkast) og U 4 er utgangsspenninga (det forsterka signalet). β I I U x 3 y 4 U 4 2 Bruk desse verdiane: U,00 V ;,50 kω ; 2 50,0 kω ; 3,00 kω ; 4 0,0 kω ; β 300 a) Koplinga skal analyserast vha. maskestraummetoden. Finn maskestraumen I x i maska til venstre og I y i maska til høgre. Vink: Det held å setja opp to maskelikningar. Ein kan få med den avhengige kjelda vha. ei supermaske der ein nyttar Kirchhoffs fyrste lov (straumlova) på knutepunktet til høgre for 2. Det vert då ein annan straum i 2 enn i resten av maske y; i I y si referanseretning er den nemnde straumen I y + β I. Maskelikningar: Maske x: I x 3 (I x I y ) U Maske y: 3 (I y I x ) + 2 (I y +β I) + 4 I y 0 Ser at styrestraumen I er lik maskestraumen I x, set inn I I x og ryddar opp: β ] [ I x I y] [ U 0 ] [ Me set inn talverdiar og kjem fram til likningssettet: 2,50 kω,00 [ 4999,00 kω 6,00 kω] [ I x I y] [,00 V 0 ] som har løysinga [ I x I y] [ 0, ma 0, ma ] b) Finn utgangsspenninga U 4 og rekn ut spenningsforsterkninga definert ved A U 4 U Kor stor er fasedifferensen (fasevinkelen) mellom utgangssignalet og inngangssignalet?

3 Med utgangspunkt i maskestraumen vert utgangsspenninga då: U 4 4 I y Ω ( 0, A) 9,899 V Forsterkinga: A U 4 U 9,899V,00V 9,90 Me ser at A ligg nært verdien av 4 / 3 0. Dette er nemleg ein «fingerregel» når ein skal finna ein tilnærma verdi for forsterkinga i ein slik forsterkar. Det at U 4 (og A) er negativ inneber at det er 80 fasedreiing mellom utgangssignalet og inngangssignalet. Då seier ein gjerne at forsterkaren er «inverterande». Kommentar: Dersom me ev. hadde løyst likningssettet med maskestraumlikningane utan å setja inn talverdiar, kunne me ha undersøkt kva for komponentar som påverkar forsterkinga mest. Uttrykket for forsterkinga ville då ha vorte: A 4 β 2 3 ( + 2 )( ) + 3 (β 2 3 ) Dette uttrykket kan forenklast når me veit at 2 og 2 3 (og då sjølvsagt β 2 3 ): A 4 β 2 2 ( ) + β 2 3 β β 3 Dette kan forenklast vidare ved å utnytta at β : A β 4 β A 4 3 0,0 kω,00 kω 0,0 Avviket frå den eksakt utrekna verdien er om lag %, og dette tyder på at den nemnde «fingerregelen» stemmer bra. c) Kontroller resultatet av utrekninga ved hjelp av MULTISIM. U 4 Figuren viser oppkoplinga i MULTISIM. Symbolet for straumstyrd straumkjelde inneheld eit motstandssymbol som har null resistans (verdien 0 Ω), og det påverkar ikkje koplinga. Pass på ikkje å gjera feil når avhengige (styrde) kjelder skal setjast inn i koplinga. Voltmeteret er konfigurert som AC-voltmeter og viser forteikn eller fase.

4 Me ser at verdien på U 4 stemmer med utrekninga i a. Oppgave 2 I L C spole U Figuren viser en spole med resistansen og induktansen L som er koplet i serie med kondensatoren C. Komponentverdier: 0,0 Ω, L 00 mh, C 30,0 µf. Tidsfunksjonen for vekselspenninga er gitt ved: u(t) 49,5 V sin (00π t) a) Hva er effektivverdien (MS) og frekvensen til vekselspenninga? U 49,5 2 35,0 V 2π f t 00 π t f 00π rad/ s 2π 50,0 Hz b) Beregn strømmen i koplinga og spenninga over hver av komponentene, L og C (effektivverdier). Bruk MULTISIM til å kontrollere resultatet. Tegn et fullstendig viserdiagram. Skriv opp tidsfunksjonen for strømmen. X L ω L 2π f L 2π 50,0Hz 00mH 3,4 Ω X C ωc 2π f C 2π 50,0Hz 30,0 µf 06, Ω Z + j( X L X C ) (0,0 j74,7)ω 73,35 Ω 82,37 I U Z 35,0 V 0 73,35 Ω 82,37 0,464 A 82,37 I 0,464 A U I 0,0Ω 0,464 A 82,37 4,64 V 82,37 U 4,64 V U L j X L I 3,4 Ω 90 0,464 A 82,37 4,59 V 82,37 U L 4,6 V j X C I 06,Ω 90 0,464 A 82,37 49,28 V 7,63 49,3 V i(t) 2 I sin(2πf + (I )) 2 0,4645A sin(2π 50,0Hz t + 82,37 πrad 80 ) i(t) 0,657 A sin(00π rad s t +,44 rad) esultat fra MULTISIM:

5 0 U V AC 0MOhm 0 Ω V 35 Vrms 50 Hz 0 2 U V AC 0MOhm L 00mH U A AC e-009ohm U V AC 0MOhm C uF Viserdiagrammet blir da slik: I U L U 82,4 º c) Teori i kap. 20.2, 20.3 og 20.3 Vi endrer frekvensen slik at kretsen blir i serieresonans. egn ut resonansfrekvensen. Finn spenninga over kondensatoren. Beregn resonanskretsens kvalitetsfaktor (Q-verdi) ved denne frekvensen. Sammenlikn størrelsen på Q-verdien med forholdet mellom kondensatorspenninga og påtrykt spenning ( /U). Hvor stor båndbredde har resonanskretsen? Serieresonans får vi når X L X C : ω 0 L ω 0 C ω 2 0 L C ω 2π f 0 0 LC f 0 2π LC f 0 2π L C 2π 00 mh 30 µf I denne situasjonen blir Z og vi får: 9,9 Hz I ( j X C ) U j 2π f 0 C 35 V 0 Ω j 2π 9,9Hz 30 µf j202v 202, V U Ev. kan uttrykket for resonansfrekvensen ω 0 gitt ved komponentverdiene L og C settes inn: I X C U ω 0 C U L C 35 V 0Ω 00 mh 202, V 30µF Q-verdien (kvalitetsfaktoren); forholdet mellom reaktans og resistans ved resonans:

6 L' ' L Q 0 C X ω L 0 ( ω 0 C ) L C 0 Ω 00 mh 30 µf 202, V 35,0 V 5,77 Dette forholdet er altså likt med Q-verdien slik teorien har vist. Båndbredden: B f 0 Q 0 9,89Hz 5,773 5,9 Hz Observasjon: Båndbredden er uavhengig av kapasitansen: B f 0 Q 0 2π L C L C d) [frivillig] Teori i kap. 5.2 og π L 0,0Ω 2π 00mH 5,9 Hz 5,77 Vi gjør om koplinga slik at kondensatoren C nå blir stående i parallell med spolen (seriekoplinga av og L). Tegn skjema. Seriekoplinga av og L kan omformes til en ekvivalent parallellkopling med en og en L i parallell slik at, L og C alle kommer i parallell. Tegn nytt skjema. Finn og L uttrykt ved, L og vinkelfrekvensen ω. Bruk dette til å finne et bokstavuttrykk for resonansfrekvensen ved parallellresonans uttrykt ved, L og C. Finn tallverdien for resonansfrekvensen og sammenlikn med frekvensen du fant i punkt c. Hvor stor blir den totale impedans for parallellkretsen ved resonans (i tallverdi)? U C Ekvivalent parallellnettverk U C For at seriekoplinga av og L skal være ekvivalent med og L i parallell, må vi ha: + j X L + j X L Omformer likninga for separere reell og imaginær del; på høyre side må en multiplisere med komplekskonjugert i teller og nevner: j X L 2 + X j X L 2 L X L Ekvivalent parallellresistans er lik realdelen, og ekvivalent parallellreaktans er lik imaginærdelen: 2 + X L ω 2 L 2 og X L 2 + X L 2 Merk at parallellekvivalenten er frekvensavhengig. Parallellresonans når X L X C : 2 + ω 2 L 2 X L ω L

7 2 + ω 0 2 L 2 ω 0 L ω 0 C ω 2 0 L 2 ω 0 L ω 0 C 2 ω 2 0 LC 2 L 2 ω 0 L C ( L ) 2 f 0 2π L C ( L) 2 f 0 2π 00 mh 30 µf ( 0,0Ω 00 mh ) 2 90,50 Hz esonansfrekvensen ved parallellresonans blir altså noe lavere enn for serieresonans. Siden kretsen er rent ohmsk ved resonans, blir total impedans Z 0 ved resonans dermed lik. Z ω 0 2 L (2π f 0 L) 2 (0,0Ω)2 + (2π 90,50Hz 00mH) 2 0,0Ω Vi kunne først ha funnet et bokstavuttrykk for Z 0 slik i utledninga over kan en se at ω 0 2 L 2 ω 0 L ω 0 C 2 L C 2 som kan settes inn: 333,3 Ω Z ω 2 0 L 2 Det er samme resultat. Oppgave L C 2 L C 333,3 Ω u C u 2 2 9,00 MΩ, 2,00 MΩ, C 30,0 pf Kilden u er en ideell unipolar (bare positiv) firkantspenning (pulstog) med pulsrepitisjonsfrekvens f pr 3,20 khz, amplitudeverdi U p 00 V og pulsbreddeforhold («duty cycle») 50,0 %. a) Teori i kap Tegn firkantspenninga og beregn periodetid og pulsbredde. Tegner først en figur: 00V u T t p t

8 Periodetida er gitt ved: T f pr 3,20 khz 33 µs Med 50 % pulsbreddeforhold blir: f p T 2 56 µs b) Teori i kap og 24.6 Vi kan anta at kondensatoren er fullstendig oppladd og utladd i løpet av en periode *). Ta for deg én periode av firkantspenninga og beregn og skisser forløpet av spenninga u 2 over parallellkoplinga av 2 og C. Forklar hvorfor antakelsen *) er rimelig. Beregn stigetid (til 90 % av stasjonærverdien) og falltid for en puls av u 2. Oppgaven løses enklest ved å finne Thévenin-ekvivalenten til kretsen sett fra klemmene a b. Thévenin-spenning: Thévenin-resistans: U U P ,00 MΩ,00MΩ 9,00MΩ +,00 MΩ 00 V 0,90 MΩ,00 MΩ 9,00MΩ +,00 MΩ 0,0 V Ekvivalentkretsen blir da som vist under. Flankene i pulstoget utgjør en rekke opp- og utladninger av kondensatoren. a C u u 2 Tidskonstanten blir: τ C 0,90 MΩ 30,0 pf 27,0 µs 5τ 5 27,0µs 35 µs Siden 5 τ < t p kan vi regne som tilnærming at kondensatoren lades helt opp eller helt ut i løpet av en halvperiode. Forløpet av u 2 blir da u2 (t) U ( e tτ ) etter hver stigende flanke og u 2 (t) U e t τ etter hver fallende flanke når vi setter t 0 ved starten av hver flanke. Tidsforløpet blir da som vist i figuren under. 0V u 90% b T 0% t t f Siden tidskonstanten er den samme ved opp- og utladning, vil stigetida t r og falltida t f bli like

9 store. Vi betrakter bakflanken for å beregne falltida: t f t 0% t 90% 0, U ' p U ' p e t 0% τ e t 0% τ 0, t 0% τ ln(0,) t 0% τ ln(0,) Tilsvarende blir: 0,9 U p U e t 90% τ t 90% τ ln(0,9) t f t 0% t 90% ( τ ln(0,)) ( τ ln(0,9)) τ ln ( 0,9 0, ) Stigetida er den same som falltida: t r t f 59,3 µs c) Teori i kap ,0 µs ln(9) 59,3 µs Fra b ser vi at flankene på spenninga u 2 er deformert i forhold til den påtrykte spenninga u. Vi ønsker å kompensere for dette ved å kople en kondensator C x i parallell med. Beregn verdien av denne kondensatoren (3,33 pf). Hvordan vil spenninga u 2 se ut (tegn skisse) dersom vi bruker en for stor verdi på C x? Dette er en teknikk som benyttes i målesonder til oscilloskop. I utgangspunktet benyttes sonden til å redusere innvirkninga oscilloskopet har på måleobjektet ved at det belastes med en 0 ganger høyere motstand. Med bare seriemotstanden vil vi på grunn av inngangskapasitansen C på oscilloskopet få en kraftig lavpassfiltereffekt og følgelig dårlig gjengivelse av raske forløp. En C x i parallell med kompenserer for dette. C x er variabel, og den er korrekt innstilt dersom oscilloskopet gjengir en firkantspenning korrekt. Hvorfor? Den nye situasjonen er vist i figuren under. C x C u u 2 2 Dersom vi skal unngå deformasjon av flankene til u 2, må spenningsdelinga i en krets med bare og 2 til stede være den samme som i en krets med bare C x og C til stede, slik at begge parallellkoplingene får den samme fasevinkelen til impedansen. Dermed får vi: 2 u + 2 X C u X Cx +X C X C X Cx +X C X C x +X C X C 2 C x X C x X C ωc x ωc 30,0 pf,00mq 9,00 MΩ C C x C x C 2 3,33 pf Dersom C x velges større enn den korrekte verdi, vil vi få såkalt oversving/undersving på

10 henholdsvis forflanke/bakflanke. Dette skyldes at spenningsdelinga mellom kondensatorene blir større enn spenningsdelinga mellom motstandene. 0V u d) Bruk MULTISIM (med oscilloskop som måleinstrument) til å kontrollere resultatene i b og c. Undersøk virkninga både av for stor og for liten C x. Stemmer det med det du tenkte på forhånd? t Det er mulig å måle stige- og fall-tider med oscilloskopet, med det er ikke vist her.

11

12 Sluttkommentar: Denne oppgaven er et eksempel på hvordan en målesonde er bygd opp. Målesonden skal dempe signalet 0 ganger, men uten å deformere det. 2 og C representerer inngangsimpedansen til instrumentet som benytter sonden (f.eks. et oscilloskop). I selve sonden sitter en justerbar kondensator i parallell med resistansen ( ). Sondekondensatoren er riktig justert dersom den gjengir en firkantspenning korrekt.

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 10; godkjenning øvingsdag veke 9 Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 9; godkjenning øvingsdag veke 7 Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 0; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. erre eitt av svaralternativa er rett;

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 12; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE002-A 3H HiST-AFT-EDT Øving 8 (ny utgåve); løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som vil utgjera 40 % av eksamen. Berre eitt av svaralternativa

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 6; løysing Oppgåve 1 Ein ideell spole med induktans L = 100 mh vert påtrykt ein tidsvarierande straum : 2 i[a] 1 2 3 4 5 6 7 t[ms] -2 a) Rekn ut spenninga

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE00- H HiST-FT-EDT Øving 9; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er rett;

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE00-A 3H HiST-AFT-EDT Øving ; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er rett;

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 2; løysing Oppgave 1 Oppgaver fra læreboka: a) Kapittel 5 Oppg. 3 (fargekoder for motstander finner du på side 78), oppg. 12 og *41 (mye feil i fasit

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0

Detaljer

Tidsbase og triggesystem. Figur 1 - Blokkskjema for oscilloskop

Tidsbase og triggesystem. Figur 1 - Blokkskjema for oscilloskop ABORATORIEØVING 7 REAKTIV EFFEKT, REAKTANS OG FASEKOMPENSERING INTRODKSJON TI ABØVINGEN Begrepet vekselstrøm er en felles betegnelse for strømmer og spenninger med periodisk veksling mellom positive og

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE-A 3H HiST-AFT-EDT Øving 7; løysing Oppgave Kretsen viser en reléspole med induktans L = mh. Total resistans i kretsen er R = Ω. For å unngå at det dannes gnister når bryteren åpnes,

Detaljer

En del utregninger/betraktninger fra lab 8:

En del utregninger/betraktninger fra lab 8: En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden

Detaljer

Løsning eks Oppgave 1

Løsning eks Oppgave 1 Løsning eks.2011 Oppgave 1 a) 3) å minske forvrengningen b) 2) 93 db c) 3) 20 d) 2) 100 e) 2) høy Q-verdi f) 2) 0,02 ms g) 1) 75 kω h) 4) redusere størrelsen på R1 i) 1) 19 ma j) 2) minsker inngangs- og

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

Av denne ligningen ser vi at det bare er spenning over spolen når strømmen i spolen endrer seg.

Av denne ligningen ser vi at det bare er spenning over spolen når strømmen i spolen endrer seg. ABORATORIEØVING 5 SPOE OG KONDENSATOR INTRODUKSJON TI ABØVINGEN Kondensatorer og spoler kaller vi med en fellesbetegnelse for reaktive komponenter. I Dsammenheng kan disse komponentene ikke beskrives ut

Detaljer

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: 3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE2-A 3H HiST-AFT-EDT Øving ; løysing Oppgave En ladning på 65 C passerer gjennom en leder i løpet av 5, s. Hvor stor blir strømmen? Strømmen er gitt ved dermed blir Q t dq. Om vi forutsetter

Detaljer

FYS1210 Løsningsforslag Eksamen V2018

FYS1210 Løsningsforslag Eksamen V2018 FYS1210 Løsningsforslag Eksamen V2018 Morgan Kjølerbakken Oppgave 1 Kondensatorer og filtre (totalt 5 poeng) 1 a. Beskrivelse av hvordan kondensatoren lades opp er gitt av differensial likningen V = 1

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider

Detaljer

Kondensator. Symbol. Lindem 22. jan. 2012

Kondensator. Symbol. Lindem 22. jan. 2012 UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 3k3 )

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 3k3 ) Forslag til løsning på eksamensoppgavene i FYS1210 våren 2011 Oppgave 1 Figure 1 viser en enkel transistorforsterker med en NPN-transistor BC546A. Transistoren har en oppgitt strømforsterkning β = 200.

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt Kondensator - apacitor Lindem jan.. 008 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi

Detaljer

LABORATORIEØVING 8 3-FASE OG TRANSFORMATOR INTRODUKSJON TIL LABØVINGEN

LABORATORIEØVING 8 3-FASE OG TRANSFORMATOR INTRODUKSJON TIL LABØVINGEN LABORATORIEØVING 8 3-FASE OG TRANSFORMATOR INTRODKSJON TIL LABØVINGEN Begrepet vekselstrøm er en felles betegnelse for strømmer og spenninger med periodisk veksling mellom positive og negative halvperioder.

Detaljer

g m = I C / V T = 60 ms r π = β / g m = 3k3

g m = I C / V T = 60 ms r π = β / g m = 3k3 Forslag til løsning eksamen FYS20 vår 20 Oppgave Figure viser en enkel transistorforsterker med en NPN-transistor BC546A. Transistoren har en oppgitt strømforsterkning β = 200. Kondensatoren C har verdien

Detaljer

7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER

7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER 78,977 7.3 ETAN - POE - KONDENATO KOPET KOMBNAJONE 7.3 ETAN - POE - KONDENATO KOPET T VEKETØM KOMBNAJONE EEKOPNG AV ETAN - POE - KONDENATO Tre komponenter er koplet i serie: ren resistans, spole med resistans-

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TEE100-13H HiST-FT-EDT Øving 3; løysing Oppgave 1 Figuren under viser et likestrømsnettverk med resistanser og ideelle spenningskilder. Her er: 4,50 Ω ; 3,75 Ω ; 3 5,00 Ω ; 4 6,00 Ω ;

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si

Detaljer

og P (P) 60 = V 2 R 60

og P (P) 60 = V 2 R 60 Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne

Detaljer

Eksamen i Elektronikk 24. Mai Løsningsforslag Knut Harald Nygaard

Eksamen i Elektronikk 24. Mai Løsningsforslag Knut Harald Nygaard Eksamen i Elektronikk 24. Mai 2017 Løsningsforslag Knut Harald Nygaard Oppgave 1 Operasjonsforsterkeren i kretsløpet i figuren nedenfor kan regnes som ideell. v inn R C v ut a) Overføringsfunksjonen er

Detaljer

Forslag til løsning på Eksamen FYS1210 våren 2008

Forslag til løsning på Eksamen FYS1210 våren 2008 Oppgave 1 Forslag til løsning på Eksamen FYS1210 våren 2008 1a) Hvor stor er strømmen gjennom? 12 ma 1b) Hvor stor er strømmen gjennom? 6 ma 1c) Hva er spenningen i punktene AA og BB målt i forhold til

Detaljer

Løsningsforslag eksamen inf 1410 våren 2009

Løsningsforslag eksamen inf 1410 våren 2009 Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave 18. mars 2013 (Lindem) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING AVVIKSPENNING OG HVILESTRØM STRØM-TIL-SPENNING

Detaljer

Forslag til løsning på eksamen FYS1210 våren 2010

Forslag til løsning på eksamen FYS1210 våren 2010 Forslag til løsning på eksamen FYS1210 våren 2010 Oppgave 1 n seriekopling av solceller forsyner ubest med elektrisk energi. Ubelastet måler vi en spenning på 5 volt over solcellene (Vi måler mellom og

Detaljer

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006 Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på

Detaljer

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 2k5 )

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 2k5 ) Forslag til løsning på eksamensoppgavene i FYS0 vår 0 8.6 Oppgave Figure viser en enkel transistorforsterker med en NPNtransistor N Transistoren har en oppgitt strømforsterkning β = 50. Kondensatoren C

Detaljer

Løsningsforslag til eksamen FY108 høsten 2003

Løsningsforslag til eksamen FY108 høsten 2003 Løsningsforslag til eksamen FY08 høsten 003 Figur viser et båndpassfilter. Motstandene R og R har verdi kω. Kondensatorene C = µf og C = 0,nF. Signalkilden leverer et AC-signal med spissverdi (peakvalue)

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Ny/utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 2. august 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg

Detaljer

Forslag til løsning på eksamen i FY Forslag til løsning på eksamen i F -IN 204 og FY108 våren 2003.

Forslag til løsning på eksamen i FY Forslag til løsning på eksamen i F -IN 204 og FY108 våren 2003. Forslag til løsning på eksamen i FY-IN 20 og FY108 våren 200. Oppgave 1 a) 20 db forsterkning er det samme som en forsterkning på 10ganger (A=Vut/Vinn = 10). Kretsen skal ha en inngangsmotstand på 20kΩ

Detaljer

FYS ØVELSE 3 KONDENSATOREN OG RC-FILTRE

FYS ØVELSE 3 KONDENSATOREN OG RC-FILTRE FYS 2150. ØELSE 3 KONDENSATOREN OG RC-FILTRE Fysisk institutt, UiO Mål. Etter å ha gått gjennom denne øvelsen, skal du kjenne til hvordan kondensatorer oppfører seg ved oppladning og utladning, og hvordan

Detaljer

Forelesning nr.14 INF 1410

Forelesning nr.14 INF 1410 Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet

Detaljer

Ny/Utsatt eksamen i Elektronikk 2. August Løsningsforslag Knut Harald Nygaard

Ny/Utsatt eksamen i Elektronikk 2. August Løsningsforslag Knut Harald Nygaard Ny/Utsatt eksamen i Elektronikk 2. August 2017 Løsningsforslag Knut Harald Nygaard Oppgave 1 Operasjonsforsterkeren i kretsløpet i figuren nedenfor kan regnes som ideell. v inn v ut C a) Overføringsfunksjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen

Detaljer

Elektriske kretser. Innledning

Elektriske kretser. Innledning Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet

Detaljer

TRANSISTORER Transistor forsterker

TRANSISTORER Transistor forsterker Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORAORIEØELSE NR 4 Omhandler: RANSISORER ransistor forsterker 27. februar 2012. Lindem Utført dato: Utført av: Navn: email:

Detaljer

En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme.

En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. 7. EFFEK YER OG ARBED VEKSELSRØM 1 7. EFFEK YER OG ARBED VEKSELSRØM AKV EFFEK OG ARBED EN DEELL RESSANS En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. Det er bare

Detaljer

Laboratorieoppgave 3: Motstandsnettverk og innføring i Oscilloskop

Laboratorieoppgave 3: Motstandsnettverk og innføring i Oscilloskop NTNU i Gjøvik Elektro Laboratorieoppgave 3: Motstandsnettverk og innføring i Oscilloskop Denne oppgaven består av to deler. Del 1 omhandler motstandsnettverk for digital til analog omsetning. Del 2 omhandler

Detaljer

Fag: Elektroteknikk Løsningsforslag til øving 4

Fag: Elektroteknikk Løsningsforslag til øving 4 Bergen tekniske fagskole Finn Haugen (finn@techteach.no) 12.1.06 Fag: Elektroteknikk Løsningsforslag til øving 4 Oppgave 5.1.1 Figur1viserkretsen.Strømstyrkener,ihht.Ohmslov, ndre resistans R i 0,25ohm

Detaljer

U L U I 9.1 RESONANS 9.1 RESONANS SERIERESONANS. Figuren nedenfor viser en krets med ideelle komponenter. Figur 9.1.1

U L U I 9.1 RESONANS 9.1 RESONANS SERIERESONANS. Figuren nedenfor viser en krets med ideelle komponenter. Figur 9.1.1 9. ESONANS 9. ESONANS SEEESONANS Figuren nedenor viser en krets med ideelle komponenter Figur 9.. Spole X X Formelen or impedansen til igur 9.. blir: jx jx 9.. Figur 9.. viser et vektordiagram av en ideell

Detaljer

Prøveeksamen 1. Elektronikk 8.feb. 2010. Løsningsforslag

Prøveeksamen 1. Elektronikk 8.feb. 2010. Løsningsforslag Prøveeksamen 1 Elektronikk 8.feb. 2010 Løsningsforslag OPPGAVE 1 a) I koplingen til venstre ovenfor er u I et sinusformet signal med moderat frekvens og effektivverdi på 6,3V. Kretsen er en negativ toppverdikrets,

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Kontaktperson(adm.)(fylles ut ved behov kun ved

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive

Detaljer

LAB 7: Operasjonsforsterkere

LAB 7: Operasjonsforsterkere LAB 7: Operasjonsforsterkere I denne oppgaven er målet at dere skal bli kjent med praktisk bruk av operasjonsforsterkere. Dette gjøres gjennom oppgaver knyttet til operasjonsforsterkeren LM358. Dere skal

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

FYS ØVELSE 3 KONDENSATOREN OG RC-FILTRE

FYS ØVELSE 3 KONDENSATOREN OG RC-FILTRE FYS 2150. ØELSE 3 KONDENSATOREN OG RC-FILTRE Fysisk institutt, UiO Mål. Etter å ha gått gjennom denne øvelsen, skal du kjenne til hvordan kondensatorer oppfører seg ved oppladning og utladning, og hvordan

Detaljer

Innhold Oppgaver om AC analyse

Innhold Oppgaver om AC analyse Innhold Oppgaver om AC analyse 30 a) Finn krets og bodeplot vedhjelp av målt impulsrespons.... 30 b) Finn krets og bodeplot vedhjelp av målt respons.... 30 Gitt Bodeplot, Del opp og finn systemfunksjon...

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave, desember 2014 (T. Lindem, K.Ø. Spildrejorde, M. Elvegård) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING

Detaljer

Laboratorieøving 1 i TFE Kapasitans

Laboratorieøving 1 i TFE Kapasitans Laboratorieøving i TFE420 - Kapasitans 20. februar 207 Sammendrag Vi skal benytte en parallelplatekondensator med justerbart gap til å studere kapasitans. Oppgavene i forarbeidet beskrevet nedenfor må

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Ny og utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 1. august 01 Tid: 0900-100 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side)

Detaljer

Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L

Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle

Detaljer

Onsdag isolator => I=0

Onsdag isolator => I=0 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de

Detaljer

= 10 log{ } = 23 db. Lydtrykket avtar prop. med kvadratet av avstanden, dvs. endring ved øking fra 1 m til 16 m

= 10 log{ } = 23 db. Lydtrykket avtar prop. med kvadratet av avstanden, dvs. endring ved øking fra 1 m til 16 m Løsning eks.2012 Oppgave 1 a) 3) 28 V rms b) 2) 2V c) 2) 95 db. Beregning av SPL i 16 m avstand ved P o = 200 W når 1 W gir 96 db i 1 m avstand: Økning i db SPL når tilført effekt til høyttaleren økes

Detaljer

Antall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET

Antall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET Høgskoleni Østfold 1 EKSAMENSOPPGAVE. Kontinuasjonseksamen Fag: IRE10513Elektriskekretser Lærere: Arne Johan Østenby, Even Arntsen Grupper: El E og ElEy Dato: 2015-12-17 Tid: 9-13 Antall oppgavesider:t4

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Elektronikk Målform: Bokmål Dato: 24. mai 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side) Antall

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Forelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer

Forelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer Forelesning nr.4 IN 1080 Mekatronikk Vekselstrøm Kondensatorer Dagens temaer Mer om Thévenins og Nortons teoremer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 9. April 04 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

Lab 7 Operasjonsforsterkere

Lab 7 Operasjonsforsterkere Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 7 Operasjonsforsterkere Sindre Rannem Bilden 13. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Forsterker med tilbakekobling I en operasjonsforsterker

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 0.1.009 Varighet/eksamenstid: Emnekode: 5 timer EDT10T Emnenavn: Elektronikk 1 Klasse(r): EL Studiepoeng: 7,5 Faglærer(e): ngrid

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:

Detaljer

Forslag til løsning på eksamen FYS1210 våren Oppgave 1

Forslag til løsning på eksamen FYS1210 våren Oppgave 1 Forslag til løsning på eksamen FYS1210 våren 201 Oppgave 1 Nettverksanalyse. Legg spesielt merke til diodenes plassering. Figur 1 viser et nettverk bestående av en NPN silisium transistor Q1 ( β = 200

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 Eksamensdag : 2 september 1998 (utsatt grunnet streik V-98) Tid for eksamen : l.0900-1500 Oppgavesettet er på

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE B. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER Maris Tali(maristal) maristal@student.matnat. uio.no Eino Juhani Oltedal(einojo)

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og

Detaljer

LØSNINGSFORSLAG KRETSDEL

LØSNINGSFORSLAG KRETSDEL NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

FYS 2150. ØVELSE 3 KONDENSATOREN OG RC-FILTRE

FYS 2150. ØVELSE 3 KONDENSATOREN OG RC-FILTRE FYS 2150. ØELSE 3 KONDENSATOREN OG RC-FILTRE Fysisk institutt, UiO Mål. Etter å ha gått gjennom denne øvelsen, skal du kjenne til hvordan kondensatorer oppfører seg ved oppladning og utladning, og hvordan

Detaljer

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Tidsrespons til reaktive kretser RC-integrator/differensiator-respons

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel

Detaljer

ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004

ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004 ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004 Vi skal i denne oppgaven forsøke å simulere et enkelt forsterkertrinn med bipolar transistor. Vi har imidlertid ikke modell

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 13.12.2011 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5

Detaljer

INF1411 Obligatorisk oppgave nr. 2

INF1411 Obligatorisk oppgave nr. 2 INF1411 Obligatorisk oppgave nr. 2 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Gruppenummer: Informasjon og orientering Alle obligatoriske oppgaver ved

Detaljer

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87

Detaljer

Løsningsforslag Elektronikk 1 (LO342E) høst 2006 eksamen 1. desember, 3timer

Løsningsforslag Elektronikk 1 (LO342E) høst 2006 eksamen 1. desember, 3timer Løsningsforslag Elektronikk 1 (LO342E) høst 2006 eksamen 1. desember, 3timer (Bare kalkulator og tabell tillatt.) Oppgave 1 Vi regner med n = 1,3 i EbersMoll likninga, U BEQ = 0,7V, og strømforsterkning

Detaljer

Løsningsforslag til øving 5

Løsningsforslag til øving 5 Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +

Detaljer

Motstand, kondensator og spole

Motstand, kondensator og spole Oppgave 3 Lab i TFY4108 Motstand, kondensator og spole Institutt for fysikk, NTNU Side 2 av 15 1. Innledning Motstander, kondensatorer og spoler er de grunnleggende elementene i elektriske kretser. Med

Detaljer