Mulige sammenhenger for plassering på samfunnsstigen

Størrelse: px
Begynne med side:

Download "Mulige sammenhenger for plassering på samfunnsstigen"

Transkript

1 Mulige sammenhenger for plassering på samfunnsstigen - blokkvis multippel regresjonsanalyse - Utarbeidet av Ronny Kleiven Antall ord (ekskludert forside og avsnitt 7) 2163

2 1. SAMMENDRAG Oppgaven starter med en kort innledning. Videre presenteres fem begrunnede hypoteser i kapittel 3 teori; disse danner grunnlaget for analysen. I kapittel 4 metode og data; presiseres analyse metode, teori rundt valgte analyser, de valgte signifikansnivå og omkodinger. I kapittel 5 resultater; presenteres tre analyse- produkter i tabellform - som kort kommenteres, diskuteres og gjøres rede for. Kapittel 6 konklusjon og diskusjon; er en sammenfatning av analysene i kapittel 5 med et spørrende perspektiv - grunnlag for videre diskusjon. På slutten av kapittel 6 presenteres to variabler som kan bidra til en bedre forklaringskraft i modell to. Kapittel 7 litteratur og kildehenvisningene; er endel av grunnlaget og bidraget for utarbeidelsen av denne oppgaven. 2. INNLEDNING I denne oppgaven presenterer jeg mulige perspektiver for sammenhenger omkring 'plassering på samfunnsstigen'. Grunnlaget for vurderingene er i hovedsak korrelasjons og regresjons- analyser, men også deskriptiv statistikk. Jeg forsøker å forholde meg på individnivået i denne oppgaven derfor har jeg valgt 'egen brutto inntekt' fremfor 'husstandens brutto inntekt'. Datagrunnlaget er hentet fra 'Undersøkelsen om fritid og sport, 2007'. Denne oppgaven er ikke utfyllende omkring plassering på samfunnsstigen, men bør gi leseren et grunnlag for videre analyser rundt dette temaet. 3. TEORI 3.1 I det følgende vil jeg formulere fem hypoteser omkring mulige sammenhenger mellom variablene på samfunnsstigen se avsnitt 4.2 for variabler og omkodinger. Jeg velger hypotesene i 3.2, fordi det virker logisk at det er en grad av styrke og retning i sammenhengene. Videre er det av interesse hvorvidt det er en signifikant sammenheng i økning eller nedgang mellom uavhengig og avhengig variabel på 1 individnivå. 3.2 I. Hypotese - det er en påstand om at økt egen brutto inntekt bør bety at man plasserer seg høyere på samfunnsstigen? II. Hypotese - det er en påstand om at politisk plassering mot høyre bør bety at man plasserer seg høyere på samfunnsstigen? 1 (grunnlaget for egen brutto inntekt fremfor husstandens brutto inntekt).

3 III. Hypotese - det er en påstand om at dårligere helse bør bety at man plasserer seg lavere på samfunnsstigen? IV. Hypotese - det er en påstand om at høyere utdanning bør bety at man plasserer seg høyere på samfunnsstigen? V. Hypotese - det er en påstand om at de som oppgir gift/separert/skilt bør bety at man plasserer seg høyere på samfunnsstigen? 4. METODE OG DATA 4.1 Regresjon: metode til å bestemme formen på en kurve som beskriver dataenes form i spredningsdiagrammet 2. Ved en korrelasjons- og blokkvis multippel regresjonsanalyse ønsker man seg kunnskap om styrken og retningen mellom de uavhengige variablene og den avhengige variabelen. Avhengig av signifikansnivået som forøvrig er 0,05 i hele denne analysen, vil man avdekke hvorvidt man beholder eller forkaster hypotesene. Dersom P - verdien er lavere en signifikansnivået; beholder man hypotesene i 3.1. Korrelasjonsanalyse tar sikte på å finne ett enkelt statistisk mål som kan karakterisere sammenhengen mellom to variabler. Dette målet, som kalles korrelasjonskoeffesient, er et tall som vanligvis varierer mellom (-1 og +1). Korrelasjonskoeffesientens tallverdi er et uttrykk for sammenhengens styrke. Hvis koeffesienten er 0, er det ingen sammenheng mellom de to variablene. Jo sterkere sammenhengen er, desto mer vil koeffesienten nærme seg -1 eller +1. Fortegnet viser retningen på sammenhengen, om den er negativ eller positiv 3. Jeg benytter Pearsons R - (kan bare brukes når begge variablene er på intervallnivå, dikotome variabler kan likevel brukes 4 ). Den ustandardiserte regresjonskoeffisienten viser gjennomsnittlig endring i Y (avhengig variabel) når verdien til den uavhengig variabelen X; som står foran koeffesienten, øker med én enhet. 4.2 Sivilstatus er omkodet til to kategorier (7 gift/separert/skilt; 8 enke/ugift/registrert partner). Verdiene for omkoding sivilstatus har jeg valgt fordi jeg ville kategorisere de som er på 'på vei ut av 2 (Arne Krokan; Forstå statistikk; kompendium; 1998; s. 87) 3 (Sigmund Grønmo; Samfunnsvitenskapelige Metoder; 2004; s. 305) 4 (Arne Krokan; Forstå statistikk; kompendium; 1998; s. 86)

4 giftemål' mot de 'andre'. De øvrige uavhengige variablene har opprinnelige verdier: Egen brutto inntekt (oppgitt i 1000 kr pr. år) Plassering på samfunnsstigen (1 = topp til 10 = bunn) Høyeste utdanning 1 (1 = grunnskole til 7 = høyskole/universitet; ubesvart er tatt med) Helse (1 = utmerket; 2 = svært god; 3 = god; 4 = grei; 5 = dårlig; vet ikke er tatt med) Politisk plassering (1 = helt til venstre til 10 = helt til høyre) 5. RESULTATER 5.1 Statistisk skildring av ni variabler hvorav seks er fokus i denne analysen Variabel (*)Målenivå Sentraltendens Spredning Enheter **V201 plassering samfunnsstigen Metrisk 4,53 1, /33 **V207 sivilstatus Metrisk /17 **V197 høyeste utdanning 1 Metrisk 3,83 2, /9 **V185 egen brutto inntekt Metrisk /125 V186 husstand inntekt Metrisk /129 V053 interesse politikk Metrisk 2, /5 V59 lykkelig/ulykkelig Metrisk 1, /5 **V060 helse Metrisk 2, /1 **V202 politisk plassering Metrisk 5, /53 Kilde: ISSP Utval: Noreg.(tallene i parantes er variablene etter omkoding) (*) - I korrelasjons og regresjonsanalysen er alle målenivåer definert metrisk. Jeg kommenterer kort de variablene som er tatt med i denne analysen (** i tabell 5.1). De øvrige variablene er alternativer som ikke er tatt med, men som kan være interessante å studere i forhold til en utvidet analyse senere. Plassering på samfunnsstigen har gjennomsnitt rundt middels, spredning målt ved standardavviket +/- 1,58 og 33 enheter som er falt bort. Sivilstatus har gjennomsnitt i kategorien; nærmere gift/separert/skilt enn enke/ugift/registrert partner, spredning målt ved standardavviket +/- 0,47 og 17 enheter som er falt bort. Høyeste utdanning har gjennomsnitt nært høyskole/universitet ett års varighet, spredning målt ved standardavviket +/- 2,12 og 9 enheter som

5 er falt bort. Egen brutto inntekt har gjennomsnitt pr.år, spredning målt ved standardavviket på +/- 960 og 125 enheter som er falt bort. Helse har gjennomsnitt god til svært god, spredning målt ved standardavviket +/- 1,10 og 1 enhet som er falt bort. Politisk plassering har gjennomsnitt litt nærmere høyre enn venstre - rimelig sentrert på skalaen fra 1-10, spredning målt ved standardavviket på +/- 2,00 og 53 enheter som er falt bort. 5.2 Korrelasjon Tabell 2: Korrelasjon mellom variablene Samfunnsstigen Samfunnsstigen 1 [1098] Høyeste [-.257]* utdanning [.000] [1093] Politisk [-.120]* plassering [.000] [1065] Helse [.282]* [.000] [1097] Sivilstatus [.072]* [.019] [1082] Egen brutto [-.134]* inntekt [.000] [991] Kolinearitet kriterier = (-.5;+.5) *Signifikansnivå = 0,05 Kilde: ISSP Utval: Noreg. Høyeste utdanning 1 Politisk [1122] plassering [-.071]* 1 Helse [0.021] [1078] [1074] [-.249]* [-.073]* 1 Sivilstatus [.000] [0.016] [1130] [1121] [1077] [.035]* [-.092]* [-.036]* 1 Egen brutto [0.250] [.003] [.237] [1114] inntekt [1105] [1062] [1113] [.038]* [.043]* [-.099]* [-.054]* 1 [0.233] [.183] [.002] [.085] [1006] [1005] [977] [1005] [1000] Høyeste utdanning mot samfunnsstigen har negativ signifikant korrelasjon (-.257) direkte sammenheng med hypotese 4, politisk plassering har negativ signifikant korrelasjon (-.120) direkte sammenheng med hypotese 2, helse har positiv signifikant korrelasjon (.282) direkte sammenheng med hypotese 3, sivilstatus har positiv signifikant korrelasjon (.072) indirekte sammenheng med hypotese 5, egen brutto inntekt har negativ signifikant korrelasjon -.134)

6 direkte sammenheng med hypotese 1. Kolinearitet mellom variablene er oppfylt, fordi alle variablene ligger innenfor området (-.5;+.5). 5.3 To blokkers multippel regresjonsanalyse Tabell 3: Regresjonskoeffesienter og p - verdier Modell 1 Modell 2 Variabler Koeffisienter P-verdi (sig.) Koeffisienter P-verdi (sig.) (B ustand) (B ustand) Høyeste utdanning [-.152]* 0,00 [-.153]* 0,00 Politisk plassering [-.074]* 0,001 [-.065]* 0,004 Helse [.301]* 0,00 [.292]* 0,00 Sivilstatus [.236]* 0,015 Egen brutto inntekt [.000]* 0,001 Justert forklart varians *Sig.nivå = 0,05, N = [961]. Avhengig variabel: Egenplassering på «samfunnsstigen». Kilde: ISSP Utval: Noreg. Justert forklart varians i modell 1 er.120 som sier oss at de avhengige variablene forklarer oss 12,0 % av modellen. I modell 2 er forklart varians.135, og dermed har forklaringskraften - gitt ved økt antall avhengige variabler; styrket seg noe fra modell 1. Hypotese en det er en antagelse i befolkningen om at økt egen brutto inntekt bør bety at man plasserer seg høyere på samfunnsstigen? Egen brutto inntekt har signifikansnivå 0,05 og p-verdi 0,001 dermed er p-verdien lavere enn signifikansnivået; vi beholder hypotese en og går dermed utfra at hypotesen holder, men (B ustand:.000) sier at det ikke er noen styrke og retning - upåvirket. Hypotese to det er en antagelse i befolkningen om at politisk plassering mot høyre bør bety at man plasserer seg høyere på samfunnsstigen? Politisk plassering har signifikansnivå 0,05 og p-verdi 0,001 i modell 1 dermed er p-verdien lavere enn signifikansnivået; vi beholder hypotese to og går utfra at jo lengre man plasserer seg mot høyre, dess høyere plasserer man seg på samfunnsstigen styrke og retning (B ustand: -.074). I modell 2 med flere variabler ser man imidlertid at p-verdien øker margianlt til 0,004 mot signifikansnivået på 0,05. Men hypotese to er fortsatt gyldig styrke og retning (B ustand: -.065)

7 Hypotese tre det er en antagelse i befolkningen om at dårligere helse bør bety at man plasserer seg lavere på samfunnsstigen? Helse har signifikansnivå 0,05 i modell 1 og 2, og p-verdi 0,00 i modell 1 og 2 dermed er p-verdien klart lavere enn signifikansnivået; vi beholder hypotese tre og går dermed utfra at det er en sammenheng mellom dårligere helse og at man plasserer seg lavere på samfunnsstigen styrke og retning (B ustand: modell 1:.301 og modell 2:.292) Hypotese fire det er en antagelse i befolkningen om at høyere utdanning bør bety at man plasserer seg høyere på samfunnsstigen? Høyeste utdanning har signifikansnivå 0,05 og p-verdi 0,00 i modell 1 og 2 dermed er p-verdien lavere enn signifikansnivået; vi beholder hypotese fire og går dermed utfra at det er en sammenheng mellom økt utdanning og at man plasserer seg høyere på samfunnsstigen styrke og retning (B ustand: modell 1; og modell 2; -.153) Hypotese fem det er en antagelse i befolkningen om at de som oppgir sivilstatus 'gift/separert/skilt' bør bety at man plasserer seg høyere på samfunnsstigen? Sivilstatus har signifikansnivå 0,05 og p-verdi 0,015 i modell 2 dermed er p-verdien lavere enn signifikansnivået; vi beholder hypotese fem og går dermed utfra at det er en sammenheng mellom de som plasserer seg i kategorien 'gift/separert/skilt', også plasserer seg høyere på samfunnsstigen styrke og retning (B ustand:.236). 6. OPPSUMMERING OG DISKUSJON 6.1 Hypotese en holder men det er ingen sammenheng mellom økt egen brutto inntekt og at man plasserer seg høyere på samfunnsstigen. I forhold til tabell 5.2 er det interessant å observere at resultatet av korrelasjonen sier at det er en signifikant negativ korrelasjon, men regresjonen sier at det ikke er noen styrke og retning. Dette resultatet var ikke som forventet kan noe av forklaringen være stor spredning i forhold til sentraltendens og frafall enheter i tabell 5.1? I hypotese to er det en sammenheng mellom politisk plassering mot høyre og plasserer seg høyere på samfunnsstigen i modell 1 og 2. I forhold til tabell 5.2 er det en negativ signifikant korrelasjon mellom disse to variablene, som stemmer med regresjonen. I tabell modell 1 og 2 er koeffesienten som måler styrke og retning lav. Hvorfor er de som plasserer seg mot høyre lykkeligere dersom ikke størrelsen på lommeboken spiller inn? Også her kan man observere en stor spredning i forhold til middels sentraltendens i tabell 5.1.

8 I hypotese tre er det en sammenheng mellom dårlig helse og at man plasserer seg lavere på samfunnsstigen i begge modellene. I forhold til tabell 5.2 er det en positiv signifikant korrelasjon mellom disse to variablene, som stemmer med regresjonen. I tabell 5.3 er koeffesienten forholdsvis sterk (nummer en i forhold til de øvrige) som sier meg at effekten er forholdsvis moderat og at denne variabelen bidrar sterkt til forklaringskraften. God helse er en meget viktig faktor når det kommer til lykkefølelse? I hypotese fire er det en sammenheng mellom høyere utdanning og høyere plassering på samfunnsstigen. I forhold til tabell 5.2 er det en negativ signifikant korrelasjon mellom disse to variablene. I tabell 5.3 er koeffesienten den tredje sterkeste i forhold til de øvrige. Utdanning bør være en viktig faktor når det kommer til tolkninger av samfunnet vi lever lykkefølelse? I hypotese fem er det en sammenheng mellom de som har sivilstatus (gift/separert/skilt) også plasserer seg høyere på samfunnsstigen i modell 2. I forhold til tabell 5.2 er det en positiv og signifikant korrelasjon mellom disse. I tabell 5.3 er koeffesienten som nummer to etter helse, men p-verdien nærmer seg signifikansnivået i større grad, og man ender faktisk opp med å forkaste hypotese fem ved 1 % signifikansnivå. Kan forklaringen være at man blir lykkelig en periode når man gifter seg og en stund etter at 'turbulensen' har gitt seg ved skilsmisser? 6.2 Jeg la inn variabel 002 hvor ofte går på kino i modell 2. Dette førte til at forklaringskraften målt ved justert varians økte fra 0,114 til 0,126. Variabel 062 hvor ofte trener/aktiv: i idrettslag økte forklaringskraften fra 0,114 til 0,125. Deltagelse i 'positive grupper' bør være faktorer som påvirker lykkefølelsen plasserer seg høyere på samfunnsstigen. 7. LITTERATUR OG KILDEHENVISNING Tor Midtbø; Regresjonsanalyse for samfunnsvitere; 2007 Sigmund Grønmo; Samfunnsvitenskapelige Metoder; 2004 Arne Krokan; Forstå statistikk; kompendium; 1998 Spørreundersøkelse om fritid og sport, 2007; ISSP. Utval: Noreg

Studier, region og tilfredshet

Studier, region og tilfredshet Studier, region og h Utarbeid av Ronny Kleiven Antall ord 2190 1 3.1 GRUNNLEGGENDE STATISTISKE BEGREPER Innen statistikk opererer man med felles begreper som danner rammene for de videre forskningsprosessene.

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert ME-417 1 Vitenskapsteori og kvantitativ metode Kandidat 3704 Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum

Detaljer

Til bruk i metodeundervisningen ved Høyskolen i Oslo

Til bruk i metodeundervisningen ved Høyskolen i Oslo MINIMANUAL FOR SPSS Til bruk i metodeundervisningen ved Høyskolen i Oslo Denne minimanualen viser hvordan analyser i metodeundervisningen på masternivå (master i sosialt arbeid, master i familiebehandling

Detaljer

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål:

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål: Frafall fra videregende skole (VGS) er et stort problem. Bare ca 70% av elevene som begynner p VGS fullfører og bestr i løpet av 5 r. For noen elever er skolen s lite attraktiv at de velger slutte før

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Forelesning 17 Logistisk regresjonsanalyse

Forelesning 17 Logistisk regresjonsanalyse Forelesning 17 Logistisk regresjonsanalyse Logistiske regresjons er den mest brukte regresjonsanalysen når den avhengige variabelen er todelt Metoden kan brukes til å: teste hypoteser om variablers effekt

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 2. DESEMBER 2010 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 2. DESEMBER 2010 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 2. DESEMBER 2010 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller 23. desember 2010

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk MASTER I IDRETTSVITENSKAP 013/015 MASTER I IDRETTSFYSIOTERAPI 013/015 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 10. mars 014 kl. 10.00-1.00 Hjelpemidler: kalkulator Eksamensoppgaven består

Detaljer

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7 Vedlegg 1 - Regresjonsanalyser 1 Innledning og formål (1) Konkurransetilsynet har i forbindelse med Vedtak 2015-24, (heretter "Vedtaket") utført kvantitative analyser på data fra kundeundersøkelsen. I

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 003 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 73 59 19 60 Eksamensdato: 10.12.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

EKSAMEN I SOS4020 KVANTITATIV METODE 20. mars (4 timer)

EKSAMEN I SOS4020 KVANTITATIV METODE 20. mars (4 timer) EKSAMEN I SOS400 KVANTITATIV METODE 0. mars 009 (4 timer Tillatte hjelpemidler: Ikke-programmerbar kalkulator Liste med matematiske uttrykk/andeler i fordelinger (bakerst i oppgavesettet Sensur på eksamen

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

1. Hvordan operasjonalisere studenttilfredshet? Vis tre eksempler.

1. Hvordan operasjonalisere studenttilfredshet? Vis tre eksempler. Innlevering 2 1. Hvordan operasjonalisere studenttilfredshet? Vis tre eksempler. Operasjonalisering innebærer å gjøre fenomener målbare, ved hjelp av observasjon eller eksperimentering. Skal man operasjonalisere

Detaljer

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00 STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i STA 200- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består

Detaljer

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2006

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2006 SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2006 Oppgave 1 Nedenfor ser du en forenklet tabell basert på informasjon fra den norske delen av European Social Survey

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 3. Januar

Detaljer

Medarbeiderundersøkelsen 2014

Medarbeiderundersøkelsen 2014 10. NOVEMBER 2014 Medarbeiderundersøkelsen 2014 Regresjonsanalyser Analyse Analysen er en måte å finne ut hvilke nærværsfaktorer i undersøkelsen som har sterkest sammenheng med resultatfaktorene Analysene

Detaljer

Befolkning og velferd ECON 1730, H2016. Regresjonsanalyse

Befolkning og velferd ECON 1730, H2016. Regresjonsanalyse Netto innfl. Befolkning og velferd ECON 1730, H2016 Regresjonsanalyse Problem: Gitt planer for 60 nye boliger i kommunen neste år, hvor mange innflyttere kan vi forvente? Tabell Vestby kommune Nye boliger

Detaljer

EKSAMEN I SOS4020 KVANTITATIV METODE 8. april (4 timer)

EKSAMEN I SOS4020 KVANTITATIV METODE 8. april (4 timer) EKSAMEN I SOS4020 KVANTITATIV METODE 8. april 200 (4 timer) Tillatte hjelpemidler: Ikke-programmerbar kalkulator Liste med matematiske uttrykk/andeler i fordelinger (bakerst i oppgavesettet) Sensur på

Detaljer

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert ME-417 1 Vitenskapsteori og kvantitativ metode Kandidat 3698 Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum

Detaljer

Dødelighet og avstander til akuttmedisinske tjenester - en eksplorerende analyse*

Dødelighet og avstander til akuttmedisinske tjenester - en eksplorerende analyse* og avstander til akuttmedisinske tjenester - en eksplorerende analyse* Nina Alexandersen og Terje P. Hagen Avdeling for helseledelse og helseøkonomi, Universitetet i Oslo Kommunikasjon: t.p.hagen@medisin.uio.no

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt BOKMÅL/NYNORSK EKSAMEN I: PED3001 - STATISTIKK FAGLIG KONTAKT UNDER EKSAMEN: Per Frostad

Detaljer

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1% Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 73 59 19 60 Eksamensdato: 23.05.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Vår 2015

Eksamen PSYC3101 Kvantitativ metode II Vår 2015 Eksamen PSYC3101 Kvantitativ metode II Vår 2015 Skriftlig skoleeksamen, fredag 27. mars kl. 09:00 (3 timer). Ingen hjelpemidler, utover forhåndsgodkjent ordbok, er tillatt under eksamen. Alle oppgavene

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2002 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 9 og 79 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.

Detaljer

84 % er fornøyde med det tilbudet de får

84 % er fornøyde med det tilbudet de får OM BRUK OG MISBRUK AV STATISTIKK 84 % er fornøyde med det tilbudet de får Turid Aarseth 9. desember 2014 Hva er metode? Hvordan vi skal gå fram når vi skal hente inn informasjon (data/empiri) om virkeligheten

Detaljer

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 16. april 2015 kl. 10.00-12.00

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 16. april 2015 kl. 10.00-12.00 STUDIEÅRET 2014/2015 Individuell skriftlig eksamen i STA 200- Statistikk Torsdag 16. april 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består av

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 04.06.2014 Eksamenstid

Detaljer

Studie 4. Læringsutbytte fra film og tekst ved tre informasjonsposisjoner

Studie 4. Læringsutbytte fra film og tekst ved tre informasjonsposisjoner Studie 4 Læringsutbytte fra film og tekst ved tre informasjonsposisjoner Glenn-Egil Torgersen & Herner Saeverot I klassisk eksperimentell KTM-forskning er det vist at posisjoner i en informasjonsrekke

Detaljer

Definisjoner av begreper Eks.: interesse for politikk

Definisjoner av begreper Eks.: interesse for politikk Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

Hvordan lage en delkostnadsnøkkel - sosialhjelp. Melissa Edvardsen

Hvordan lage en delkostnadsnøkkel - sosialhjelp. Melissa Edvardsen Hvordan lage en delkostnadsnøkkel - sosialhjelp Melissa Edvardsen 24.11.10 1 Hvordan lage en delkostnadsnøkkel i 10 trinn 1. Utlede problemstilling 2. Valg av metode 3. Teorier 4. Hypoteser 5. Datainnsamling

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller fredag 28. mai kl. 14.00,

Detaljer

STUDIEÅRET 2016/2017. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 27. april 2017 kl

STUDIEÅRET 2016/2017. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 27. april 2017 kl STUDIEÅRET 2016/2017 Individuell skriftlig eksamen i STA 200- Statistikk Torsdag 27. april 2017 kl. 10.00-12.00 Hjelpemidler: Kalkulator og formelsamling som blir delt ut på eksamen Eksamensoppgaven består

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

SAMFUNNSVITENSKAPELIG EMBETSEKSAMEN 2013 I Statsvitenskap innføring. STV 1020 / Metode og statistikk

SAMFUNNSVITENSKAPELIG EMBETSEKSAMEN 2013 I Statsvitenskap innføring. STV 1020 / Metode og statistikk SAMFUNNSVITENSKAPELIG EMBETSEKSAMEN 2013 I Statsvitenskap innføring. STV 1020 /1021 - Metode og statistikk Tirsdag 21. mai 2013, 4 timer Alle oppgaver skal besvares. Spørsmål om fattigdom og sosial ulikhet

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Kursoversikt 2009. Kurskalender 2009-1. halvår. Kurskalender 2009 2. halvår

Kursoversikt 2009. Kurskalender 2009-1. halvår. Kurskalender 2009 2. halvår Kursoversikt 2009 Målet med våre kurs er å gi deg best mulige forutsetninger for å kunne utnytte SPSS omfattende muligheter. Det gjelder uansett om du er nybegynner eller allerede bruker vår programvare

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2001

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2001 UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 001 Generell informasjon Da denne eksamensoppgaven ble gitt var SVSOS107 inne i en overgangsordning mellom gammelt og nytt pensum. Denne

Detaljer

MEDBORGERNOTAT #6. «Holdninger til innvandring » Runa Falck Langaas Universitetet i Bergen August 2017

MEDBORGERNOTAT #6. «Holdninger til innvandring » Runa Falck Langaas Universitetet i Bergen August 2017 MEDBORGERNOTAT #6 «Holdninger til innvandring 2013-2017» Runa Falck Langaas Runa.Langaas@uib.no Universitetet i Bergen August 2017 Introduksjon Dette notatet gir en oversikt over norske medborgere sine

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 21. desember

Detaljer

H 12 Eksamen PED 3008 Vitenskapsteori og forskningsmetode

H 12 Eksamen PED 3008 Vitenskapsteori og forskningsmetode H 12 Eksamen PED 3008 Vitenskapsteori og forskningsmetode Innlevering Eksamensbesvarelsen i PED3008 består av en individuell semesteroppgave i vitenskapsteori og forskningsmetode (teller 2/3 av endelig

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2007

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2007 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SOS1002 HØSTEN 2007 Oppgave 1 Nedenfor ser du en tabell fra den norske delen av European Social Survey 2006. Utvalget skal behandles som et sannsynlighetsutvalg

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 Oppgave 1 Nedenfor ser du en forenklet tabell basert på informasjon fra den norske delen av European Social Survey 2004.

Detaljer

SKOLEEKSAMEN 2. november 2007 (4 timer)

SKOLEEKSAMEN 2. november 2007 (4 timer) EKSAMEN I SOS400 KVANTITATIV METODE SKOLEEKSAMEN. november 007 (4 timer Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 3. november kl.

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode Sensorveiledning: skoleeksamen i SOS1120 - Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng.

Detaljer

Eksamensoppgave i SØK1004 - Statistikk for økonomer

Eksamensoppgave i SØK1004 - Statistikk for økonomer Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid

Detaljer

Hvis kurset du trenger ikke finnes i oversikten under, ta kontakt med oss. Vi tilrettelegger gjerne kurs etter behov.

Hvis kurset du trenger ikke finnes i oversikten under, ta kontakt med oss. Vi tilrettelegger gjerne kurs etter behov. Kursoversikt 2012 Målet med våre kurs er å gi deg best mulige forutsetninger for å kunne utnytte mulighetene i SPSS. Det gjelder uansett om du er nybegynner eller allerede bruker vår programvare og trenger

Detaljer

Harbachelor-ogmasterstudenter ulikeoppfatningeravkvaliteti studieprogrammenesine?

Harbachelor-ogmasterstudenter ulikeoppfatningeravkvaliteti studieprogrammenesine? NOKUTssynteserogaktueleanalyser Harbachelor-ogmasterstudenter ulikeoppfatningeravkvaliteti studieprogrammenesine? SteinErikLid,juni2014 Datagrunnlaget for Studiebarometeret inkluderer en rekke bakgrunnsvariabler

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SOS3050 Empirisk forskningsmetode Faglig kontakt under eksamen: Stipendiat Zan

Detaljer

FORORD. Trondheim, 2. november 1998 Lars-Erik Borge og Ivar Pettersen

FORORD. Trondheim, 2. november 1998 Lars-Erik Borge og Ivar Pettersen FORORD Dette notatet presenterer tilleggsanalyser for prosjektet Likeverdig skoletilbud og kommunale inntekter. Hovedprosjektet er dokumentert i egen rapport. Prosjektet er utført av førsteamanuensis Lars-Erik

Detaljer

ME Samfunnsvitenskapelig metode

ME Samfunnsvitenskapelig metode KANDIDAT 2566 PRØVE ME-100 1 Samfunnsvitenskapelig metode Emnekode ME-100 Vurderingsform Skriftlig eksamen Starttid 24.11.2016 09:00 Sluttid 24.11.2016 14:00 Sensurfrist 15.12.2016 01:00 PDF opprettet

Detaljer

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 DATO: 14.01.2012 Studiepoeng: 7,5 Sidetall bokmål

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

Appendiks 5 Forutsetninger for lineær regresjonsanalyse

Appendiks 5 Forutsetninger for lineær regresjonsanalyse Appendiks 5 Forutsetninger for lineær regresjonsanalyse Det er flere krav til årsaksslutninger i regresjonsanalyse. En naturlig forutsetning er tidsrekkefølge og i andre rekke spiller variabeltype inn.

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap SENSORVEILEDNING SOS1002 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 29. mai 2009 Eksamenstid: 5 timer

Detaljer

Kommunereforma Er små kommunar betre enn store?

Kommunereforma Er små kommunar betre enn store? -Ein tydeleg medspelar Kommunereforma Er små kommunar betre enn store? Er små kommuner bedre enn store? Ole Helge Haugen - Fylkesplansjef - Møre og Litt teori. Korrelasjon, eller samvariasjon, er i statistikk

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling

Detaljer

SENSORVEILEDNING FOR SKOLEEKSAMEN I SOS KVANTITATIV METODE. 11. mars 2015 (4 timer)

SENSORVEILEDNING FOR SKOLEEKSAMEN I SOS KVANTITATIV METODE. 11. mars 2015 (4 timer) SENSORVEILEDNING FOR SKOLEEKSAMEN I SOS4020 - KVANTITATIV METODE 11. mars 2015 (4 timer) Tillatte hjelpemidler: Alle skriftlige hjelpemidler og kalkulator. Sensur for eksamen faller 7. april klokken 14.00.

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

SKOLEEKSAMEN 8. januar 2008 (4 timer)

SKOLEEKSAMEN 8. januar 2008 (4 timer) UTSATT EKSAMEN I SOS4020 KVANTITATIV METODE SKOLEEKSAMEN 8. januar 2008 (4 timer) Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 29.

Detaljer

EN PROFIL AV SPANSKLÆRERE I NORSK SKOLE: HVA MENER ELEVENE? HVORDAN PÅVIRKER LÆREREN ELEVENES MOTIVASJON?

EN PROFIL AV SPANSKLÆRERE I NORSK SKOLE: HVA MENER ELEVENE? HVORDAN PÅVIRKER LÆREREN ELEVENES MOTIVASJON? EN PROFIL AV SPANSKLÆRERE I NORSK SKOLE: HVA MENER ELEVENE? HVORDAN PÅVIRKER LÆREREN ELEVENES MOTIVASJON? Debora Carrai Høgskolen i Østfold ILS, Universitetet i Oslo Hva er elevenes mening om lærerens

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 23. NOVEMBER 2004 (6 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 23. NOVEMBER 2004 (6 timer) EKSAMEN I SOS20 KVANTITATIV METODE 23. NOVEMBER 2004 (6 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller tirsdag 4. desember

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001 UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001 Generell informasjon Vi er for tiden inne i en overgangsordning mellom gammelt og nytt pensum i SVSOS107. Denne eksamensoppgaven

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Våren 2014

Eksamen PSYC3101 Kvantitativ metode II Våren 2014 Eksamen PSYC3101 Kvantitativ metode II Våren 2014 Skriftlig skoleeksamen, onsdag 19. mars kl. 09:00 (3 timer). Sensur etter tre uker. Ingen hjelpemidler er tillatt under eksamen. Alle oppgavene skal besvares

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

Alvorlighet som prioriteringskriterium - hva mener folk flest?

Alvorlighet som prioriteringskriterium - hva mener folk flest? Alvorlighet som prioriteringskriterium - hva mener folk flest? Jens Torup Østby, Samfunnsøkonom Pfizer Arna S. Desser, Seniorforsker Folkehelseinstituttet Ivar Sønbø Kristiansen, Professor emeritus Universitet

Detaljer

Forelesning 10 Statistiske mål for bivariat tabellanalyse. Korrelasjonsmål etter målenivå. Cramers V

Forelesning 10 Statistiske mål for bivariat tabellanalyse. Korrelasjonsmål etter målenivå. Cramers V Forelesning 10 Statistiske mål for bivariat tabellanalyse Vi har ulike koeffisienter som viser styrken på den statistiske avhengigheten mellom de to variablene. Valg av koeffisient må vurderes ut fra variablenes

Detaljer

Er det noen sammenheng mellom stillinger i barnevernet og behandlingstid på undersøkelser?

Er det noen sammenheng mellom stillinger i barnevernet og behandlingstid på undersøkelser? Er det noen sammenheng mellom stillinger i barnevernet og behandlingstid på undersøkelser? LARS HÅKONSEN OG TROND ERIK LUNDER TF-notat nr. 22/2010 ISBN: 978-82-7401-377-3 ISSN: 1891-05 Innledning I dette

Detaljer