Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen"

Transkript

1 MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning mai 2009 (Sis oppdaer: :27) MAT1030 Diskre Maemaikk 5. mai Li repeisjon Trær med ro Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand a den vurderer lokal hva som er de bese nese skrie Dijksras algorime en av nodene er senrum finne de ree som gir kores mulig vei fra hver av de andre nodene il senrum Mariserepresenasjoner Trær med ro en av nodene har saus som ro Definisjon La T være e re med ro (ana a vi egner T med roen øvers). Med nivåe il en node mener vi anall kaner mellom noden og roen. Hvis de fins en kan mellom node a og b, og a har laves nivå (ligger øvers i egningen) sier vi a b er barne il a. Hvis de fins en si mellom o noder slik a en kan k i sien ligger innil nodene a og b (de vil si a sekvensen akb er en del av sien) nøyakig når b er barne il a, så vil den som har de høyese nivåe (ligger neders i egningen) være eerkommer il den andre, som omvend er forgjenger il den førse. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

2 Trær med ro Definisjon (Forsa) En node som ikke har noen barn er e blad eller en løvnode. En gren er en si fra roen il e blad. (Noen vil kalle dee en maksimal gren og la en gren være en si fra roen il en node.) Oppgave Vis a de finnes en bijeksjon mellom mengden av blader og mengden av grener i e re med ro. Binære rær Veldig mange rør har den egenskapen a hvis en node ikke er en bladnode, så har den nøyakig o barn. Vi skiller u disse ved en egen beegnelse. Definisjon E binær re er e re med ro slik a følgende holder. 1. Enhver node er enen en bladnode eller har nøyakig o barn. 2. Hvis en node har o barn, vil de ene barne beegnes som barne il vensre og de andre som barne il høyre De vensre delree får vi ved å fjerne roen og barne il høyre og alle des eerkommerne. Tilsvarende for de høyre delree. (I e delre blir de ene barne den nye roen.) I e re med kun én node kan vi ikke snakke om delrær. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Traverseringer In-order-raversering En raversering av e re innebærer a vi leser nodene i ree i en besem rekkefølge og ufører operasjoner (som å skrive symboler) i en besem rekkefølge. 3 4 Vi skal se på re vanlige måer å raversere e re på. in-order raversering svarer il infiks noasjon: 3 4 pre-order raversering svarer il prefiks noasjon: 34 pos-order raversering svarer il posfiks noasjon: 34 Her er algorimen for den raverseringen som gir infiks noasjon hvis inpu er e synaksre. Algorime in-order raverse(t): 1. If T ikke er e blad hen 1.1. in-order raverse(vensre delre av T) 2. Oupu roen il T 3. If T ikke er e blad hen 3.1. in-order raverse(høyre delre av T) MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

3 Pre-order-raversering in-order-raversering gir Her er algorimen for den raverseringen som gir polsk prefiks noasjon hvis inpu er e synaksre. Algorime pre-order raverse(t): 1. Oupu roen il T 2. If T ikke er e blad hen 2.1. pre-order raverse(vensre delre av T) 3. If T ikke er e blad hen 3.1. pre-order raverse(høyre delre av T) MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Pre-order-raversering Pos-order-raversering Her er algorimen for den raverseringen som gir baklengs polsk noasjon, eller posfiks noasjon, hvis inpu er e synaksre. Algorime pos-order raverse(t): 1. If T ikke er e blad hen 1.1. pos-order raverse(vensre delre av T) 2. If T ikke er e blad hen 2.1. pos-order raverse(høyre delre av T) 3. Oupu roen il T pre-order-raversering gir MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

4 Pos-order-raversering Noasjon: infiks, prefiks, posfiks pos-order-raversering gir Når vi skriver usagnslogiske eller algebraiske urykk, er vi van il å skrive symbolene,,,, ec. mellom delurykkene. Denne skrivemåen er hisorisk beinge og kalles for infiks. Fordelen med forlengs og baklengs polsk noasjon, eller prefiks og posfiks, er a man slipper pareneser. Disse kan være bedre egne for innmaing i algorimer. Programmeringsspråke LISP er baser på bruk av polsk noasjon, og i gamle dager måe lommeregnere programmeres med baklengs polsk noasjon. Brukere av edioren Emacs vil oppdage a den innebygde kalkulaoren bruker baklengs polsk noasjon (RPN). MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Vi skal gi en grammaikk som definerer alle ermer i symbolene 0, 1, og i forlengs polsk, eller prefiks, noasjon. En erm er e urykk som beskriver e all. Vi skal se på alle måer å beskrive all på hvor vi bruker symbolene nevn over. Poenge med polsk noasjon er a funksjonssymbol, logiske bindeord og andre symboler vi bruker il å binde sammen enkle urykk il mer komplekse sees førs, og så kommer delurykkene eer, uen pareneser. En grammaikk er e se regler som foreller oss hvilke ord som ilhører de formelle språke vi vil beskrive. I informaikk-lieraur har man uvikle en rask skrivemåe for slike grammaikker. Term ::= 0 1 Denne definisjonen skal leses som følger: Mengden av ermer er den minse mengden som oppfyller 0 og 1 er ermer. Hvis og s er ermer, er s og s også ermer. Vi har se på ilsvarende konsruksjoner da vi så på formelle språk definer ved generell induksjon. En indukiv definisjon foreller oss a de ligger en resrukur bak hver ord i språke. Hvordan kan vi bruke rær il å besemme om e ord i alfabee {0, 1,, } er en erm eller ikke, og hvordan kan vi bruke rær il å finne en mer lesbar form av ermen? MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

5 Er en erm slik de ble definer på forrige side? Vi kan prøve å uvikle e synaksre for dee orde, hvor vi bruker boksaven for å markere a her må de så en enklere erm. Førse ilnærming il synaksree må være Den førse ukjene ermen må begynne med, så synaksree må se u som hvor = hvor = Her kan vi se direke hva de re -ene må så for, så vi får ree MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai hvor = Vi kan forsee å avsløre hvordan synaksree må se u ved å lese problemorde vår fra vensre mo høyre. Vi ser a nese erm er e produk hvor førse fakor er summen av 1 og 0 og andre fakor er 0 (Vi er ikke ineresser i verdien av denne ermen, bare om de er en erm). De gir oss følgende fullsendige synaksre. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

6 Mer om noasjon Når man bruker baklengs polsk noasjon på en lommeregner, aser man inn all og funksjonsurykk som, exp, sin i rekkefølge. Hver gang man aser inn e funksjonsurykk, vil lommeregneren oppfae sise all, eller de o sise allene, som inpu, og ersae disse med funksjonsverdien. De er alså funksjonsverdien som oppfaes som de sise alle du ase inn i forseelsen. 1 0 Skreve på vanlig infiks-form får vi De er ikke vanskelig å se a lommeregneren kan behandle en sekvens av all og funksjoner på bare en måe. De beyr a e urykk i baklengs polsk noasjon bare kan olkes på en måe. De samme gjelder da selvfølgelig for forlengs polsk noasjon. (0 0) ((1 0) 0). MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Mer om noasjon Induksjon og rekursjon for binære rær Synaksree for en erm eller e usagnslogisk urykk er uavhengig av om vi har bruk vanlig infiks noasjon, forlengs polsk eller baklengs polsk noasjon. Når synaksree er gi, så kan disse urykkene gjenskapes ved hjelp av de ulike raverseringsalgorimene. De er enkel å lage en algorime som ar e urykk, sjekker om de er korrek og som evenuel gir synaksree som oupu. Mengden av binære rær kan også defineres indukiv. Ugangspunke, eller induksjonsaren, blir nullree, ree som besår av en node og ingen kaner. Denne noden er da både ro og blad. Induksjonskrie besår i a vi ar o binære rær T v og T h, en ny ronode og o nye kaner, mo vensre il roen i T v og il høyre mo roen i T h. T v T h Sammensening av o binære rær il e. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

7 Induksjon og rekursjon for binære rær Induksjon og rekursjon for binære rær Definisjon Vi kan oppfae denne sammenseningen som en form for sum av o binære rær: vi legger sammen o rær og får e ny re. Vi kan god skrive T v T h for denne sammenseningen av rær. Merk a den kommuaive loven (x y = y x) ikke gjelder; de er essensiel hvilke av rærne som sees il vensre og hvilke som sees il høyre. Som grafer beyr de ikke så mye, men for rerekursjon er de vikig, siden vi der kan referere il vensre og høyre delre. Vi skal nå se på en form for produk av rær. Vi skriver for nullree. Vi definerer reproduke ved S = S (T v T h ) S = (T v S) (T h S) Poenge med å gi denne definisjonen er å gi e eksempel på hvordan man kan definere ing ved rekursjon på oppbyggingen av e re. Vi illusrerer hva som skjer ved e par eksempler på avla. Vi ser a effeken er å ersae alle bladnodene i T med kopier av S. Generel kan vi definere en funksjon f ved rekursjon over oppbyggingen av binære rær ved følgende. 1. Besemme hva f( ) er, når er nullree. 2. Besemme hvordan f(t) avhenger av de o delrærne f(t v ) og f(t h ), når T er e sammensa re. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Induksjon og rekursjon for binære rær Hvis vi går ilbake il synaksrær, så kan vi se hvordan de re ulike noasjonsformene kan defineres via rerekursjon. De re algorimene svarer il hver sin rekursive funksjon. Vi definerer funksjonen infiks ved rerekursjon på følgende måe. Hvis roen i T er en bladnode med merke a, så lar vi infiks(t) = a. Hvis T er på formen T 1 T 2 lar vi infiks(t) = (infiks(t 1 ) infiks(t 2 )). De o andre funksjonene er definer på samme måe for bladnoder, og på følgende måe for sammensae rær. prefiks(t) = prefiks(t 1 )prefiks(t 2 ) posfiks(t) = posfiks(t 1 )posfiks(t 2 ) Bisekvenser og binære rær De er en inim sammenheng mellom bisekvenser og binære rær. For hver node i e binær re kan vi lage oss en ilsvarende bisekvens ved rekursjon på nivåe (avsanden il roen) il noden. La bi( ) være den omme sekvensen hvis er ronoden. Hvis a er en node med o barn, b il vensre og c il høyre, og bi(a) = x 1 x k, lar vi bi(b) = x 1 x k 0. bi(c) = x 1 x k 1. Denne definisjonen illusreres på avla. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

8 Bisekvenser og binære rær Bisekvenser og binære rær Omvend vil en endelig mengde X av bisekvenser, eller 0-1-sekvenser, besemme e binær re hvor vi førs ser på alle delsekvenser av sekvensene i X, så lar bladnodene være de minimale bisekvensene som ikke er delsekvens av noen sekvens i X og il slu organiserer dee il e re ved å la den omme sekvensen bli roen, og så gå il vensre eller høyre avhengig av om nese bi er 0 eller 1. Vi illusrerer denne konsruksjonen på avla. Hvis vi markere nodene i e binær re med bisekvensene, så får vi følgende bilde e MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Li om srømmer Li om srømmer En digial srøm er en uendelig følge {x n } n N hvor hver x i er en bi, marker som 0 eller 1. En digial srøm kan oppfaes som en srøm av daa på digial form. Ana a vi har en prosedyre hvor inpu kan være en digial srøm og hvor oupu er en eller annen melding på digial form. De vil finnes siuasjoner hvor vi aldri får noe oupu hvis inpu er spesiel ekle digiale srømmer, men normal vil vi a prosedyren skal avsløre om den digiale srømmen vi moar er uen ineresse, og skal avslue med en melding om de. Vi enker oss alså en siuasjon hvor prosedyren avsluer med e svar uanse hvilken srøm den fores med. For enhver srøm finnes de da en endelig del som er sor nok il a prosedyren vår kan gi e oupu på grunnlag av denne. De er fordi prosedyren vår bare kan unye endelig mye informasjon om ver enkel srøm. La T være ree av endelige bisekvenser som er så små a prosedyren vår ikke har nok grunnlag i disse il å gi e oupu. Er T e endelig re? MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai

9 Li om srømmer Li om srømmer Vi skal vise a de er ilfelle. Bevise er e eksempel på e konraposiiv bevis, alså på e bevis hvor vi anar a konklusjonen er feil, og resonnerer oss frem il a da er premissene feil. Ana derfor a ree er uendelig. Da må vensre delre være uendelig eller høyre delre være uendelig. Sar en digial srøm med 0 om vensre delre er uendelig og med 1 om de er endelig. La T 1 være de ilsvarende uendelige delree. Forse srømmen med 0 om vensre delre i T 1 er uendelig og med 1 om de er endelig (da er høyre delre i T 1 uendelig). Slik forseer vi ved å gå il vensre når delree i den reningen er uendelig, og il høyre når de er nødvendig for forsa å ha e uendelig delre. På den måen bygger vi opp en digial srøm som prosedyren vår ikke kan gi noe oupu fra, for da ville den gjøre de fra en endelig del av srømmen. Vi har imidlerid sørge for a enhver endelig del av den srømmen vi konsruerer, ligger i T, og derfor er uilsrekkelig for dee. MAT1030 Diskre Maemaikk 5. mai MAT1030 Diskre Maemaikk 5. mai Li om srømmer Påsanden vi nå har vis, har den prakiske konsekvensen a hvis vi førs har greid å lage en prosedyre som gir e svar uanse hvilken digial srøm vi forer den med, så finnes de en øvre grense for hvor lenge vi må vene på e svar, uavhengig av hva inpu er. Dee er e eksempel på en påsand hvor vi må gi e indireke bevis, eller i de minse gå uenom den konsrukive delen av maemaikken. Dee er ikke noe ema i MAT1030, og vi skal ikke forfølge dee aspeke videre. MAT1030 Diskre Maemaikk 5. mai

MAT1030 Forelesning 26

MAT1030 Forelesning 26 MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand

Detaljer

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,

Detaljer

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 26: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo 5. mai 2009 (Sist oppdatert: 2009-05-06 22:27) Forelesning 26 MAT1030 Diskret Matematikk 5.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 26: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn Forelesning 26 Trær Dag Normann - 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot barn barn barnebarn barnebarn barn blad Her er noen

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 . Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er

Detaljer

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær Forelesning 28, eksempler Dag Normann - 5. mai 2008 I dag skal vi se på en rekke eksempeloppgaver, og gjennomgå løsningene på tavla. Alle eksemplene er oppgaver som ville kunne bli gitt til eksamen, enten

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 30. april 2008 Oppsummering Mandag så vi på hvordan vi kan finne uttrykk og termer på infiks form,

Detaljer

Løsningsforslag for regneøving 3

Løsningsforslag for regneøving 3 Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over

Detaljer

Levetid og restverdi i samfunnsøkonomisk analyse

Levetid og restverdi i samfunnsøkonomisk analyse Visa Analyse AS Rappor 35/11 Leveid og resverdi i samfunnsøkonomisk analyse Haakon Vennemo Visa Analyse 5. januar 2012 Dokumendealjer Visa Analyse AS Rapporiel Rappor nummer xxxx/xx Leveid og resverdi

Detaljer

Harald Bjørnestad: Variasjonsregning en enkel innføring.

Harald Bjørnestad: Variasjonsregning en enkel innføring. Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011. c) Hva er kritisk verdi for testen dersom vi hadde valgt et signifikansnivå på 10%?

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011. c) Hva er kritisk verdi for testen dersom vi hadde valgt et signifikansnivå på 10%? Forelesning 4 og 5 MET59 Økonomeri ved David Kreiberg Vår 011 Diverse oppgaver Oppgave 1. Ana modellen: Y β + β X + β X + β X + u i 1 i i 4 4 i i Du esimerer modellen og oppnår følgende resulaer ( n 6

Detaljer

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11 Forelesning 33 Repetisjon Dag Normann - 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske repetisjonen av MAT1030. Det som gjensto var kapitlene 11 om trær og

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

System 2000 HLK-Relais-Einsatz Bruksanvisning

System 2000 HLK-Relais-Einsatz Bruksanvisning Sysem 2000 HLK-Relais-Einsaz Sysem 2000 HLK-Relais-Einsaz Ar. Nr.: 0303 00 Innholdsforegnelse 1. rmasjon om farer 2 2. Funksjonsprinsipp 2 3. onasje 3 4. Elekrisk ilkopling 3 4.1 Korsluningsvern 3 4.2

Detaljer

Forelesning 31: Repetisjon

Forelesning 31: Repetisjon MAT1030 Diskret Matematikk Forelesning 31: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 31: Repetisjon 18. mai 2010 (Sist oppdatert: 2010-05-18 14:11) MAT1030 Diskret Matematikk

Detaljer

(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t

(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t Oppgave 3 Ve ien har vi følgene siuasjon: oer vinkel om aksen parallell me -aksen: oer vinkel om aksen l: β l,, Punkes koorinaer ve ien kan besemmes ve hjelp av følgene serie av basisransformasjoner. ransformasjonene

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 )

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 ) UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320/INF4320 Meoder i grask daabehandling og diskre geomeri Eksamensdag: 7. desember 2007 Tid for eksamen: 14:30 17:30 Oppgavesee

Detaljer

Et samarbeid mellom kollektivtrafikkforeningen og NHO Transport. Indeksveileder 2014. Indeksregulering av busskontrakter. Indeksgruppe 05.08.

Et samarbeid mellom kollektivtrafikkforeningen og NHO Transport. Indeksveileder 2014. Indeksregulering av busskontrakter. Indeksgruppe 05.08. E samarbeid mellom kollekivrafikkforeningen og NHO Transpor Indeksveileder 2014 Indeksregulering av busskonraker Indeksgruppe 05.08.2015 Innhold 1. Innledning...2 1.1 Bakgrunn...2 2 Anbefal reguleringsmodell

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Internasjonale prisimpulser til importerte konsumvarer

Internasjonale prisimpulser til importerte konsumvarer Inernasjonale prisimpulser il imporere konsumvarer Johan Øverseh Røsøen, konsulen i Økonomisk avdeling 1 Den lave konsumprisveksen i Norge kan i sor grad forklares ved krafig prisfall på imporere varer,

Detaljer

Hovedtema: Virkninger av offentlige inngrep (S & W kapittel 5 og 10 i 3. utgave og kapittel 4 og 10 i 4. utgave)

Hovedtema: Virkninger av offentlige inngrep (S & W kapittel 5 og 10 i 3. utgave og kapittel 4 og 10 i 4. utgave) Økonomisk Insiu, okober 2006 Rober G. Hansen, rom 207 Osummering av forelesningen 06.0 Hovedema: Virkninger av offenlige inngre (S & W kaiel 5 og 0 i 3. ugave og kaiel 4 og 0 i 4. ugave) Virkninger av

Detaljer

Bruksanvisning for NTNUs telefonsvar-tjeneste på web

Bruksanvisning for NTNUs telefonsvar-tjeneste på web NTNUs elefonsvar-jenese: Bruksanvisning for NTNUs elefonsvar-jenese på web 1 Pålogging For å logge deg inn på web-siden, beny adressen: hp://svarer.lf.nnu.no Lag bokmerke/legg il siden i Favorier, slik

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320 Meoder i grafisk daabehandling og diskre geomeri Eksamensdag: 2. desember 2009 Tid for eksamen: 14.30 17.30 Oppgavesee er på

Detaljer

Dato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008

Dato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008 S TYRES AK Syremøe 07 23.sepember Syresak 53/2008 MÅLTALL framidig uvikling av sudenall og sudieprogrammer KONTAKTINFORMASJON POSTBOKS 6853, ST. OLAVS PLASS NO-0130 OSLO TLF: (+47) 22 99 55 00 FAKS: (+47)

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboraorieøvelse i FY3-Elekrisie og magneisme år 7 Fysisk Insiu, NTNU Enkle kreser med kapasians og spole- bruk av daalogging. Laboraorieoppgaver Oppgave -Spenning i kres a: Mål inngangsspenningen og spenningsfalle

Detaljer

Oppgaveverksted 3, ECON 1310, h14

Oppgaveverksted 3, ECON 1310, h14 Oppgaveverksed 3, ECON 30, h4 Oppgave I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men de er ikke men a du skal bruke id på å forklare modellen uover de som blir spur

Detaljer

~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd

~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd ~/sa23/eori/bonus8.ex TN STAT 23 V28 Inrodukson il bonus og overskudd Bankinnskudd Ana a vi ønsker å see e viss beløp y i banken ved id = for å ha y n ved id = n. Med en reneinensie δ må vi see inn y =

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk

Detaljer

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06 Løsningsforslag il obligaorisk øvelsesoppgave i ECON 0 høsen 06 Oppgave (vek 50%) (a) Definisjon komparaive forrinn: Den ene yrkesgruppen produserer e gode relaiv mer effekiv enn den andre yrkesgruppen.

Detaljer

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management Logisikk og ledelse av forsyningskjeder Kapiel 4 Del A - Prognoser M200 Innføring i Suin Man Rasmus Rasmussen PREDIKSJON En prediksjon (forecas forecas) er en prognose over hva som vil skje i framiden.

Detaljer

Skjulte Markov Modeller

Skjulte Markov Modeller CpG øy Skjule Markov Modeller år CG er eer hverandre i en DA sekvens vil C ofe muere il T ved meylase. (kalles ofe CpG for å ikke forveksles med pare C-G i o DA råder). CpG dinukleoiden forekommer mye

Detaljer

Definisjon: Et sortert tre

Definisjon: Et sortert tre Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Eksempel på beregning av satser for tilskudd til driftskostnader etter 4

Eksempel på beregning av satser for tilskudd til driftskostnader etter 4 Regneeksempel - ilskudd il privae barnehager 2013 Eksempel på beregning av ilskuddssaser. ARTIKKEL SIST ENDRET: 08.04.2014 Eksempel på beregning av saser for ilskudd il drifskosnader eer 4 Kommunens budsjeere

Detaljer

Eksamen i STK4060/STK9060 Tidsrekker, våren 2006

Eksamen i STK4060/STK9060 Tidsrekker, våren 2006 Eksamen i STK4060/STK9060 Tidsrekker, våren 2006 Besvarelsen av oppgavene nedenfor vil ugjøre de vesenlige grunnlage for karakergivningen, og ugangspunke for den munlige eksaminasjonen. De er meningen

Detaljer

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller Beydning av feilspesifiser underliggende hasard for esimering av regresjonskoeffisiener og avhengighe i fraily-modeller Bjørnar Tumanjan Morensen Maser i fysikk og maemaikk Oppgaven lever: Mai 2007 Hovedveileder:

Detaljer

Funksjonslære Derivasjon Matematikk 2

Funksjonslære Derivasjon Matematikk 2 Funksjonslære Derivasjon Maemaikk 2 Avdeling for lærerudanning, Høgskolen i Vesfold 19 mars 2009 1 Innledning La f(x) være en funksjon, alså, en sørrelse som er avhengig av x De kan ofe være hensiksmessig

Detaljer

Obligatorisk oppgave ECON 1310 høsten 2014

Obligatorisk oppgave ECON 1310 høsten 2014 Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige

Detaljer

Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri

Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri Insiu for samfunnsøkonomi Eksamensoppgave i FIN3006 Anvend idsserieøkonomeri Faglig konak under eksamen: Kåre Johansen Tlf.: 73 59 19 36 Eksamensdao: 23. mai 2014 Eksamensid (fra-il): 6 imer (09.00 15.00)

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

Sensorveiledning ECON2200 Våren 2014

Sensorveiledning ECON2200 Våren 2014 Oppgave a) Sensorveiledning ECON00 Våren 04 f( ) + ln f ( ) 6 b) ( ) ( ) f( ) + f ( ) + + + De er ikke krav om å forenkle il en besem form, alle svar er ree. c) f( ) ln g ( ) g ( ) f ( ) g ( ) d) e) f)

Detaljer

Ådne Cappelen, Arvid Raknerud og Marina Rybalka

Ådne Cappelen, Arvid Raknerud og Marina Rybalka 2007/36 Rapporer Repors Ådne Cappelen, Arvid Raknerud og Marina Rybalka Resulaer av SkaeFUNN paenering og innovasjoner Saisisk senralbyrå Saisics Norway Oslo Kongsvinger Rapporer Repors I denne serien

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,

Detaljer

Løsningsforslag øving 6, ST1301

Løsningsforslag øving 6, ST1301 Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao: 6. mai 27 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler:

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Eksamensoppgave høsten 2011

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Eksamensoppgave høsten 2011 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Eksamensoppgave høsen 2 Ved sensuren illegges alle oppgavene lik vek For å beså eksamen, må besvarelsen i hver fall: gi mins re rikige svar

Detaljer

Generell rekursjon og induksjon. at(n) + bt(n 1) + ct(n 2) = 0

Generell rekursjon og induksjon. at(n) + bt(n 1) + ct(n 2) = 0 Forelesning 17 Generell rekursjon og induksjon Dag Normann - 10. mars 2008 Opphenting Forrige uke så vi på rekurrenslikninger. En rekurrenslikning er en funksjonslikning på formen at(n) + bt(n 1) + ct(n

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao:. juni 26 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler: Alernaiv

Detaljer

Elgbeiteregistrering i Trysil og omegn 2005

Elgbeiteregistrering i Trysil og omegn 2005 Elgbeieregisrering i Trysil og omegn 2005 Fyresdal Næringshage 3870 Fyresdal Tlf: 35 06 77 00 Fax: 35 06 77 09 Epos: pos@fna.no Oppdragsgiver: Trysil og Engerdal Umarksråd Uarbeide av: -Lars Erik Gangsei

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

Vedlegg 1. Utledning av utbyttebrøken Eksempler på egenkapitaltransaksjoner med utbyttebrøk Tilbakeholdelse av overskudd

Vedlegg 1. Utledning av utbyttebrøken Eksempler på egenkapitaltransaksjoner med utbyttebrøk Tilbakeholdelse av overskudd Vedlegg. ledning av ubyebrøken...2 2. Eksempler på egenkapialransaksjoner med ubyebrøk...5 2. Tilbakeholdelse av overskudd...7 2.2 Emisjon...2 2.3 Erverv av egne grunnfondsbevis...6 2.4 Donasjon il grunnfonde

Detaljer

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning H Ø G S K O L E N I B E R G E N Avdeling for lærerudanning Eksamensoppgave Ny/usa eksamen høs 004 Eksamensdao: 07--004 Fag: NAT0-FY Naur og miljøfag 60sp. ALN modul fysikk 5 sp. Klasse/gruppe: UTS/NY/ALN

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens

Detaljer

Rundskriv EØ 1/2011 - Om beregning av inntektsrammer og kostnadsnorm i vedtak om inntektsramme for 2010

Rundskriv EØ 1/2011 - Om beregning av inntektsrammer og kostnadsnorm i vedtak om inntektsramme for 2010 Noa Til: Fra: Ansvarlig: Omseningskonsesjonærer med inneksramme NVE - Seksjon for økonomisk regulering Tore Langse Dao: 1.2.2011 Vår ref.: NVE Arkiv: 200904925 Kopi: Rundskriv EØ 1/2011 - Om beregning

Detaljer

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-RØNDELAG Aving for eknologi Målform: Bokmål Eksamensdao: 3..4 Varighe/eksamensid: 9-5 Emnekode: Emnenavn: Klasse(r): ELE33 Indusriell auomaisering ELAH Sudiepoeng: Faglærer(e): (navn og

Detaljer

Jernbaneverket. OVERBYGNING Kap.: 8 t Regler for prosjektering Utgitt:

Jernbaneverket. OVERBYGNING Kap.: 8 t Regler for prosjektering Utgitt: e Hovedkonore Helsveis spor Side: 1 av 5 1 HENSIKT OG OMFANG... 2 2 KRAV... 3 2.1 Hovedspor... 3 2.1.1 Varig ufesing... 3 2.1.2 Minse kurveradius... 3 2.1.3 Ballas... 3 2.1.4 Sviller... 3 2.1.4.1 Svilleype...

Detaljer

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24 Oppgave. Vis hvordan vi finner likeveksløsningen for Y. Hin: Se forelesningsnoa 4 Økonomisk akivie på kor sik, side 23-24 2. Gi en begrunnelse for hvorfor de er rimelig å ana a eksporen er eksogen i denne

Detaljer

Working Paper 1996:3. Kortere arbeidstid og miljøproblemer - noen regneeksempler for å illustrere mulige kortsiktige og langsiktige sammenhenger

Working Paper 1996:3. Kortere arbeidstid og miljøproblemer - noen regneeksempler for å illustrere mulige kortsiktige og langsiktige sammenhenger Working Paper 1996:3 Korere arbeidsid og miljøproblemer - noen regneeksempler for å illusrere mulige korsikige og langsikige sammenhenger av Bjar Holsmark Sepember 1996 ISSN: 84-452X 1 2 sammendrag De

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Fakor - en eksamensavis ugi av ECONnec Pensumsammendrag: FIN3005 Makrofinans Forfaer: Marin Frøland E-pos: marinom@sud.nnu.no Skreve: Høsen 009 Anall sider: 41 FIN3005 - Pensumsammendrag Om ECONnec: ECONnec

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer

Detaljer

FYSIKK-OLYMPIADEN 2012 2013

FYSIKK-OLYMPIADEN 2012 2013 Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe

Detaljer

Pengemengdevekst og inflasjon

Pengemengdevekst og inflasjon Pengemengdeveks og inflasjon - en empirisk analyse og eoreiske berakninger Hovedfagsoppgave i samfunnsøkonomi av Sian Brundland Berge Insiu for økonomi Universiee i Bergen Våren 2004 KAPITTEL 1 INNLEDNING...

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer

Detaljer

INF november Stein Krogdahl (Litt mye tekst, med tanke på lettere repetisjon) Dagens tema: Kapittel 14:

INF november Stein Krogdahl (Litt mye tekst, med tanke på lettere repetisjon) Dagens tema: Kapittel 14: INF 4 5. november 29 Sein Krogdahl (Li mye ek, med anke på leere repeijon) Dagen ema: Kapiel 4: Machinger i (ureede) grafer (maching = pardannele) Fly i neverk (neverk = reede grafer med kapaieer ec.)

Detaljer

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1 OPPGAVER TIL FORELESNINGSUKE NUMMER Ukeoppgavene skal leveres som selvsendige arbeider. De forvenes a alle har sa seg inn i insiues krav il innlevere oppgaver: Norsk versjon: hp://www.ifi.uio.no/sudinf/skjemaer/erklaring.pdf

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 10: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs

Detaljer

Repetisjon 20.05.2015

Repetisjon 20.05.2015 Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

Kromatografisk separasjon bygger på stoffers likevektsfordeling mellom en stasjonær fase og en mobil fase. A MP A SP. Likevektskoeffisienten er:

Kromatografisk separasjon bygger på stoffers likevektsfordeling mellom en stasjonær fase og en mobil fase. A MP A SP. Likevektskoeffisienten er: OPPSUEING FOELESNINGE UKE 35 Kromaografisk separasjon bygger på soffers likeveksfordeling mellom en sasjonær fase og en mobil fase. A P Likevekskoeffisienen er: A SP K = [ A] [ ] SP A Likeveksfordelingen

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke

Detaljer

MAT1030 Forelesning 24

MAT1030 Forelesning 24 MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Realkostnadsvekst i Forsvaret betydningen av innsatsfaktorenes substitusjonsmulighet

Realkostnadsvekst i Forsvaret betydningen av innsatsfaktorenes substitusjonsmulighet FFI-rappor 2011/02404 Realkosnadsveks i Forsvare beydningen av innsasfakorenes subsiusjonsmulighe Seinar Gulichsen og Karl R. Pedersen (SNF) Forsvares forskningsinsiu (FFI) 1. mars 2012 FFI-rappor 2011/02404

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK

Detaljer

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1.

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1. Beegelse Side - Beegelse Vi skal nå a for oss beegelse Vi skal definere de grunnleggende begrepene posisjon, hasighe (og far), og akselerasjon Dee er begrep som du benyer il daglig, men i må presisere

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 25. februar 2008 Opphenting Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner.

Detaljer

INF september 2008

INF september 2008 INF 4. epember 8 Foreleer: Sein Krogdahl Dagen ema: Kapiel 4: Machinger i (ureede) grafer (maching = pardannele) Fly i neverk (neverk = reede grafer med kapaieer ec.) Dagen ema er krafig forbunde med konvekie,

Detaljer

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og

Detaljer