Nat104 / Grimstad. Forelesningsnotater. Våren Newtons 3 lover. UiA / Tarald Peersen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Nat104 / Grimstad. Forelesningsnotater. Våren 2011. Newtons 3 lover. UiA / Tarald Peersen"

Transkript

1 Nat104 / Grimstad Forelesningsnotater Våren 2011 Netons 3 lover UiA / Tarald Peersen

2 1 Netons 3 lover 1.1 Forelesning: Netons tre fundamentale lover for bevegelse I leksjon 1 lærte vi språket som beskriver en bevegelse uten å tenke på hvordan den ble satt i gang. I denne leksjonen skal vi se på årsaken til bevegelsen. Av erfaringer fra dagliglivet vet vi at det er krefter som må til. Det kan være muskelkrefter, gravitasjonskrefter, magnetiske krefter eller elektriske krefter. Generelt kan man si at en krafts virkning på legemer er gitt av Netons tre lover. Historien bak lovene (også gravitasjonsloven) til Sir Isaac Neton ( ) er lang, den er et resultat av flere generasjoners arbeid fra Copernicus, Tcho Brahe, Kepler og Galilei. Netons tre lover og gravitasjonsloven gjelder når sstemet ikke er i akselerasjon og når farten på sstemet ikke er sammenliknbar med lshastigheten. Netons lover (1687) er fundamentale og universelle. Loven er fundamental når den baserer seg på erfaring og når den ikke kan utledes av andre prinsipper. Keplers lover er ikke fundamentale fordi disse kan utledes av Keplers lover. Loven er universell dersom loven gjelder overalt i Universet. Begrepet masse i fsikken Mengden av det stoffet et legeme er bgd opp av kalles masse. Smbolet for masse er m. En fsisk størrelse har alltid måltall og enhet. Enheten for masse er gitt av standardlegemet. Som standardlegeme er valgt (SI-sstemet) en metallslinder. Denne slinderen (masseprototpen) blir oppbevart i Paris. Definisjonen av masseenheten 1kg (ett kilogram): Ett kilogram (1kg) er massen av kilogramprototpen Fire egenskaper som er knttet til massen av legemet: (a) Masse og treghet: En trenger bare å sparke til en kule av jern for å bli overbevist om at kula setter seg imot hastighetsforandringen. Vi sier at legemet er tregt. Jo større masse et legeme har jo tregere er legemet Netons 1.lov (treghetsloven) sier at et legeme er i ro eller har konstant fart langs en rett linje dersom nettokraften på legemet er null. Dersom nettokraften på Månen (en planet) er null vil Månen bevege seg langs en rett linje og forsvinne ut i verdensrommet. 2

3 (b) Masse og vekt (eng. eight) Om høsten faller eplet fra treet og ned på marka fordi eplet har tngde, det oppstår en tiltrekningskraft mellom jorden og eplet på grunn av deres masser. Det er denne tiltrekningskraften som vi kan kalle eplets tngde. (Netons gravitasjons lov) (c) Masse og energi Kjernekraftverkene produserer elektrisk energi av grunnstoffet uran. Det var Einstein som i 1905 satte likhet mellom energi og masse. (d) Masse, akselerasjon og kraft Dersom samme kraft virker på to legemer med ulik masse, vil forholdet mellom massene bestemme deres akselerasjon i forhold til hverandre. Netons 1. lov og en partikkel i likevekt eller konstant fart a) Netons 1. lov når legemet er i ro Kraftdiagram for klossen n Figur 2.1 viser en vogn som ligger i ro på en rullebane. Ingen krefter virker på vognen i horisontalretning (-retning) fordi banen har ingen helning. I vertikalretning derimot virker to krefter på vognen. Den ene er underlagskraften som vi kan kalle normalkraften (n), det er banen som setter opp denne kraften. Den andre kraften er vognens tngde (), det Jordens som trekker på vognen med denne kraften. Normalkraften og tngden må være like store og motsatt rettet (Netons 1. lov). Free-Bod diagram for klossen 3

4 n Fig 2.2 viser klossen i et Tree-Bod diagram er redusert til et punkt, diagrammet viser kun kreften som virker i -retning Formelen for Netons 1. lov: F 0 Vi bruker formelen og får: n b) Netons 1. lov når legemet har konstant fart Kraftdiagram for klossen n v f T 4

5 Free-Bod diagram for klossen n f T Skal klossen gli med konstant kraft m nettokraften i - og -retning være null. De to kreftene i -retning må være like, det samme må kreftene i -retning være. Formlene for Netons 1. lov: F 0 og F 0 Vi bruker formlene og får: T f og n Netons 2. lov og en partikkel i akselerasjon Dersom en tre nettokraft angriper et legeme, vil legemet akselerere. Retningen på akselerasjonen er den samme som retningen på nettokraften. Nettokraften er lik legemets masse multiplisert med akselerasjonen. Legemet i dette kurset skal kun bevege seg enten i -retning eller i -retning. Neton 2. lov for disse to retningene er: F m a F m a Akselerasjon på skråplan et forsøk (Grimstad mangler utstr) Vi skal i dette forsøket undersøke hva som skjer med vognens akselerasjon når vi ender skråplanets helningsvinkel. Bentter samme utstr og forsøksfil ( posisjonsfunksjonen.ds ) som tidligere. Velg 6 vinkler og bestem vognas akselerasjon i alle tilfelene. Framstill deretter resultatet i et koordinatsstem der -aksen er akselerasjonen (a) og -aksen er sinus til vinkelen (/). Foreta en lineær tilpassning og bestem linjens stigningstall. Hva forteller dette stigningstallet og avles usikkerheten? Hvilken akselerasjon har klossen når er lik? 5

6 Vi skal i denne forelesningen vise hvordan forsøket utføres, studentene skal utføre øvelsen på laben. Ideen bak denne øvelsen er å komme fram til et resultat som ikke er kjent på forhånd og som vi senere skal forklare ved hjelp av Netons andre lov. α Vognas helningsvinkel er definert av forholdet (se figuren):. I matematikken defineres dette forholdet lik sinus til vinkelen). Sinus til vinkelen er lik forholdet mellom (hødeforskjellen mellom de skråplanets ender) og (lengden av skråplanet lik 228,5 cm). Faglærer foreslår følgende hødeforskjeller: := ( ) Figuren viser et tpisk resultat, vi ser at målepunktene ligger tilnærmet på en rett linje. Stigningstallet for linjen er 9,62, en usikkerhet på 0,12. Hva viser dette tallet? Tilleggsoppgave Undersøk påstanden til Aristoteles ( f. Kr): En stor stein faller dobbelt så fort som en liten stein dersom den store steinen veier dobbelt så me 6

7 Teori som forklarer forsøksresultatet Netons 2. lov Vi erfarer tngdekraften i hverdagslivet. Vi skal diskutere og lære om konsekvensene av denne fantastiske kraften i Fs110 til våren. Størrelsen på tngdekraften er lik legemets masse multiplisert med tngdeakselerasjonen: m g Det er tngdekraftens parallellkomponent som akselerer vogna ( ): m a α α Tngdekraften () angriper i vognens tngdepunkt, tngden vises som en pil (vektor), den har retning mot Jordens sentrum. Vi kan erstatte -vektoren med vektorkomponentene og. Legg merke til at -vektoren er diagonal i rektangelet der sidene er gitt av og. Legg også merke til at helningsvinkelen er lik vinkelen mellom vektorene og i rektangelet. De to gule trekantene i figuren er ensformet, det vil si vinklene i de to trekantene er like store. Vi kan derfor sette opp følgende forhold mellom sidene i trekantene. Vi setter inn for utrkkene for og m a m g 7

8 Forkorter vi bort massen får vi a g Vognas akselerasjon nedover skråplanet øker proporsjonalt med vinkelen når vinkelen er mindre enn ca. 15 grader. Proporsjonalitetskonstanten er g, tngdens akselerasjon. Vårt resultat i forsøket var 9,6m/s 2. At målt verdi for tngdens akselerasjon er noe lavere enn tabellverdien på 9.8m/s 2 skldes friksjonen. Legg merke til at når er lik vil vogna falle fritt parallelt med skråplanet, akselerasjonen er da 9.8m/s 2. I dette kurset skal kreftene som virker på et legeme kun ligge i - retning eller (og) -retning. Legemet skal kun ha akselerasjon i en av disse retningene. I alle oppgavene skal kreftene være konstante under bevegelsen Netons lover gjelder når bevegelsen referer seg til et sstem som ikke er i akselerasjon. Dette sstemet blir kalt for et referansesstem (treghetssstem) Jorden for eksempel er hele tiden i akselerasjon. Den akselerer hele tiden i sin bane rundt Solen og når den roterer. Et sstem som roterer har akselerasjon. Jordens akselerasjon er ubetdelig, av den grunn gjelder Netons lover her på Jorden. Et lite tenkeeksperiment: Du sitter i toget på vei til Oslo. Foran deg har du et bord. Du tar fram ballen du har i veska og legger den på bordet. Den ligger i utgangspunktet i ro. Men plutselig begnner den å trille ut mot vinduet uten at noen krefter virker på ballen. Hvordan kan du forklare denne bevegelsen? Kraftenheten: Neton (N) Det er den andre loven til Neton som definerer enheten for kraft i det internasjonale enhetssstemet (SI-sstemet) En neton er den kraften som gir massen på 1kg en akselerasjon på 1m/s 2. Bentter 2. loven til Neton får vi: N kg m s 2 Netons 3. lov og krefter mellom to sstemer Fotballspilleren angriper ballen med en kraft (F A on B ), som kalles for aksjonskraften. I kontaktøeblikket angriper ballen fotballspilleren (F B on A ), som kalles reaksjonskraften. Disse to kreftene er like store, motsatt rettet og angriper forskjellig legemer. I dette tilfellet ball og fotballspiller. Legg også merke til at de to kreftene ligger på samme linje. 8

9 B F A on B A F B on A Netons 3. lov: F AonB F BonA Denne loven er fundamental fordi den baserer seg på erfaring og kan ikke utledes fra grunnregeler. Denne loven er også universell for den gjelder overalt i Universet. Vi må for eksempel ta utgangspunkt i Netons 3. lov når vi skal forklare hvorfor Jorden går i bane rundt Solen. Fsikkoppgave løst med ISEE-metoden Et sstem består av to kosser som er koplet sammen med et homogent tau som har massen m 2 := 4.00 kg. Den øverste klossen har massen: m 1 := 6.00 kg. Sstemet beveger seg i vertikalretning. Den øverste klossen angripes av en kraft på: F 1 := 200 N, retning oppover. Den nederste klossen har massen m 3 := 5.00 kg. a) Tegn free bod diagram for hver del i sstemet. b) Finn sstemets akselerasjon. c) Finn kraften i tauet nærmest den øverste klossen d) Finn kraften i tauet nærmest den nederste klossen e) (vanskelig) Finn kraften i midt mellom klossene. Identifisering / Identif Sstemet vi skal betrakte i denne oppgaven består av tre deler, sstemet beveger seg i vertikalretning. Den øverste klossen angripes av en kraft på 200N, retningen på denne kraften er opp (i positiv -retning). Tngden av de tre delene peker i negativ - retning. Den øverste klossen har massen 6,00kg, den nederste klossen og tauet som binder klossene sammen har henholdsvis massene 5,00kg og 4,00kg). Figuren under viser de fire tre kreftene som virker på sstemet. Vi skal undersøke om sstemet har akselerasjon og vi skal finne de kreftene som virker i tauets to ender. Til slutt skal vi finne kraften i tauet midt mellom klossene. 9

10 F 1 =200N 1 m 1 = 6,00kg m 2 2 =4,00kg 3 m 3 =5,00kg Figuren viser de to klossene og tauet mellom klossene, de tre kreftene er markert Analse og strukturering / Set up Kreftene er konstant og bevegelsen går langs en rett linje. Vi bentter Netons 2. og 3. lov F m a F AonB F BonA Kjente størrelser m 1 := 6 kg m 2 := 4 kg m 3 := 5 kg F 1 := 200 N a) Free bod diagram for hvert delsstem Øverste klossen Tauet Nederste klossen F 1 F 1 on 2 F 2 on 3 1 F 2 on 1 2 F 3 on

11 Beregningene/Utførelse Eecute b) Sstemets akselerasjon: Vi anvender Netons lov for hele sstemet: 1 := m 1 g 2 := m 2 g 3 := m 3 g ( ) a F m 1 + m 2 + m 1 F a := a m 1 + m 2 + m = 3.53 m 3 s 2 Akselerasjonen er rett oppover, den er 3,53 m/s 2. c) Kraften i tauet nærmest den øvre klossen: Vi anvender Netons lov på den øverste klossen F 1 1 F 2on1 m 1 a F 2on1 := a m F 1 F 2on1 = 120N Tauet virker på øverste klossen med en kraft nedover, kraften størrelse er 120N d) Kraften i tauet nærmest den nedre klossen: Vi anvender Netons lov på tauet F 1on2 := F 2on1 F 1on2 2 F 3on2 ( ) F 3on2 := m 2 a 2 + F 1on2 F 3on2 = 66.7N m 2 a Vi kan kontrollere beregningene ved å anvende Netons 2 lov på den nederste klossen: F 2on3 3 m 3 a F 2on3 := F 3on2 m 3 a = N F 2on3 3 = N Vi ser at utrkkene på begge sider av likhetstegnet gir samme svar, vi har regnet rett e) Strekket midt i tauet: Skal vi løse dette problemet kan vi enten velge øverste halvdelen av tauet som sstemet. Eller vi kan velge den nedre halvdelen av tauet som sstem. Vi anvender Netons 2. lov på den øvre delen av tauet 2 F 1on2 2 T midten m 2 2 m 2 2 a T midten := F 1on2 2 2 a T midten = 93.3N Vurderinger og refleksjon/ Evaluate Sstemets akselerasjon er bestemt av de tre kreftene som angiriper sstemet. De tre kreftene er 200N og tngden av de tre delene. Skal vi finne kraften i tauet må vi splitte sstemet opp i de tre delene. Tauet vil angripe den øverste klossen med en kraft som er rettet nedover, vi beregner 11

12 denne kraften til 120N (nedover). Strekket eller kraften midt i tauet reduseres til 93N. Kraften i tauets nedre del er 68 N. Tauet vil eventuelt først rke øversts dersom det ikke tåler belastningen. Vi undersøker Netons 3. lov på rullebanen (Grimstad mangler utstr) Rullebanen plasseres i horisontal stilling (bentt nivåføttene). Vi plasserer et ekkolodd i begge ender av rullebanen. Midt mellom ekkoloddene plasser vi de to vognene. Bentt vekten og bestem massen for de to vognene. Den ene vognen skal ha spent fjær, denne settes mot den andre vogna. Ta utgangspunkt i forsøksfilen Netons 3 lov Lik kraft på lik masse.ds og dataloggeren SW750. Vi skal utløse fjæren og finne farten for de to vognene etter kraftstøtet. Grafene i figuren viser et tpisk resultat. Kommenter resultatet. 1.2 Vi regner oppgaver Øvingsoppgaver Oppgave 1 Det er ofte nttig å vite hvor me masse som befinner seg innenfor et bestemt volum, denne størrelsen kaller vi tetthet: ρ har tettheten enheten: kg m V. Smbolet ρ er den greske bokstaven "rho". I SI-sstemet m 3. Bentt passende måleutstr og finn tettheten av en trekloss, finn usikkerheten i målingene. 12

13 Oppgave 2 Et legeme har masse m l := 4 kg. Det blir påvirket av en kraft: F := 16 N Finn akselerasjonen. Oppgave 3 Et legeme med masse m l := 3 kg har hastigheten v 0 := 6 m. Det blir angrepet av en s konstant kraft slik at hastigheten blir null i løpet av tiden t := 3 s. (a) Hvor stor er akselerasjonen? (b) Hvor stor er kraften. (c) Hvor langt går legemet i løpet av de 3 sekundene? 1.3 Laboratorieøving (UiA Grimstad mangler utstr, ikke pensum) Lab øving 1 Akselerasjon på skråplan et forsøk (se side 7) Lab øving 2 Universitet i Agder har en del vekter av ulik kvalitet, undersøk disse og finn den minste massen som kan måles på de vektene som undersøkes. Angi også vektens målenøaktighet. 13

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

5.201 Galilei på øret

5.201 Galilei på øret RST 1 5 Bevegelse 20 5.201 Galilei på øret undersøke bevegelsen til en tung sylinder ved hjelp av hørselen Eksperimenter Fure Startstrek Til dette forsøket trenger du to høvlede bordbiter som er over en

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Newtons (og hele universets...) lover

Newtons (og hele universets...) lover Newtons (og hele universets...) lover Kommentarer og referanseoppgaver (2.25, 2.126, 2.136, 2.140, 2.141, B2.7) Newtons 4 lover: (Gravitasjonsloven og Newtons første, andre og tredje lov.) GL: N I: N III:

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Resultanten til krefter

Resultanten til krefter KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Breivika Tromsø maritime skole

Breivika Tromsø maritime skole Breivika Tromsø maritime skole F-S-Fremdriftsplan 00TM01F - Fysikk på operativt nivå Utgave: 1.01 Skrevet av: Knut Magnus Sandaker Gjelder fra: 18.09.2015 Godkjent av: Jarle Johansen Dok.id.: 2.21.2.4.3.2.6

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!! TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 2

Løsningsforslag for øvningsoppgaver: Kapittel 2 Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 13.01.2015 2.03 Tyngdekraften på strikkhoppern på bildet er 540N. Kraften fra striken i fotoøyeblikket er 580N. a) Tegn figur og beregn

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

5.201 Modellering av bøyning

5.201 Modellering av bøyning RST 2 5 Kraft og bevegelse 26 5.201 Modellering av bøyning lage en modell for nedbøyning av plastikklinjaler teste modellen Eksperimenter Fest en lang plastikklinjal til en benk med en tvinge e.l. slik

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Mekanikk 1/19/2017. Forelesning 3: Mekanikk og termodynamikk

AST1010 En kosmisk reise. De viktigste punktene i dag: Mekanikk 1/19/2017. Forelesning 3: Mekanikk og termodynamikk AST1010 En kosmisk reise Forelesning 3: Mekanikk og termodynamikk De viktigste punktene i dag: Mekanikk: Kraft, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magnetisme:

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

Vektorstørrelser (har størrelse og retning):

Vektorstørrelser (har størrelse og retning): Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 14

Løsningsforslag for øvningsoppgaver: Kapittel 14 Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Kollisjon - Bevegelsesmengde og kraftstøt (impuls)

Kollisjon - Bevegelsesmengde og kraftstøt (impuls) Institutt for fysikk, NTNU FY11 Mekanisk fysikk, høst 7 Laboratorieøvelse Kollisjon - Bevegelsesmengde og kraftstøt (impuls) Hensikt Hensikten med øvelsen er å studere elastiske og uelastiske kollisjoner

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Om flo og fjære og kunsten å veie Månen

Om flo og fjære og kunsten å veie Månen Om flo og fjære og kunsten å veie Månen Jan Myrheim Institutt for fysikk NTNU 28. mars 2012 Innhold Målt flo og fjære i Trondheimsfjorden Teori for tidevannskrefter Hvordan veie Sola og Månen Friksjon

Detaljer

Fy1 - Prøve i kapittel 5: Bevegelse

Fy1 - Prøve i kapittel 5: Bevegelse Fy1 - Prøve i kapittel 5: Bevegelse Løsningsskisser Generelt: Alle svar skal avrundes korrekt med samme antall gjeldende siffer som er gitt i oppgaven. Alle svar skal begrunnes: - Tekst/figur/forklaring

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Prosjektoppgave i FYS-MEK 1110

Prosjektoppgave i FYS-MEK 1110 Prosjektoppgave i FYS-MEK 1110 03.05.2005 Kari Alterskjær Gruppe 1 Prosjektoppgave i FYS-MEK 1110 våren 2005 Hensikten med prosjektoppgaven er å studere Jordas bevegelse rundt sola og beregne bevegelsen

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999 E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 (ny læreplan) Elever og privatister 28. mai 1999 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011 NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn AKTIVITET 8-10. trinn Baneberegninger modellraketter Utviklet av Tid Læreplanmål Nødvendige materialer 1-2 timer Bruke egne målinger og tabellverdier til å gjøre baneberegninger på modellraketten. Modellrakett

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid RST 1 7 Arbeid og energi 38 7.201 Levende pendel måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid Eksperimenter Ta en bevegelsessensor og logger med i gymnastikksalen eller et sted

Detaljer

Fornavn. Etternavn. Innlæringsmål: forstå hvordan positive og negative magnetiske poler kan demonstrere tiltrekkende og frastøtende kraft.

Fornavn. Etternavn. Innlæringsmål: forstå hvordan positive og negative magnetiske poler kan demonstrere tiltrekkende og frastøtende kraft. 1 Magnetiske poler Innlæringsmål: forstå hvordan positive og negative magnetiske poler kan demonstrere tiltrekkende og frastøtende kraft. 1. Nevn fem objekter som en magnet vil tiltrekke seg. 2. Hva kalles

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Øving 20. mars 2015 Tidsfrist: 7.april 2015, klokken 23.55 Onsdag 25. mars kom det til en ekstraoppgave: Oppgave 4. Denne kan du velge å gjøre istedenfor oppgave 3. Det

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN 006 007 Andre runde: / 007 Skriv øverst: Navn, fødselsdato, e-postadresse, hjemmeadresse og skolens navn Varighet:

Detaljer

4.201 Brønndyp. Eksperimenter. Tips. I denne øvingen skal du lage en modell for beregning av fallhøyde teste modellen

4.201 Brønndyp. Eksperimenter. Tips. I denne øvingen skal du lage en modell for beregning av fallhøyde teste modellen RST 2 4 Bevegelse 20 4.201 Brønndyp lage en modell for beregning av fallhøyde teste modellen Eksperimenter Når en fysiker slipper en mynt i en ønskebrønn, er det for å måle hvor dyp brønnen er. Hun måler

Detaljer

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn AKTIVITET 8-10. trinn Baneberegninger modellraketter Utviklet av Tid Læringsmål Nødvendige materialer 1-2 timer Bruke egne målinger, formler og tabellverdier til å gjøre baneberegninger på modellraketten.

Detaljer

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst? TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Fiktive krefter. Gravitasjon og planetenes bevegelser

Fiktive krefter. Gravitasjon og planetenes bevegelser iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

FYSMEK1110 Oblig 5 Midtveis Hjemmeeksamen Sindre Rannem Bilden

FYSMEK1110 Oblig 5 Midtveis Hjemmeeksamen Sindre Rannem Bilden Oblig 5 Midtveis Hjemmeeksamen a) Om man tenker seg en trekant med side d, y og l. Vil l uttrykkes gjennom Pytagoras setning som l = y 2 + d 2. b) c) Fjærkraft er definert ved F = ± k l der l = l - l 0

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 04 05 Andre runde: 5/ 05 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: klokketimer

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

4 Funksjoner og andregradsuttrykk

4 Funksjoner og andregradsuttrykk 4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1

Detaljer

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP4105 Fluidmekanikk, Høst 2017 Oppgave 3-75 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:

Detaljer

Fysikkolympiaden 1. runde 29. oktober 9. november 2007

Fysikkolympiaden 1. runde 29. oktober 9. november 2007 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 9. oktober 9. november 007 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

DATALOGGING AV BEVEGELSE

DATALOGGING AV BEVEGELSE Elevverksted: DATALOGGING AV BEVEGELSE Astrid Johansen, 2009 Grafisk framstilling av en fysisk størrelse er viktig og brukes mye i realfag, og kanskje spesielt mye i fysikk. Det å kunne forstå hva en graf

Detaljer

Løsningsforslag Øving 1

Løsningsforslag Øving 1 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet

Detaljer

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje 2.1 Vi skal gjennomføre en enkel bestemmelse av gjennomsnittshastighet ved å simulere en luftputebenk. En vogn kan gli tilnærmet

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

3. Krefter. Newtons lover.

3. Krefter. Newtons lover. sikk for ingeniører Klassisk mekanikk 3 Krefter ewtons lover Side 3-3 Krefter ewtons lover Krefter og kreftenes betdning for å sette ting i bevegelse har fascinert menneskene i flere tusen år I dette kapitlet

Detaljer

a) Hva var satellittens gjennomsnittlige fart? Gi svaret i m/s. Begrunn svaret.

a) Hva var satellittens gjennomsnittlige fart? Gi svaret i m/s. Begrunn svaret. Sensurveiledning Emnekode: LGU51007 Semester: HØST År: 2015 Emnenavn: Naturfag 1 emne 1 Eksamenstype: Ordinær deleksamen 7. desember 2015 3 timer skriftlig eksamen Oppgaveteksten: Oppgave A. (15 av 120

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: YS1000 Eksamensdag: 26. mars 2015 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 7 sider Vedlegg: ormelark (2

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Fysikkolympiaden 1. runde 23. oktober 3. november 2017

Fysikkolympiaden 1. runde 23. oktober 3. november 2017 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 3. oktober 3. november 017 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Oppgaver i naturfag 19-åringer, fysikkspesialistene

Oppgaver i naturfag 19-åringer, fysikkspesialistene Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

1 Funksjoner og grafiske løsninger

1 Funksjoner og grafiske løsninger Oppgaver Funksjoner og grafiske løsninger KATEGORI. Rette linjer Oppgave.0 Vi har gitt likningene for noen rette linjer. Fll ut tabellene og tegn de rette linjene i hvert sitt koordinatsstem. a) = 3 0

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

TFY4115 Fysikk. Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger

TFY4115 Fysikk. Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger TFY4115 Fysikk Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger Termodynamikk ( 50 %): Def. Temperatur og varme. Termodynamikkens

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Statikk. Kraftmoment. F = 0, forblir ikke stolsetet i ro. Det begynner å rotere. Stive legemer

Statikk. Kraftmoment. F = 0, forblir ikke stolsetet i ro. Det begynner å rotere. Stive legemer Statikk Etter Newtons. lov vil et legeme som er i ro, forbli i ro hvis summen av kreftene på legemet er lik null. Det er i hvert fall tilfellet for et punktformet legeme. Men for et legeme med utstrekning

Detaljer

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagserksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 22. september kl 2:5 5:. Øing 3: Impuls, beegelsesmengde, energi. Bearingsloer. Oppgae a) Du er ute og sykler på en stor parkeringsplass.

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer