OPPGAVESETT MAT111-H17 UKE 39. Oppgaver til seminaret 29/9

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "OPPGAVESETT MAT111-H17 UKE 39. Oppgaver til seminaret 29/9"

Transkript

1 OPPGAVESETT MAT111-H17 UKE 39 Avsnitt 3.1: 9, 23, 34 Avsnitt 3.3: 48, 61 Avsnitt 3.4: 1, 2, 9 På settet: S.1 Oppgaver til seminaret 29/9 Oppgaver til gruppene uke 40 Løs disse først så disse Mer dybde Avsn , 21, 28 ( ), 29 Avsn , 4, 15, 29 Avsn , 17, 24, 43, 66 Avsn , 5, 11 Ch. Probl. Kap 1 7 Ch. Probl. Kap 2 13 På settet: G.1, G.2, G.3 G.4, G.5, G.6, G.7, G.8 ( ) I denne oppgaven kunne læreboken godt spesifisert uttrykt ved f 1 (x). Oppgavene under Mer dybde behandles i 2. time av det raske seminaret 6/10. Obligatoriske oppgaver Oppgavene 4 og 5 i Obligatorisk innlevering 2(innleveringsfrist mandag 09/10 kl. 14:00). 1

2 2 OPPGAVESETT MAT111-H17 UKE 39 OPPGAVE S.1 (Eksamen UiB) OPPGAVE G.1 (Deleksamen UiB-H03-Oppg. 8) OPPGAVE G.2 (Deleksamen UiB-H03-Oppg. 6) OPPGAVE G.3 (Eksamen UiB-V11-Oppg. 5)

3 OPPGAVESETT MAT111-H17 UKE 39 3 OPPGAVE G.4 (Deleksamen UiB-V04-Oppg. 7) OPPGAVE G.5 (Eksamen NTNU) Tidlig en mandag morgen begynte det å sne med en konstant rate. Klokken begynte en sneplog å rydde en vei. Klokken hadde den kjørt 5 km. Først klokken hadde den kjørt 10 km. Anta at plogen rydder unna sne med en konstant rate (i f.eks. kubikkmeter per time). La t = 0 idet det begynner å sne, og la x(t) være distansen sneplogen har kjørt ved tid t. Forklar hvorfor t x (t) = k for en konstant k. Hva var klokken da det startet å sne? OPPGAVE G.6 (a) Vis at en kontinuerlig én-til-én funksjon definert på et intervall I er strengt monoton, dvs. enten strengt voksende ( increasing ) eller strengt avtagende ( decreasing ), på sin definisjonsmengde. (b) Gi et eksempel som viser at konklusjonen i (a) ikke holder for en ikkekontinuerlig funksjon. (c) Vis at dersom f er en kontinuerlig funksjon som har en invers, da er den inverse funksjonen også kontinuerlig. (Deloppgavene (a) og (b) er i praksis lik Oppgavene 37 og 38 i Avsnitt 3.1 i læreboken.) OPPGAVE G.7 Bevis følgende sats, som gir en nyttig regel for å avgjøre om en funksjon er derivérbar eller ikke. Sats La f være kontinuerlig i a og derivérbar for alle x i en punktert omegn om a. (i) Dersom lim x a f (x) = L (med L et endelig tall), da er f derivérbar i a med f (a) = L.

4 4 OPPGAVESETT MAT111-H17 UKE 39 (ii) Dersom de to ensidige grensene lim x a f (x) og lim x a + f (x) eksisterer (og altså er endelige) men er ulike, eller en av dem er eller, da er f ikke derivérbar i a. Hint til beviset: Bruk definisjonen av derivert og del opp problemet i de to ensidige grensene. Dersom h > 0, bruk sekantsetningen på intervallet [a, a + h] til å konkludere at f(a + h) f(a) = f (c h ), h for en c h (a, a + h). Ta så grensen når h 0 +. Gjør så det samme for h < 0. Merknader (a) Husk at dersom f ikke er kontinuerlig i a, kan den heller ikke være derivérbar i a, ved Teorem 1 i 2.3, så da trenger vi ikke gjøre noe mer. (b) Merk også at satsen ikke sier noe i det tilfellet der én eller to av de ensidige grensene ikke eksisterer og ingen av dem er ±. Derfor kan f.eks. satsen ikke brukes på funksjonen x 2 sin 1, når x 0 x 0, når x = 0. (fra Oppgave G.2 i oppgavesett Uke 37, eller Oppgave i læreboken ( i utg. 7 og i utg. 6): Vi viste at f er derivérbar i 0 (med f (0) = 0) men lim x 0 f esisterer ikke og er heller ikke ± fra noen av sidene. (c) Merk at del (i) av satsen også gir at den deriverte er kontinuerlig i punktet a, siden den nettopp sier at lim x a f (x) = f (a) (se Definisjon 4 i 1.4). OPPGAVE G.8 Bruk Satsen fra forrige oppgave og andre resultater til å avgjøre om følgende funksjoner er derivérbare i 0: (a) e x 1, når x 0 sin x, når x < 0. (b) (c) Fasit/hint på neste side tan x, når x 0 ln(x 2 + 1), når x < 0. x, når x 0 x + 1, når x > 0.

5 OPPGAVESETT MAT111-H17 UKE 39 5 Fasit og hint til oppgavene For fasit/løsningsforslag til gamle eksamensoppgaver fra UiB, se vevsiden Merk at løsningsforslaget til Oppgave G.3 bruker teorien for separable differensialligninger fra 7.9. Oppgaven går imidlertid fint an å løse ved hjelp av teorien om eksponensiell vekst fra 3.4. Oppgave S.1. Kontinuitet krever β = 0. Ingen verdi av α gir derivérbarhet. Oppgave G.5. Hint til første del: Hvis raten er r (konstant), er snødybden ved tiden t lik h = rt. Hvis plogens bredde er b, x = x(t) er veistrekningen som plogen har kjørt, og V = V (t) er bortryddet snømengde, har vi dv = brt dx. Bruk så den dt dt gitte opplysningen at plogen rydder snø med konstant rate, kall raten a, som betyr dv = a. dt Hint til siste del: Differensialligningen kan skrives som dx = k, som har generell dt t løsning x(t) = k ln t + C. Sett t = t 0 når plogen begynner å kjøre klokken og bruk de gitte opplysningene til å sette opp tre ligninger, nok til å finne t 0 = 1. Det startet altå å snø én time før plogen startet, dvs. kl Oppgave G.8. (a) Derivérbar, ved satsen. (b) Ikke derivérbar, ved satsen. (c) Ikke derivérbar, siden ikke kontinuerlig (og satsen kan ikke brukes) LYKKE TIL! Andreas Leopold Knutsen

OPPGAVESETT MAT111-H16 UKE 43. Oppgaver til seminaret 28/10

OPPGAVESETT MAT111-H16 UKE 43. Oppgaver til seminaret 28/10 OPPGAVESETT MAT111-H16 UKE 43 Avsn. 5.1: 41 Avsn. 5.3: 3, 7 Avsn. 5.4: 13, 31, 37 På settet: S.1 Oppgaver til seminaret 28/10 Oppgaver til gruppene uke 44 Merknad: Oppgavene under skal kunne løses uten

Detaljer

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11 OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.

Detaljer

OPPGAVESETT MAT111-H17 UKE 38. Oppgaver til gruppene uke 39

OPPGAVESETT MAT111-H17 UKE 38. Oppgaver til gruppene uke 39 OPPGAVESETT MAT111-H17 UKE 38 Oppgaver til seminaret 22/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39

Detaljer

OPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39

OPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39 OPPGAVESETT MAT111-H16 UKE 38 Oppgaver til seminaret 23/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39

Detaljer

OPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11

OPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11 OPPGAVESETT MAT111-H16 UKE 46 (Tall i blått angir utgave 6.) Avsn. 6.2(6.3): 9, 20 Avsn. 6.3(6.2): 3, 19, 51(45). Avsn. 6.5: 13, 19, 31 Oppgaver til seminaret 18/11 Oppgaver til gruppene uke 47 Løs disse

Detaljer

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H16 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 9/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

OPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11

OPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11 OPPGAVESETT MAT111-H17 UKE 47 På settet: S.1, S.2, S.3, S.4, S.5 Oppgaver til seminaret 24/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn. 7.9 28, 29

Detaljer

OPPGAVESETT MAT111-H17 UKE 46. Oppgaver til seminaret 17/11

OPPGAVESETT MAT111-H17 UKE 46. Oppgaver til seminaret 17/11 OPPGAVESETT MAT111-H17 UKE 46 (Tall i blått angir utgave 6.) Avsn. 6.2(6.3): 9, 20 Avsn. 6.3(6.2): 19, 51(45). Avsn. 6.5: 13, 23, 31 Oppgaver til seminaret 17/11 Oppgaver til gruppene uke 47 Løs disse

Detaljer

OPPGAVESETT MAT111-H16 UKE 34

OPPGAVESETT MAT111-H16 UKE 34 OPPGAVESETT MAT111-H16 UKE 34 Avsnittene (og appendiksene) viser til utgave 8 av læreboken, som er like i utgavene 7 og 6 når ikke annet er oppgitt. Gruppene starter opp i uke 35. Hver student er satt

Detaljer

OPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08

OPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08 OPPGAVESETT MAT111-H17 UKE 34 Settet inneholder oppgaver fra stoffet omhandlet på forelesning uke 34, og består av seminaroppgaver, gruppeoppgaver og og obligatoriske oppgaver. Avsnittene og appendiksene

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil

Detaljer

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H16 UKE 45 Avsn. 6.1: 19, 31 Avsn. 7.9: 9, 17, 22 På settet: S.1, S.2 Oppgaver til seminaret 11/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 6.1 4, 5, 29

Detaljer

OPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11

OPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11 OPPGAVESETT MAT111-H16 UKE 47 Avsn. 7.1: 1, 11 På settet: S.1, S.2, S.3, S.4 Oppgaver til seminaret 25/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn.

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Harald Hanche-Olsen og Marius Irgens 20-02-02 Dette notatet ble først laget for MA02 våren 2008. Denne versjonen er omskrevet for MA02 våren 20. Du vil oppdage at mange

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

INNHOLD. Side Eksempeleksamen 2T - Hele oppgavesettet 1. Oppgave 1 Eksempeleksamen 10

INNHOLD. Side Eksempeleksamen 2T - Hele oppgavesettet 1. Oppgave 1 Eksempeleksamen 10 INNHOLD Side Eksempeleksamen 2T - Hele oppgavesettet 1 Oppgave 1 Eksempeleksamen 10 Oppgave 1a Eksempeleksamen 12 Teori oppgave 1a Eksempeleksamen 12 Løsning oppgave 1a Eksempeleksamen 14 Oppgave 1b Eksempeleksamen

Detaljer

Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a

Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a P n (x) = f (a) + f (a)(x a) + f (a) 2 (x a)2 + + f (n) (a) (x

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1 Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.

Detaljer

MA oppsummering så langt

MA oppsummering så langt MA1101 - oppsummering så langt Torsdag 29. september 2005 http://www.math.ntnu.no/emner/ma1101/2005h/ MA1101- oppsummering så langt p.1/21 Pensum til semesterprøven Kapittel P Kapittel 1 Kapittel 2: avsnittene

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon

Detaljer

Løsningsforslag til eksamen i MAT 1100, H06

Løsningsforslag til eksamen i MAT 1100, H06 Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

Trasendentale funksjoner

Trasendentale funksjoner Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 8 sider (inkludert formelsamling).

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Løysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016

Løysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016 Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

MAT jan jan jan MAT Våren 2010

MAT jan jan jan MAT Våren 2010 MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln

Detaljer

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

MAT1110. Obligatorisk oppgave 1 av 2

MAT1110. Obligatorisk oppgave 1 av 2 30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS INVERST FUNKSJONSTEOREM MAT1100 KALKULUS Simon Foldvik 29. Oktober 2017 1. Introduksjon Vi skal i dette dokumentet bevise en global og en lokal versjon av inverst unksjonsteorem i én variabel. Kort oppsummert

Detaljer

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1 LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 5

Løsningsforslag til utvalgte oppgaver i kapittel 5 Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Repitisjon av Diverse Emner

Repitisjon av Diverse Emner NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT00 Kalkulus Eksamensdag: Fredag 9. oktober 205 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark, formelsamling.

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte

Detaljer

Funksjonsdrøfting MAT111, høsten 2016

Funksjonsdrøfting MAT111, høsten 2016 Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert

Detaljer

Velkommen til MAT111, høsten 2017

Velkommen til MAT111, høsten 2017 Velkommen til MAT111, høsten 2017 Andreas Leopold Knutsen (foreleser) Kristine Lysnes (studieveileder) 16. august 2017 Undervisningstilbud Forelesninger tir og ons 10-12 (alt. 16-18 og 14-16) Seminar (=oppgavegjennomgang

Detaljer