f(t) F( ) f(t) F( ) f(t) F( )

Størrelse: px
Begynne med side:

Download "f(t) F( ) f(t) F( ) f(t) F( )"

Transkript

1 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for en gitt t, denere en ny variable 0 slik at 0 = t +. Da har vi d 0 = d, og vi far ' xy (t) = = x( 0, t)y( 0 )d 0 y()x(,t + )d = ' yx (,t) b) Na har vi y(t) = x(t). Ligningen utledet i a) omskrives ' x (t) = ' x (,t). Med andre ord er autokorrelasjonen en like funksjon. Vi har generelt xy (!) = = = = e,i!t ' xy (t)dt e,i!t x()y(t + )d dt e i! x()e,i!(t+) y(t + )d dt x()e i! y(t + )e,i!(t+) dtd For en gitt kan vi denere 0 = t +. Vi har da d 0 = dt, ogfar xy (!) = Z 0 x()e i! y( 0 )e,i! 0 d d = X (!)Y (!) ; hvor X (!) erden komplekse konjugerte av X(!). Nar y(t) = x(t)blir denne ligningen x (!) = X (!)X(!) = jx(!)j 2 :

2 Dette viser at Fourier transformen av autokorrelasjonen til et signal er lik energispekteret til signalet. Energispekteret viser i hvilke frekvensomrader energien til signalet ligger, og er lik amplitude-spekteret kvadrert. Det vil si at autokorrelasjonen inneholder den samme informasjonen som amplitude-spekteret jx(!)j. Kjenner vi ' x (t) kan vi regne ut A x (! = jx(!)j, og kjenner vi A x (!) kan vi beregne ' x (t), men vi mangler informasjon om fasen. Uten denne informasjonen kan vi ikke beregne x(t): To signaler som har samme autokorrelasjon funksjon er ikke ndvendigvis identiske. For eksempel er sin(! 0 t) og cos(! 0 t) forskjellige signaler, selv om de har samme autokorrelasjon (og samme amplitudespektrum), fordi de har forskellige fasespektrer (se oppgave 3). Oppgave 2 a) F (!) er diskret og ikke periodisk. Transformasjonen som brukes for a regne ut F (!) er formlene for koesientene i Fourierrekker. Koesientene a n representerer den reelle delen av et diskret spektrum, dvs denert bare for frekvenser n T. Koesientene b n representerer det imaginre spekteret. Spekteret er ikke periodisk. b) F (!) erna gitt av den vanlige Fourier transformen. Det er kontinuerlig og ikkeperiodisk. Dette er pa en mate grensetilfellet av a), hvor perioden T gar mot uendelig, som far avstanden f = 2! = mellom de to frekvensene i det T diskret spektrum a ga mot null. Dermed blir spekteret kontinuerlig. Merk at et kontinuerlig signal er ofte kalt analogt signal. c) F (!) erfortsatt gitt av den vanlige Fourier transformen. Den er kontinuerlig og periodisk, med periode F =, eller periode = hvis vi bruker angulr t 2t frekvens som variabel i spekteret, hvor t er samplingsintervallet. I praksis kan k vi beregne den ved noen bestemte frekvenser ved hjelp av den diskret Fourier Nt transformasjonen, kalt DFT. Signalene og amplitude spektrene er tegnet i gur 2, 3 og 4. Vi antar at fase spektret er null, og tegner det ikke. Vi ser pa gurene at kontinuitet i tids- eller frekvensdomenet er relatert til ikke-perioditet i det andre domenet. En periode T i tids-domenet gir en frekvensopplsning lik (gur 2). Et punktprvingsintervall t i tidsdomenet, gir et 2T spektrum med periode. Vanlige diskret (ogsa kalt digitale eller numeriske) signaler har 2t da som regel et kontinuerlig periodisk spektrum. Nar vi i praksis arbeider med diskret signaler (gur 3), og nsker a beregne spektret m.h.a. datamaskin, kan datamaskinen gjre dette bare for visse verdier av frekvensen. M.a.o ma vi ogsa diskretisere frekvensen. Vi kan da, som sagt, beregne spektret ved visse frekvenser m.h.a DFT (i praksis bruker man som regel en spesiell algoritme kalt fast Fourier tranform eller FFT). DFT virker slik at man far like mange sampler i frekvens-domenet som man hadde i tids-domenet, og disse samplene dekker en periode. Resultatet blir da et diskret spektrum, selv om spektret i teori er kontinuerlig (og periodisk). Jeg har illustrert dette i gur 4. Merk at samplingsintervallet t bestemmer maksimum og minimum frekvens som blir beregnet. 2

3 f(t) F( ) t Figure : Kontinuerlig periodisk signal f(t) F( ) t Figure 2: Vanlig (ikke periodisk) kontinuerlig signal f(t) F( ) t Figure 3: Vanlig (ikke periodisk) diskret signal 3

4 f(t) F( ) t 2π/T t N T=N. t 2π/ t Figure 4: Diskret signal, og spektret bergnet med DFT Derfor ma tvre kort nok (samplingsteorem). Pa den annen side bestemmer signallengden T frekvensopplsningen. Hvis vi legger en del null-sampler til slutten av signalet vart, vil vi ikke forandre maks. og min. frekvensene, men spektret vil bli tettere diskretisert. A legge en del null-sampler til slutten (og begynnelsen, for a bevare symmetri-egenskapene...) av spektret og ta en invers-dft vil vi pa den annen side fa tettere sampling i tids-domenet (som om man hadde samplet tettere...). Hvis kravene i samplings-teoremet er oppfyllt kan vi da pa denne maten ke opplsningen i tid (m.a.o. interpolere signalet) sa mye vi nsker... Oppgave 3 For a lse denne oppgaven kan vi bruke resultatene fra tidligere oppgaver. Vi husker (fra ving 2, oppgave ) at: F((t)) = () Vi har ofte papekt symmetrien mellom tids- og frekvensdomenet, og direkte og invers Fourier transformasjonene. Ved a bruke samme metode som for a utlede () (men \symmetrisk", altsa ved a bruke invers Fourier transform pa en delta-funksjon i frekvensdomenet) er det lett a vise at: 2 = F ((!)) (2) Dette blir illustrert i gur 5: Vi husker ogsa (ving 2, oppgave 3) at: F(f(t, t 0 )) = e,i!t0 F (!) Med samme metoden som i oppgave (men \symmetrisk"), kan vi vise at: Ved hjelp av (2) og (3) far vi: e i! 0t f(t) =F (F(!,! 0 )) (3) e i! 0t =2F ((!,! 0 )); eller F(e i! 0t )=2(!,! 0 ): (4) 4

5 f(t) F() (pluss null fase-spektrum) f(t) F() (pluss null fase-spektrum) /2π Figure 5: Delta-funksjon i tid og frekvens domener Vi har da ogsa Dessuten husker vi at F(e,i! 0t )=2(! +! 0 ); (5) cos(! 0 t)= 2 (ei! 0t + e,i! 0t ); og sin(! 0 t)= 2i (ei! 0t, e,i! 0t ): I og med at Fourier transformasjonen er en liner operator far vi da ved hjelp av (4) og (5). F(cos(! 0 t)=[(!,! 0 )+(!+! 0 )]; og F(sin(! 0 t)= i [(!,! 0),(!+! 0 )]: Merk at vi, i vart eksempel har at y(t) =x(t, 2! 0 ), og at det hadde vrt mulig a regne ut Y (!) fra X(!) ved a bruke resultatet om spektret til en forsinket versjon av et signal (ving 2, oppgave 3). Y (!) =e,i! 2! 0 X(!); som gir Y (! 0 ) = e,i=2 X(! 0 ) (6) =,ix(! 0 ) (7) Y (,! 0 ) = e i=2 X(,! 0 ) (8) = ix(! 0 ) (9) Amplitude og fasespektrene til x(t) ogy(t) er vist i gur 6. Formen til amplitude spektrene er veldig \logisk". En ren cosinus eller sinus-funksjon inneholder bare en gitt frekvens. Derfor 5

6 Α () x Α () y π π ϕ () x ϕ () y 0 0 Figure 6: Frekvensspektrene til cos(! 0 t)ogsin(! 0 t) kunne vi forvente a bare ha noe bidrag i spektret ved angulr frekvens! 0 (og -! 0,pa grunn av symmetri). Dette er viktig a huske pa! Egentlig er fasen ' y godt denert for! =! 0 og! =,! 0, men kunne ta andre verdier enn 2 for frekvenser forskjellige fra! 0, fordi spektret er null (uansett fasen) for disse frekvensene... Derfor er bade den stiplete og den kontinuerlige kurven gyldige muligheter for ' y (!). Oppgave 4 a) Vi har regnet ut spekteret til sinus funksjonen i oppgave 3: Y (!) =,i[(!,! 0 ), (! +! 0 )]; hvor vi her har at:! 0 =2(f N +f) Her vil vi gjerne bruke frekvens f i stedet for angulr frekvens!, som variabel for spekteret. Man ma merke seg at deltafunksjonen ma isa fall skaleres. Vi har, i denisjonen av (!), at: (!) = Tar vi! =2f og d! =2df far vi at: 6

7 /2 f N f δ f / t Figure 7: Imaginr delen av spektret til sinus-funksjonen fr sampling (analogt signal) (2f)df = 2 Sammenligner vi den siste ligningen med denisjonen av (f) ser vi at: (2f) = (f). Vi har da: 2 Y (f) =,i[(2(f, f 0 )), (2(f + f 0 ))] (0) =, i 2 [(f, f 0), (f + f 0 )]; () hvor f 0 = f N + f. I oppgave 3 har vi skissert fase og amplitudespektrene til Y (!), men siden den reelle delen er null er all informasjon inneholdt i det imaginre spekteret. Figur 7 viser dette imaginre spektret fr sampling (d.v.s. spektret til det kontinuerlige eller analoge signalet), har vi Nar vi sampler med t blir spektret periodisk. Vi tegner periodene med stiplet strek (gur 8). Hadde vi hatt riktig sampling, hadde det vrt mulig a rekonstruere spekteret til det endelige signalet vist i gur 7, ved bare a beholde frekvensene mellom,f N og f N (m.a.o. ved a lavpassltrere det digitale signalet...). Da hadde vi hatt de kontinuerlige strekene innenfor intervallet [,f N ;f N ], og de stiplete utenfor. Gjr vi dette na (for eksempel om vi \tror" at signalet ble samplet riktig), ser vi at vi vil rekonstruere spektret i gur 9 i stedet for spektret i gur 7. 7

8 /2 f δ f / t f N Figure 8: Imaginr delen av spektret til sinus-funksjonen etter sampling (digitalt signal) /2 - f N f f N / t Figure 9: Feil rekonstruksjon av det analoge signalet p.g.a. aliasing 8

9 2 Aliased sinus signal fn=0hz, deltaf=4.3hz Original signal Aliased signal Figure 0: Imaginr del av spektret til det analoge signalet vi rekonstruerer ut fra spektret i gur 7 Dette er spektret til en sinus funksjon z(t) =,sin(2(f N,f)t), som er forskjellig fra y(t). Blant annet har den en annen frekvens. Ved sampling med for lav frekvens (d.v.s. med tidssampler som ikke har vrt tette nok) har vi fjernet den opprinnelige \riktige" frekvensen f N + f, og vi far en foldet \uriktig" frekvens f N,f. Dette blir illustreres i gur 0: De to kurvene representerer de to analoge signaler (det opprinnelige og det "uriktige") med spektrene tegnet i gur 7 og 9. Punktprvene faller akkurat der disse signalene trees. Punktprver vi et av de to analoge signalene med sampligfrekvens 2f N, far vi de samme punktprvene, tilsvarende spektret tegnet i gur 8. Forskjellen mellom de to analoge signalene er at samplingsteoremet ikke er tilfredstilt for det frste signalet... b) Dette eksemplet viser at: Hvis det eksisterer, i det analoge signalet, frekvenser over f N, vil disse frekvensene ikke bare forsvinne nar vi sampler, men de vil ogsa danne frekvenser i det digitale signalet, som ikke eksisterte i det opprinnelige signalet. For a unnga dette kan vi ltrere bort frekvensene over f N i det analoge (kontinuerlige) signalet. Filteret som skal brukes er selvsagt analogt og lavpass. Et slikt lter kalles for \anti-alias lter". I vart eksempel far vi da ikke noe signal etter ltrering og sampling, i stedet for et falskt signal. 9

Wavelet P Sample number. Roots of the z transform. Wavelet P Amplitude Spectrum.

Wavelet P Sample number. Roots of the z transform. Wavelet P Amplitude Spectrum. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG Geofysisk Signalanalyse Lsningsforslag ving Oppgave a) Vi har Amplitudespekteret er da Y (!) =

Detaljer

Ghost amplitude spectrum. d=6 m V=1500 m/s c= 1

Ghost amplitude spectrum. d=6 m V=1500 m/s c= 1 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG445 Geofysisk Signalanalyse ving 5 En seismisk kilde er plassert pa endybde d ivann, hvor

Detaljer

Wiener filter of length 10 (performance 0.374) Pulse P Sample number. Wiener filter of length 10 (performance 0.

Wiener filter of length 10 (performance 0.374) Pulse P Sample number. Wiener filter of length 10 (performance 0. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG5 Geofysisk Signalanalyse Lsningsforslag ving 7 I forrige ving laget vi ltre ved frst a beregne

Detaljer

slik at en tredje denisjon kan ogsa brukes: F (!) Fff(t)g 1 p f(t) F ff(!)g 1 p f(t)e,i!t dt ; F (!)ei!t d! : Det er ogsa mulig a bruke frekvensen f i

slik at en tredje denisjon kan ogsa brukes: F (!) Fff(t)g 1 p f(t) F ff(!)g 1 p f(t)e,i!t dt ; F (!)ei!t d! : Det er ogsa mulig a bruke frekvensen f i NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG445 Geofysisk Signalanalyse Lsningsforslag ving 1 Oppgave 1 Det som er viktig med denisjonen av

Detaljer

Input α. Desired output. Linear prediction. Prediction error. Input α. Desired output. Linear prediction. Prediction error

Input α. Desired output. Linear prediction. Prediction error. Input α. Desired output. Linear prediction. Prediction error NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG445 Geofysisk Signalanalyse Lsningsforslag ving 8. Liner prediksjon bestar i aanvende et prediksjonslter,

Detaljer

Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004

Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004 Repetisjon: Diskret vs kontinuerlig Forelesning,.februar 4 Kap. 4.-4. i læreboken. Anta variabelen t slik at a < t < b, (a, b) R sampling og rekonstruksjon, i tids- og frekvensdomenet Nyquist-Shannons

Detaljer

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006 INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005 INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Repetisjon: Spektrum for en sum av sinusoider

Repetisjon: Spektrum for en sum av sinusoider Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

Fourier-Transformasjoner II

Fourier-Transformasjoner II Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4

Detaljer

Repetisjon: LTI-systemer

Repetisjon: LTI-systemer Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010 LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel

Detaljer

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler. Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen

Detaljer

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004 Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,

Detaljer

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos. Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 5, 2018 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel

Detaljer

Uke 9: Diskret Fourier Transform, I

Uke 9: Diskret Fourier Transform, I Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( ) INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning

Detaljer

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt.

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt. Side 1 av 5 + 2 sider vedlegg NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 94314 KONTINUASJONSEKSAMEN

Detaljer

Hjelpemidler/hjelpemiddel: D - "Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt."

Hjelpemidler/hjelpemiddel: D - Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt. Side av 8 + sider vedlegg NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 46660465

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:

Detaljer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

y(t) t

y(t) t Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

3UDNWLVN DQYHQGHOVH DY ')7

3UDNWLVN DQYHQGHOVH DY ')7 TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.

Detaljer

Sampling ved Nyquist-raten

Sampling ved Nyquist-raten Samplingsteoremet Oppgavegjennomgang, 7.mai Oversikt Presisering av samplingsteoremet Løse utsendt oppgave om sampling Løse oppgave, V Løse oppgave 3, V If a function f (t contains no frequencies higher

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.

Detaljer

Forelesening INF / Spektre - Fourier analyse

Forelesening INF / Spektre - Fourier analyse Forelesening INF 24 27/ - 25 Spektre - Fourier analyse Spektre - Fourier analyse og syntese Tosidig spektrum Beat notes Amplitudemodulasjon Periodiske og ikke-periodiske signaler Fourier rekker - analyse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470/4470 Digital signalbehandling Eksamensdag: 5. januar 019 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 9 sider. Vedlegg:

Detaljer

Sampling, kvantisering og lagring av lyd

Sampling, kvantisering og lagring av lyd Litteratur : Temaer i dag: Neste uke : Sampling, kvantisering og lagring av lyd Cyganski kap 11-12 Merk: trykkfeilliste legges på web-siden Sampling av lyd Kvantisering av lyd Avspilling av samplet og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 1. desember 013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 15 sider. Vedlegg:

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data. Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering

Detaljer

Uke 10: Diskret Fourier Transform, II

Uke 10: Diskret Fourier Transform, II Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):

Detaljer

EKSAMEN STE 6219 Digital signalbehandling

EKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG for KONTINUASJONSEKSAMEN I FAG SIE2010 Informasjons- og signalteori, 29. juli y(n) = ay(n 1) + x(n k),

LØSNINGSFORSLAG for KONTINUASJONSEKSAMEN I FAG SIE2010 Informasjons- og signalteori, 29. juli y(n) = ay(n 1) + x(n k), NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling LØSNINGSFORSLAG for KONTINUASJONSEKSAMEN I FAG SIE200 Informasjons- og signalteori, 29. juli 2002 Oppgave I Gitt

Detaljer

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen Frekvensene i DFT Forelesning 3. mai 4 Pensum i boken: fra 3-5.3 til 3-8.4, samt 3-9. Delkapitlene 3-8.5, 3-8.6 og 3-8.7 er nyttig selvstudium. Oversikt Spektralanalyse av signaler med endelig lengde Spektralanalyse

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av

Detaljer

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim FYS213 Svingninger og bølger, Obligatorisk oppgave C Nicolai Kristen Solheim FYS213 Svingninger og bølger Ukeoppgave, sett C Nicolai Kristen Solheim Ukeoppgave, sett C Oppgavetype 1 a) Læreboken beskriver

Detaljer

Fouriersyntese av lyd

Fouriersyntese av lyd Fouriersyntese av lyd Hensikt Laboppsettet vist p a bildet er kjent under navnet Fouriersyntese av lyd. Hensikten med oppsettet er a erfare hvordan ulike kombinasjoner av en grunntone og dens overharmoniske

Detaljer

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples 0700 Foreløbig versjon! INF 0 mars 07 Fourier I -- En litt annen vinkling på stoffet i kapittel I dag: Sinus-funksjoner i D og D D diskret Fouriertransform (DFT) Introduksjon I/II Et gråtonebilde Typisk

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

En innføring i Fourrierrekker

En innføring i Fourrierrekker En innføring i Fourrierrekker Matematiske metoder 2 Kristian Wråli, Sivert Ringstad, Mathias Hedberg 0 Innholdsfortegnelse Kapittel Side 1 Innledning 2 1.0 Introduksjon 2 1.1 Maple 2 2 Teori 7 2.0 Introduksjon

Detaljer

5. Fourieranalyse. 5.1 Innledende eksempler

5. Fourieranalyse. 5.1 Innledende eksempler 5. Fourieranalyse Fouriertransformasjon og fourieranalyse har klare likhetstrekk med middelalderens bruk av episykler for å beregne hvordan planeter og sola beveget seg i forhold til hverandre. Det forteller

Detaljer

SIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1;

SIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1; for fakultet E og F varen 998 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Lsningsforslag eksamen varen 998 Eksamen SIF5, mai 98 a) y, y +5y sin x P (r) r, r +5; r i Som

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005 NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget

Detaljer

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s) 303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...

Detaljer

Løsningsforslag til hjemmeeksamen i INF3440 / INF4440

Løsningsforslag til hjemmeeksamen i INF3440 / INF4440 Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte

Detaljer

Fakta om fouriertransformasjonen

Fakta om fouriertransformasjonen Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.

Detaljer

jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < ", far vi 7 ialt jf(x) f()j = jx + jjx j < 7 " 7 = " Dette blir flgelig ofylt for alle x sl

jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < , far vi 7 ialt jf(x) f()j = jx + jjx j < 7  7 =  Dette blir flgelig ofylt for alle x sl Lsningsforslag til utvalgte ogaver i kaittel 5 I kaittel 5 har mange av ogavene et mer teoretisk reg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt a a lage lsningsforslag til ogaver

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Bojana Gajić Tlf.: 92490623 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2015

MA1102 Grunnkurs i Analyse II Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i Analyse II Vår 215 Løsningsforslag Øving 5 11.3:3 f n (x) = 2n+1 x? = x 1 2n+1. (Det er muligens en forskjell

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen Dagens temaer Time 6: Analyse i frekvensdomenet Andreas Austeng@ifi.uio.no, INF3470 Institutt for informatikk, Universitetet i Oslo Oktober 2009 Fra forrige gang Frekvensrespons funksjonen Fourier rekker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

MAT Grublegruppen Notat 6

MAT Grublegruppen Notat 6 MAT00 - Grublegruppen Notat 6 Jørgen O. Lye Vektorrom og indreprodukt Vektorrom Vi trenger å si litt om vektorrom og indreprodukt for å formulere Fourierrekker. Denisjonen av vektorrom kan man tenke på

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Signalteori - Revidert 2005

Signalteori - Revidert 2005 Signalteori - Revidert 2005 Denne boka er et resultat av forelesninger i Signalteori ved Institutt for geovitenskap, Universitetet i Bergen. Jeg har beholdt rammen om pensum slik det har vært forelest

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: John Torjus Flåm Tlf.: 957602 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

Kap 7: Digital it prosessering av analoge signaler

Kap 7: Digital it prosessering av analoge signaler Kap 7: Digital it prosessering av analoge signaler Sverre Holm Temaer 1. Sampling og rekonstruksjon 2. Finne spektret til samplet signal 3. Gjenvinning med forskjellige interpolasjoner 4. Nullinnsetting

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum SPEKTALANALYSATORER Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum Vi har ofte nytte av å kunne veksle mellom de to grafiske presentasjonsmåtene for et elektrisk signal, tidsfunksjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling

Detaljer

Bildetransformer Lars Aurdal

Bildetransformer Lars Aurdal Bildetransformer Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Lars Aurdal. Forsvarets forskningsinstitutt (FFI), Kjeller. 5 ansatte. Ca. 3 forskere og ingeniører. Tverrfaglig institutt med vekt på arbeide

Detaljer

Oppgave 3c Konvolusjonsteoremet: f Λ g, F G og f g, F Λ G F rste del sier at konvolusjon i det romlige domenet (f Λ g) er det samme som pixelvis multi

Oppgave 3c Konvolusjonsteoremet: f Λ g, F G og f g, F Λ G F rste del sier at konvolusjon i det romlige domenet (f Λ g) er det samme som pixelvis multi Oppgave 3a 1 P N 1 N x=0 P N 1 y=0 f (x; y) e j2ß(ux+vy)=n Oppgave 3b 2D diskret konvolusjon for x =0to M for y =0to N h(x; y) =0 for m =0to M for n =0to N h(x; y)+ = f (m; n) Λ g(x m; y n) h(x; y) =h(x;

Detaljer

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens Introduksjon/motivasjon I INF2310 Digital bildebehandling FORELESNING 8 FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe I dag: Grunnlaget Grunnlaget og intuisjonen i Fourier-analyse

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Kapittel 4. Fourieranalyse. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. c 1

Kapittel 4. Fourieranalyse. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. c 1 Kapittel 4 Fourieranalyse I dette kapitlet skal vi ta for oss en meget anvendelig metode for å studere periodisitet Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. i en funksjon eller

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer