Feilestimeringer. i MAT-INF1100

Størrelse: px
Begynne med side:

Download "Feilestimeringer. i MAT-INF1100"

Transkript

1 Feilestimeringer i MAT-INF11 Ett v de viktigste punktene i MAT-INF11, og smtidig det som nsees som det vnskeligste i pensum, er feilestimter. Vi bruker mye tid på å beregne tilnærmede verdier for funksjoner, deriverte, integrerte etc. som ofte er gode estimter, men vi ønsker llikevel å kunne si noe om vor stor feil vi gjør. Hvis vi kller feilen for E, så r vi i tylorpolynomer t f () T n () E Tilsvrende for Newtons Quotient metode for derivsjon r vi f ( + ) f () f () E og for midtpunktmetoden i integrsjon r vi f ()d f ( 1/ ) (b ) E. I bok skilles det mellom trunkeringsfeil og vrundingsfeil. Trunkeringsfeilen oppstår som en følge v t vi ikke kn velge så liten vi vil på grunn v begrensninger på dtmskinen. Avrundingsfeilen oppstår når dtmskinen ikke kn representere tllene vi jobber med nøyktig. Tylorpolynomer Feilestimter i tylorpolynomer er rimelig rett frem, og er gitt eksplisitt i både bok og kompendium. Dersom vi r et tylorpylynom T n for en funksjon f, så er filen gitt ved: f f () T n (; ) (n+1) (ξ) ( )n+1, ξ [, ] (n + 1)! Dette kn mn lltid bruke når mn skl bruke tylorpolynomer som tilnærminger til funksjoner. Men usk t vis mn skl tilnærme et integrl ved å integrere et tylorpolynom, må mn integrere feilen også. Derivsjon Fremgngsmåten for å finne feilestimtene for de derivsjonsmetodene som står i kompendiet, er gnske så like, så jeg vil kun vise for newton s quotient så får dere t de to øvrige metodene som en oppgve: Trunkeringsfeil L oss begynne med et generelt Tylor-polynom v første grd om et punkt : f () f () + f ()( ) + ( ), ξ [, ] 1

2 Setter vi inn + får vi f ( + ) f () + f ()( + ) + ( + ) f () + f () + Flytter vi deretter f () over på venstresiden, deler på og tr bsoluttverdier, får vi f ( + ) f () f () som er nøyktig det vi lette etter. Dette er det vi kller for en trunkeringsfeil (vi r ikke ttt ensyn til vrundingsfeil end) så vi kn si t Avrundingsfeil E t m f (), [, + ] Videre r vi en vrundingsfeil. Hvis vi sier t funksjonsverdiene vi beregner r en liten vrundingsfeil, dvs. f () f ()(1 + ɛ 1 ) og f ( + ) f ( + )(1 + ɛ ) så r vi t: f ( + )(1 + ɛ 1 ) f ()(1 + ɛ ) så vi ser det t feilen, kll den E r, blir E r f ( + )ɛ 1 f ()ɛ m Totl feil f ( + ) f () + f ( + )ɛ 1 f ()ɛ ɛ f (), [, + ] Nå som vi r funnet ut v trunkeringsfeil og vrundingsfeil er, og dessuten funnet fornuftige begrensninger på disse, så konkluderer vi med t E E t + E r M 1 + ɛ M der M 1 m f (), [, + ] og M m f (), [, + ]. Symmetrisk metode Den symmetriske derivsjonsmetoden er gitt ved: f () f ( + ) f ( ) Denne er blitt gitt som en oppgve, og bør være elt løsbr med jelp fr det som står over, og i kompendiet. Et pr tips: Lg et tylor polynom som det over, ett for f ( + ) og ett for f ( ) og trekk polynomene fr verndre. Gjør tylorpolynomene v grd + feilledd.

3 Integrsjon - Midtpunktmetoden L oss, som over, strte med et tylorpolynom om punktet 1/ : f () f ( 1/ ) + f ( 1/ )( 1/ ) + ( 1/ ), ξ [, 1/ ] Hvis vi integrerer dette fr til b får vi [ ] 1 b f ()d f ( 1/ )(b ) + f ( 1/ )( 1/ ) + ( 1/ ) d Siden 1/ ligger midt mellom og b vil den store klossen i midten bli lik. Flytter vi litt om på dette og tr bsoluttverdier får vi f ()d f ( 1/ )(b ) ( 1/ ) d Som er nøyktig det vi forspeilet i innledningen. Hvis vi jobber litt med det siste uttrykket der, kn vi fort få det gnske mye enklere: ( 1/ ) d f (ξ) ( 1/ ) d ( 1/ ) d (b ) 3 4 ( 1/ ) d ( 1 3 ( 1/) 3 1 ) 3 (b 1/) 3 Den siste omskrivningen der ser knskje litt kryptisk ut, men vi får l det være. Unsett, feilen kn begrenses ved Eulers metode E (b ) 3, ξ [, b] 4 Ant t vi r en differensillikning på formen (t) T(t, (t)), slik t vi kn bruke eulers metode på den. T først et generelt tylorpolynom for en funksjon (t) v første grd om et punkt t : Hvis vi setter inn t + for t, får vi (t) (t ) + (t )(t t ) + (ξ) (t t ) (t + ) (t ) + (t )(t + t ) + (ξ) (t + t ) (t ) + T(t, (t )) + T (ξ, (ξ)), ξ [t, t + ] Dette gir oss t et steg med eulers metode fr t til t + r feilledd E T (t, (t )) 3

4 Noen generelle råd Husk t når vi jobber med feilestimter, så jobber vi ldri(!) med den nøyktige feilen. Spørsmålet er som regel vor liten vi kn grrntere t feilen er, og det er d disse uliketstegnene begynner å blomstre opp. Noen stndrdtriks finnes dog, og er er noen v dem: For lle tll vil (trekntuliketen) For lle funksjoner f, så vil For lle positive funksjoner f, så vil + b + b f ()d f () d f ()d ξd ξ(b ), ξ m [,b] f () Feilestimering er en todelt greie. Den første delen er å finne et fktisk uttrykk for feilen. Dette er (som ovenfor) ofte uttrykket ved feilleddet i et tylorpolynom. Den ndre delen er å bruke dette uttrykket på et fktisk problem. Sette inn tll og funksjoner i uttrykket, og jobbe med det til vi r en størrelse vi r kontroll over. Eksempel 1 Vi ønsker å tilnærme integrlet lurer på vor stor feil vi gjør. Det første vi gjør, er så tylorutvikle sin(). D får vi: sin() d med et tylorpolynom v femte grd, og vi sin() 3 3! + 5 5! 7, ξ [, ] Vi er i første omgng ikke interessert i å vite v integrlet blir, kun vilken feil vi gjør. Vi ser t Så feilen vi gjør er...eller... E E sin() 1 d f (7) (ξ) 1 6 d 3 3! + 5 5! 7 1 3! + 4 5! d d 6 d 1 6 d [ ] 6 f d (7) 1 (ξ) Begge estimtene over er korrekte, men kkurt er ser det ut til t det nederste fungerte best. 4

5 Eksempel Sett t vi r en differensillikning gitt ved t sin(), og vi ønsker å beregne et steg fr. til.1 med eulers metode. Vi r t feilen er E (t) [T(t, )] ( sin() + t cos() ) ( ) sin() + t sin() cos().1 ( ).55 5

9.6 Tilnærminger til deriverte og integraler

9.6 Tilnærminger til deriverte og integraler 96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe Numerisk kvdrtur PROBLEM STILLING: Approksimér 1/18 I(f) = f(x)dx. hvor f : R R. Numerisk sett, integrlet I(f) = f(x)dx pproksimeres med en summe Q n (f) = w i f(x i ), n-punkter regel hvor x 1 < x 2

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

Numerisk matematikk. Fra Matematikk 3MX (2002) Side

Numerisk matematikk. Fra Matematikk 3MX (2002) Side Numerisk mtemtikk Fr Mtemtikk 3MX (2002) Side 142 147 142 Kpittel 4: Integrlregning 47 NUMERISK MATEMATIKK pffiffiffiffiffi På lommeregneren finner du rskt t 71 er lik 8,426150, og t lg 5 er lik 0,698970

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen 3 Oversikt over Mtemtikk Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens v ekstrempunkt Elementære funksjoner Derivsjon Sekntsetningen Integrsjon Differensilligninger Kurver i plnet Rekker

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon Integrsjon del Deprtment of Mthemticl Sciences, NTNU, Norwy Octoer 5, 4 Integrsjon Sustitusjon for estemte integrler Husk kjærneregel d dt f (g(t)) = f (g(t)) g (t) ved fundmentlteoremet (del ) vi får

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 Forord Dette kompendiet dekker nlysedelen v pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på nvendelser v teorien enn på dens

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Multippel integrasjon. Geir Ellingsrud

Multippel integrasjon. Geir Ellingsrud Multippel integrsjon. Geir Ellingsrud 2. pril 24 2 NB: Dette er en midlertidig versjon dtert 2. pril 24. Den kommer til å bli utvidet og korrigert fortløpende!!. Dobbelt integrlet over rektngler og iterert

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Alger Aritmetiske opersjoner ( + c) = + c + c Potensregler Polynom = + c + c d + c = d c c d = d c = d c x y = x+y x = x / x y = x y n x = x /n 0 = x n = x n ( x ) y = xy () x =

Detaljer

Kom i gang med Tett på Smartbok! Vi veileder deg steg for steg!

Kom i gang med Tett på Smartbok! Vi veileder deg steg for steg! Kom i gng med Tett på Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke fine funksjoner for god studieteknikk. Du kn mrkere gode nøkkelord og lge egne notter mens du lytter

Detaljer

Kapittel 4.7. Newtons metode. Kapittel 4.8.

Kapittel 4.7. Newtons metode. Kapittel 4.8. Ekskt løsning Newtons metode - Integrsjon Forelesning i Mtemtikk TMA00 Hns Jko Rivertz Institutt for mtemtiske fg 0. septemer 0 Kpittel.7. Newtons metode Den ekskte løsningen v x x = 0er ikke særlig rukelig

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

Kom i gang med Panorama Smartbok! Vi veileder deg steg for steg!

Kom i gang med Panorama Smartbok! Vi veileder deg steg for steg! Kom i gng med Pnorm Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke fine funksjoner for god studieteknikk. Du kn mrkere gode nøkkelord og lge egne notter mens du lytter

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 Dette kompendiet dekker nlysedelen v pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på nvendelser v teorien enn på dens formelle

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Algebr Aritmetiske opersjoner (b + c) b + c + c b Potensregler Polynom b + c b b + c d + bc d bc b c d b d c d bc x y x+y x x / x y x y n x x /n 0 x n x n ( x ) y xy (b) x x y (

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Uten hjelpemidler. 1 Rekker. 18 = 2 + 2d 18 2 = 2d. 2) Når følgen er geometrisk, er a a k 18 = 2 k 2. k 2 = 18 2 = 9

Uten hjelpemidler. 1 Rekker. 18 = 2 + 2d 18 2 = 2d. 2) Når følgen er geometrisk, er a a k 18 = 2 k 2. k 2 = 18 2 = 9 Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3 Siden

Detaljer

Numerisk kvadratur. Newton-Cotes kvadratur. PROBLEM STILLING: Approksimér. I(f) = f(x)dx. hvor f : R R kan Riemann-integreres.

Numerisk kvadratur. Newton-Cotes kvadratur. PROBLEM STILLING: Approksimér. I(f) = f(x)dx. hvor f : R R kan Riemann-integreres. Numerisk kvdrtur PROBLEM STILLING: Approksimér 1/15 I(f) = hvor f : R R kn Riemnn-integreres. b f(x)dx. Newton-Cotes kvdrtur Newton-Cotes kvdrtur erbsert på ekvidistnte noder i [, b]: For en n-noder åpen

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Dagens program. 7.6 Numerisk integrasjon (fortsatt) 7.7 Uegentlige integraler

Dagens program. 7.6 Numerisk integrasjon (fortsatt) 7.7 Uegentlige integraler Dgens progrm 7.6 Numerisk integrsjon (fortstt) 7.7 Uegentlige integrler Forelesningen onsdg 28. oktober flyttes til ud. R7. Trpesmetoden Merknd side 479 Den tilnærmede verdien til integrlet f (x)dx beregnet

Detaljer

KAPITTEL 9 Approksimasjon av funksjoner

KAPITTEL 9 Approksimasjon av funksjoner KAPITTEL 9 Approksimsjon v funksjoner En grunnleggende teknikk som ofte brukes i ulike deler v mtemtikk og nvendelser er å tilnærme eller pproksimere et objekt med et nnet. Som regel er objektet som skl

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 En-vribel klkulus I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d)

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d) Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d 6 d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk 0 EMNENUMMER: REA04 EKSAMENSDATO:. desember 008 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg!

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg! Kom i gng med Perspektiver Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke funksjoner for god studieteknikk. Du kn blnt nnet mrkere nøkkelord og lge notter mens du lytter

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO:. ugust 9 KLASSE:. klssene, ingenørutdnning og fleing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

Kvalitetssikring av elektronisk pasientjournal - Skjema 1

Kvalitetssikring av elektronisk pasientjournal - Skjema 1 70778 EPJ Kvlitetssikring Skjem v. Hllvrd Lærum (tlf. 79886) Kvlitetssikring v elektronisk psientjournl - Skjem I dette spørreskjemet ønsker vi å få vite noe om din prktiske ruk v og ditt syn på elektronisk

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1 Repetisjon i Mtemtikk, 4. desember 0: Komplekse tll og Derivsjon Komplekse tll. Regn ut og skriv på normlform i 5 + i b 8 i 7 + 5i c 5 + i 6 i. Regn ut og skriv på normlform d 4 i + i e i 5 + 4i eiπ 6

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π Innlevering ELFE KJFE MAFE Mtemtikk HIOA Obligtorisk innlevering 5 Innleveringsfrist Mndg 6. oktober 5 før forelesningen : Antll oppgver: Løsningsforslg Finn de ubestemte integrlene ) x 4/x dx LF: x 4/x

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

addisjon av 2 og 3. Vi skriver da i alt: 2+3= og etter at likhetstegnet er skrevet så gir matcad oss svaret.

addisjon av 2 og 3. Vi skriver da i alt: 2+3= og etter at likhetstegnet er skrevet så gir matcad oss svaret. ddisjon v og. Vi skriver d i lt: += og etter t likhetstegnet er skrevet så gir mtcd oss svret. + + + = 5 ddisjon med + først. Skriv inn et +tegn, så og bruk TAB + + + + = 5 minus 5 5 5 = Å bruke gngetegn

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA42 og REA42f EKSAMENSDATO:. desember 2 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 EKSAMENSDATO:. desember 9 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9. 3.. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s)

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s) Integrl Kokeboken 4 3 4 6 8 log sinπ sinh π 4 + loglog loglog + C cos + sin π s e Γs n n s Γsζs π + sin +cos log + cos i Del I. Brøk................................... Trigonometriske funksjoner.....................

Detaljer

Tillegg om integralsatser

Tillegg om integralsatser Kpittel 7 Tillegg om integrlstser 7.1 Integrlstser, fundmentlstser Fr et mtemtiske snspunkt er integrlstser beslektet med b f) d = fb) f) b β dr = βr b ) βr ) der den første klles nlsens fundmentlteorem,

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007 Msteroppgve i mtemtikkdidktikk Fkultet for relfg Ho/gskolen i Agder - V ren 2007 Integrl og integrsjon Roger Mrkussen Roger Mrkussen Integrl og integrsjon Msteroppgve i mtemtikkdidktikk Høgskolen i Agder

Detaljer

Emnebeskrivelse og emneinnhold

Emnebeskrivelse og emneinnhold Emnebeskrivelse og emneinnhold Knut STUT 11. mars 2016 MAT-INF1100 Kort om emnet Naturlige tall, induksjon og løkker, reelle tall, representasjon av tall i datamaskiner, numerisk og analytisk løsning av

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

INF1800 Forelesning 19

INF1800 Forelesning 19 INF1800 Forelesning 19 Førsteordens logikk Roger Antonsen - 21. oktober 2008 (Sist oppdtert: 2008-10-21 20:12) Repetisjon Semntikk Hvis M er en modell og ϕ er en lukket formel, så definerte vi M = ϕ. Vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x2 ) + sin(x 2 ) dx = 2π. 1 k t.

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x2 ) + sin(x 2 ) dx = 2π. 1 k t. Integrl Kokeboken 4 3 4 6 8 sinπ sinh π 4 log + loglog loglog + C cos + sin π t e Γt k k t Γtζt rcsin + rccos π + C Integrl fr R til Z π 6 sec y dy ln 3 i 64 The integrl sec y dy From zero to one-sith

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Microsoft PowerPoint MER ENN KULEPUNKTER

Microsoft PowerPoint MER ENN KULEPUNKTER Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:

Detaljer

Ma1101. Part I. 1 Grunnleggende. 1.1 Noen symboler. 1.2 Tallene. 1.3 Noen algebraiske lover

Ma1101. Part I. 1 Grunnleggende. 1.1 Noen symboler. 1.2 Tallene. 1.3 Noen algebraiske lover Prt I M1101 1 Grunnleggende 1.1 Noen symboler Union A B i A og/eller B Snitt A B i både A og B Element i B er et element i B Undersett A B A er et undersett v B Skikkelig undersett A B A er et undersett

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

Oppfriskningskurs i matematikk 2007

Oppfriskningskurs i matematikk 2007 Oppfriskningskurs i mtemtikk 2007 Mrte Pernille Htlo Institutt for mtemtiske fg, NTNU 6.-11. ugust 2007 Velkommen! 2 Temer Algebr Trigonometri Funksjoner og derivsjon Integrsjon Eksponensil- og logritmefunksjoner

Detaljer

R2 eksamen våren 2014. (19.05.2014)

R2 eksamen våren 2014. (19.05.2014) R Eksmen V04 R eksmen våren 04. (9.05.04) Løsningsskisser (Versjon 3.0.4) Del - Uten hjelpemidler Oppgve ) fx sinu; u 3x Kjerneregel: f x f uu x cosu3 3 cos3x b) e x e x med kjerneregel som i ) Produktregel:

Detaljer