INF4170 { Logikk. Forelesning 2: Frsteordens logikk. Arild Waaler. 10. september Institutt for informatikk, Universitetet i Oslo

Størrelse: px
Begynne med side:

Download "INF4170 { Logikk. Forelesning 2: Frsteordens logikk. Arild Waaler. 10. september Institutt for informatikk, Universitetet i Oslo"

Transkript

1 INF4170 { Logikk Forelesning 2: Frsteordens logikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 10. september 2013

2 Dagens plan 1 Innledning til frsteordens logikk 2 Frsteordens logikk - syntaks 3 Frsteordens logikk - semantikk 4 Frsteordens sekventkalkyle 5 Sunnhet av frsteordens sekventkalkyle 6 Kompletthet av LK Institutt for informatikk (UiO) INF4170 { Logikk / 119

3 Innledning til frsteordens logikk 1 Innledning til frsteordens logikk Introduksjon Overblikk Syntaks Eksempler pa frsteordens sprak Syntaks Eksempler pa frsteordens formler Institutt for informatikk (UiO) INF4170 { Logikk / 119

4 Innledning til frsteordens logikk Introduksjon Introduksjon I utsagnslogikk kan vi analysere de logiske konnektivene :, ^, _ og!, og resonnering som gjres med slike. Frsteordens logikk (ogsa kalt predikatlogikk) utvider utsagnslogikk med kvantorer: 9 (eksistenskvantoren) og 8 (allkvantoren). Vi kan med disse uttrykke pastander om at det nnes et objekt med en bestemt egenskap eller at alle objekter har en bestemt egenskap. Frsteordens logikk er langt rikere enn utsagnslogikk. Frsteordens logikk er ikke avgjrbart. Institutt for informatikk (UiO) INF4170 { Logikk / 119

5 Innledning til frsteordens logikk Introduksjon Noen eksempler Noen pastander som vi kan representere og analysere ved frsteordens logikk er flgende: \Ethvert heltall er enten partall eller oddetall." \Det ns uendelig mange primtall." \Mellom to brktall ns det annet brktall." \Hvis a er mindre enn b og b er mindre enn c, sa er a mindre enn c." Institutt for informatikk (UiO) INF4170 { Logikk / 119

6 Innledning til frsteordens logikk Introduksjon Flere eksempler Av mindre matematisk art: \Alle I-studenter er late." \Ingen I-studenter er late." \Noen I-studenter er late." \Alle I-studenter som er late, far problemer pa eksamen." \Noen I-studenter som er late, far ingen problemer pa eksamen." \Enhver I-student er enten lat eller ikke lat." \Alle bevisbare formler er gyldige." \Det ns to sherier i byen." Institutt for informatikk (UiO) INF4170 { Logikk / 119

7 Innledning til frsteordens logikk Overblikk Overblikk Syntaks: frsteordens sprak og formler { en utvidelse av utsagnslogikk. Semantikk: tolkninger av frsteordens formler { modeller, sannhet, oppfyllbarhet, gyldighet. Kalkyle: tillegg av regler. Sunnhet: alle bevisbare sekventer er gyldige. Kompletthet: alle gyldige sekventer er bevisbare. Institutt for informatikk (UiO) INF4170 { Logikk / 119

8 Innledning til frsteordens logikk Syntaks Syntaks Denisjon (Frsteordens sprak - logiske symboler) Alle frsteordens sprak bestar av flgende logiske symboler: De logiske konnektivene ^, _,! og :. Hjelpesymbolene `(' og `)' og `,'. Kvantorene 9 (det ns) og 8 (for alle). En tellbart uendelig mengde V av variable x 1 ; x 2 ; x 3 ; : : : (vi skriver x, y, z,..., for variable). Institutt for informatikk (UiO) INF4170 { Logikk / 119

9 Innledning til frsteordens logikk Syntaks Syntaks Denisjon (Frsteordens sprak - ikke-logiske symboler) I tillegg bestar et frsteordens sprak av flgende mengder av ikke-logiske symboler: En tellbar mengde av konstantsymboler c 1 ; c 2 ; c 3 ; : : :. En tellbar mengde av funksjonssymboler f 1 ; f 2 ; f 3 ; : : :. En tellbar mengde av relasjonssymboler R 1 ; R 2 ; R 3 ; : : :. Vi antar at mengdene av variable, konstant-, funksjons- og relasjonssymboler er disjunkte, og vi assosierer med ethvert funksjons- og relasjonssymbol et ikke-negativt heltall, kalt ariteten til symbolet. Institutt for informatikk (UiO) INF4170 { Logikk / 119

10 Innledning til frsteordens logikk Syntaks Syntaks Merk Det eneste som skiller to frsteordens sprak fra hverandre er de ikke-logiske symbolene. Denisjon (Signatur) De ikke-logiske symbolene utgjr det som kalles en signatur. En signatur angis ved et tuppel hc 1 ; c 2 ; c 3 ; : : : ; f 1 ; f 2 ; f 3 ; : : : ; R 1 ; R 2 ; R 3 ; : : :i, hvor konstant-, funksjonsog relasjonssymboler er adskilt med semikolon. Institutt for informatikk (UiO) INF4170 { Logikk / 119

11 Innledning til frsteordens logikk Syntaks Syntaks Denisjon (Termer) Mengden T av frste-ordens termer er induktivt denert som den minste mengden slik at: Enhver variabel og konstant er en term. Hvis f er et funksjonssymbol med aritet n og t 1 ; : : : ; t n er termer, sa er f (t 1 ; :::; t n ) en term. Institutt for informatikk (UiO) INF4170 { Logikk / 119

12 Innledning til frsteordens logikk Eksempler pa frsteordens sprak Eksempler pa frsteordens sprak Et enkelt sprak: ha; f ; g ; P; Ri Konstantsymboler: a Funksjonssymboler: f (med aritet 1) og g (med aritet 2) Relasjonssymboler: P (med aritet 1) og R (med aritet 2) Termer i dette spraket: Notasjon a, x, y,..., f (a), f (x), f (y),... g(a; a), g(a; x), g(a; y), g(x; x), g(x; y), g(y ; y),... f (f (a)), f (f (x)), f (f (y)),... Sa lenge det er entydig og ariteten er kjent, kan vi droppe parentesene og skrive fa, fx, fy, gaa, gax,.... Institutt for informatikk (UiO) INF4170 { Logikk / 119

13 Innledning til frsteordens logikk Eksempler pa frsteordens sprak Eksempler pa frsteordens sprak Et sprak for aritmetikk: h0; s; +; =i Konstantsymboler: 0 Funksjonssymboler: s (med aritet 1) og + (med aritet 2) Relasjonssymboler: = Kommentarer: Termer: x; y ; 0; s0; ss0; sss0; +xy ; +00; +(s0)0; +0s0; : : : Ikke termer: = (x; x); ++; +0; : : : Nar vi skriver +xy bruker vi preks notasjon. Vi bruker ogsa inks notasjon og skriver: (x + y); (0 + 0); (s0 + 0); (0 + s0); : : :. Institutt for informatikk (UiO) INF4170 { Logikk / 119

14 Innledning til frsteordens logikk Eksempler pa frsteordens sprak Eksempler pa frsteordens sprak Et annet sprak for aritmetikk: h0; 1; +; ; =; <i Konstantsymboler: 0; 1 Funksjonssymboler: + og (begge med aritet 2) Relasjonssymboler: = og < (begge med aritet 2) Et sprak for mengdelre: h;; \; [; =; 2i Konstantsymboler: ; Funksjonssymboler: \ og [ (begge med aritet 2) Relasjonssymboler: = og 2 (begge med aritet 2) Institutt for informatikk (UiO) INF4170 { Logikk / 119

15 Innledning til frsteordens logikk Eksempler pa frsteordens sprak Eksempler pa frsteordens sprak Et sprak for familierelasjoner: hola; Kari; mor; far; Mor; Far; Slektningi Konstantsymboler: Ola og Kari Funksjonssymboler: mor, far (begge med aritet 1) Relasjonssymboler: Mor, Far, Slektning (alle med aritet 2) Termer i spraket for familierelasjoner: x, Ola og Kari er termer. mor(ola), mor(kari), far(ola) og far(kari) er termer. mor(x) og far(x) er termer. mor(mor(x)) og mor(far(kari)) er termer. Institutt for informatikk (UiO) INF4170 { Logikk / 119

16 Innledning til frsteordens logikk Syntaks Syntaks Denisjon (Atomr formel - frsteordens) Hvis R er et relasjonssymbol med aritet n og t 1 ; : : : ; t n er termer, sa er R(t 1 ; : : : ; t n ) en atomr formel. Merk Hvis R har aritet 0, sa er R en atomr formel. Dette svarer til utsagnsvariable i utsagnslogikk. Sa lenge det er entydig og ariteten er kjent skriver vi Rx, Rfa, Rafa, etc. for R(x), R(f (a)) og R(a; f (a)). Institutt for informatikk (UiO) INF4170 { Logikk / 119

17 Innledning til frsteordens logikk Syntaks Syntaks Denisjon (Frsteordens formler) Mengden F av frsteordens formler er den minste mengden slik at: 1 Alle atomre formler er formler. 2 Hvis ' og er formler, sa er :', (' ^ ), (' _ ) og ('! ) formler. 3 Hvis ' er en formel og x er en variabel, sa er 8x' og 9x' formler. Alle forekomster av en variabel x i ' sies a vre bundet i formlene 8x' og 9x' og innenfor skopet til den gjeldende kvantoren. Institutt for informatikk (UiO) INF4170 { Logikk / 119

18 Innledning til frsteordens logikk Eksempler pa frsteordens formler Eksempler pa frsteordens formler Et sprak for beundring: ha; b; ; Idol; Likeri Konstantsymboler: a og b Funksjonssymboler: (ingen) Relasjonssymboler: Idol (med aritet 1) og Liker (med aritet 2) Formler i spraket: Atomre formler: Idol(x); Idol(a); Liker(a; a); Liker(a; b) 9xIdol(x) - \det ns et Idol" 8x9yLiker(x; y) - \alle liker noen" 8xLiker(x; a) - \alle liker a" :9x Liker(x; b) - \ingen liker b" 8x(Idol(x)! Liker(x; x)) - \alle idoler liker seg selv" Institutt for informatikk (UiO) INF4170 { Logikk / 119

19 Innledning til frsteordens logikk Eksempler pa frsteordens formler Eksempler pa frsteordens formler I spraket for aritmetikk h0; s; +; =i, sa har vi formlene s0 + s0 = ss0 - \en pluss en er to" 8x8y(x + y = y + x) - \addisjon er kommutativt" 8x9y(y = sx) - \alle tall har en etterflger" :9x(0 = sx) - \0 er ikke etterflgeren til noe" 9x9y:(x = y) - \det ns to forskjellige objekter" Institutt for informatikk (UiO) INF4170 { Logikk / 119

20 Frsteordens logikk - syntaks 2 Frsteordens logikk - syntaks Repetisjon Frie variable Substitusjoner Lukkede og apne formler Institutt for informatikk (UiO) INF4170 { Logikk / 119

21 Frsteordens logikk - syntaks Repetisjon Repetisjon Et frsteordens sprak L bestar av: 1 Logiske symboler konnektiver: ^, _,! og : hjelpesymboler: `(' og `)' og `,' kvantorer: 9 og 8 variable: V = fx 1 ; x 2 ; x 3 ; : : :g 2 Ikke-logiske symboler: en tellbar mengde konstantsymboler en tellbar mengde funksjonssymboler (med aritet) en tellbar mengde relasjonssymboler (med aritet) De ikke-logiske symbolene utgjr en signatur h c 1 ; c 2 ; c 3 ; : : : ; f 1 ; f 2 ; f 3 ; : : : ; R 1 ; R 2 ; R 3 ; : : : i. {z } {z } {z } konstantsymboler funksjonssymboler relasjonssymboler Institutt for informatikk (UiO) INF4170 { Logikk / 119

22 Frsteordens logikk - syntaks Repetisjon Repetisjon Vi sa flgende signaturer sist: enkelt sprak: h a ; f ; g ; P; R i aritmetikk 1: h 0 ; s; + ; = i aritmetikk 2: h 0; 1 ; +; ; =; < i mengdelre: h ; ; \; [ ; =; 2 i familierelasjoner:h Ola; Kari ; mor; far ; Mor; Far; Slektning i beundring: h a; b ; ; Idol; Liker i Institutt for informatikk (UiO) INF4170 { Logikk / 119

23 Frsteordens logikk - syntaks Repetisjon Repetisjon Hvis et frsteordens sprak L er gitt, sa far vi (denert induktivt): 1 Mengden T av termer i L: Enhver variabel og konstant er en term. Hvis f er et funksjonssymbol med aritet n og t 1 ; : : : ; t n er termer,sa er f (t 1 ; :::; t n ) en term. 2 Mengden F av formler i L: Hvis R er et relasjonssymbol med aritet n og t 1 ; : : : ; t n er termer,sa er R(t 1 ; : : : ; t n ) en (atomr) formel. Hvis ' og er formler,sa er :', (' ^ ), (' _ ) og ('! ) formler. Hvis ' er en formel og x er en variabel,sa er 8x ' og 9x ' formler. Alle forekomster av en variabel x i ' sies a vre bundet i formlene 8x' og 9x' og innenfor skopet til den gjeldende kvantoren. Institutt for informatikk (UiO) INF4170 { Logikk / 119

24 Frsteordens logikk - syntaks Repetisjon Repetisjon I spraket for beundring ha; b; ; Idol; Likeri kan vi uttrykke: 1: Alice liker Bob: Liker(a; b) 2: Alice liker alle: 8xLiker(a; x) 3: Alice liker alle som Bob liker: 8x(Liker(b; x)! Liker(a; x)) 4: Noen liker seg selv: 9xLiker(x ; x) 5: Bob liker alle som liker seg selv: 8x(Liker(x ; x)! Liker(b; x)) 6: Ingen liker bade Alice og Bob: :9x(Liker(x ; a) ^ Liker(x ; b)) 8x(Liker(x ; a)! :Liker(x ; b)) 7: Noen liker ikke seg selv: 9x:Liker(x ; x) 8: Bob liker noen som liker Alice: 9x(Liker(b; x) ^ Liker(x ; a)) 9: En som blir likt av alle er et idol: 8x(8y Liker(y ; x)! Idol(x)) 10: Et idol blir likt av alle: 8x(Idol(x)! 8y Liker(y ; x)) Institutt for informatikk (UiO) INF4170 { Logikk / 119

25 Frsteordens logikk - syntaks Frie variable Frie variable i termer Denisjon (Frie variable i en term) FV(t) betegner mengden av frie variable i termen t. Denisjon (Lukket term) En term t er lukket hvis FV(t) = ;, dvs. t inneholder ingen frie variable. Eksempel I spraket ha; b; f ; i har vi: Termen f (x; a) har en fri variabel x. Termen f (a; b) har ingen frie variable og er en lukket term. Institutt for informatikk (UiO) INF4170 { Logikk / 119

26 Frsteordens logikk - syntaks Frie variable Rekursive denisjoner Nar mengder er denert induktivt, sa kan vi denere funksjoner over denne mengden rekursivt ved a 1 gi verdi til de \atomre" elementene (i basismengden), og 2 gi verdi til \sammensatte" elementene (fra induksjonssteget) ved a bruke verdiene som ble gitt til komponentene. Den presise, rekursive denisjonen av FV er flgende. Denisjon (Frie variable - denert rekursivt) Gitt en term t, la mengden FV(t) av frie variable i t vre denert rekursivt ved: FV(x i ) = fx i g, for en variabel x i, og FV(c i ) = ;, for en konstant c i, og FV(f (t 1 ; : : : ; t n )) = FV(t 1 ) [ [ FV(t n ), for et funksjonssymbol f med aritet n. Institutt for informatikk (UiO) INF4170 { Logikk / 119

27 Frsteordens logikk - syntaks Frie variable Frie variable i formler Denisjon (Frie variable i en formel) En variabelforekomst i en frsteordens formel er fri hvis den ikke er bundet, dvs. hvis den ikke er innenfor skopet til en kvantor. Vi skriver FV(') for mengden av frie variable i '. Eksempel (8xRxy ^ Pz) x er bundet y er fri z er fri Eksempel (8xPxy! 8zPzx) x er bundet x er fri y er fri z er bundet Oppgave Gi den presise, rekursive, denisjonen av frie variable i en formel. Institutt for informatikk (UiO) INF4170 { Logikk / 119

28 Frsteordens logikk - syntaks Substitusjoner Substitusjoner Denisjon (Substitusjon for termer) La s og t vre termer og x en variabel. Da er s[t=x], det vi far ved a erstatte alle forekomster av x i s med t, denert rekursivt ved: ( t hvis x = y 1 y[t=x] = (nar s er en variabel y). y ellers 2 c[t=x] = c (nar s er en konstant c). 3 f (t 1 [t=x]; : : : ; t n [t=x]) (nar s er en funksjonsterm f (t 1 ; : : : ; t n )). Eksempel f (x; y ; a)[y =x]= f (x[y =x]; y[y =x]; a[y =x])= f (y ; y ; a) f (y ; y ; a)[b=y]= f (y[b=y]; y[b=y]; a[b=y])= f (b; b; a) Institutt for informatikk (UiO) INF4170 { Logikk / 119

29 Frsteordens logikk - syntaks Substitusjoner Substitusjoner Denisjon (Substitusjon for formler) '[t=x] er denert rekursivt ved: 1 R(t 1 ; : : : ; t n )[t=x] = R(t 1 [t=x]; : : : ; t n [t=x]) 2 : [t=x] = :( [t=x]) 3 (' 1 ' 2 )[t=x] = (' 1 [t=x] ' 2 [t=x]), hvor 2 f^; _;!g 4 Qy [t=x] = ( Qy( [t=x]) Qy hvis x 6= y ellers, hvor Q 2 f8; 9g Eksempel (Pxy ^ 8xPxy)[a=x] = (Pay ^ 8xPxy) (Pxy ^ 8xPxy)[a=y] = (Pxa ^ 8xPxa) Institutt for informatikk (UiO) INF4170 { Logikk / 119

30 Frsteordens logikk - syntaks Substitusjoner Substitusjoner Vi ser at substitusjon ikke blir gjort for bundne variable. Vi har enda et tilfelle hvor vi nsker a forhindre substitusjon. Eksempel 9xLiker(x; y)[f (x)=y] = 9xLiker(x; f (x)) Her blir en variabel bundet etter substitusjon. Dette kan endre meningen til en formel pa en mate som vi ikke nsker. Institutt for informatikk (UiO) INF4170 { Logikk / 119

31 Frsteordens logikk - syntaks Substitusjoner Substitusjoner Denisjon Vi sier at t er fri for x i ' hvis ingen variabel i t blir bundet som flge av a substitutere t for x i '. Eksempel Termen f (x) er ikke fri for y i formelen 9xLiker(x; y). En mate a unnga dette pa er a omdpe bundne variable frst. F.eks. se pa 9zLiker(z; y) i stedet for 9xLiker(x; y). Fra na av antar vi at alle substitusjoner er \fri for", dvs. at ingen variable blir bundet som flge av en substitusjon. Institutt for informatikk (UiO) INF4170 { Logikk / 119

32 Frsteordens logikk - syntaks Lukkede og apne formler Lukkede og apne formler Denisjon (Lukket/apen formel) En formel ' er lukket hvis FV(') = ;, dvs. ' inneholder ingen frie variable. En formel er apen hvis den ikke inneholder noen kvantorer. Eksempel 8xPxa er lukket 8xPxy er ikke lukket Pxy er ikke lukket, men apen Pab er apen og lukket Institutt for informatikk (UiO) INF4170 { Logikk / 119

33 Frsteordens logikk - semantikk 3 Frsteordens logikk - semantikk Introduksjon Modeller Hovedeksempel - et gursprak Tolkning av termer og formler Oppsummering Sprak og modeller - et komplekst forhold En utvidelse av gurspraket Oppfyllbarhet av frsteordens formler Bruke spraket til a beskrive modeller Institutt for informatikk (UiO) INF4170 { Logikk / 119

34 Frsteordens logikk - semantikk Introduksjon Introduksjon Hvordan skal vi tolke frsteordens formler? Hva skal 8x' og 9x' bety? Hva kan vi bruke frsteordens formler til a uttrykke? (Hva er det frsteordens formler ikke kan uttrykke?) Hva gjr en formel sann / gyldig / oppfyllbar? A gi en semantikk er a si noe om forholdet mellom sprak og virkelighet. Valuasjoner gir en semantikk for klassisk utsagnslogikk. I frsteordens logikk vil modeller gi oss en semantikk. Institutt for informatikk (UiO) INF4170 { Logikk / 119

35 Frsteordens logikk - semantikk Introduksjon Introduksjon En modell bestar intuitivt av 1 en mengde, og 2 en tolkning av alle ikke-logiske symboler slik at et konstantsymbol tolkes som et element i mengden, et funksjonssymbol tolkes som en funksjon pa mengden, og et relasjonssymbol tolkes som en relasjon pa mengden. Vi skal frst denere modeller helt presist, ogsa skal vi denere hva det vil si at en formel er sann i en modell. Husk Hvis D en mengde, sa bestar D n av alle n-tupler av elementer fra D, for n 0. D n = fhd 1 ; : : : ; d n i j d 1 ; : : : ; d n 2 Dg Institutt for informatikk (UiO) INF4170 { Logikk / 119

36 Frsteordens logikk - semantikk Modeller Modeller La et frsteordens sprak L vre gitt. Denisjon (Modell) En modell M for L bestar av en ikke-tom mengde D, kalt domenet til M, og en funksjon ( ) M som tolker alle ikke-logiske symboler pa flgende mate: Hvis c er et konstantsymbol, sa er c M 2 D. Hvis f er et funksjonsymbol med aritet n,sa er f M en funksjon fra D n = D D til D. {z } n Hvis R er et relasjonssymbol med aritet n,sa er R M en relasjon pa D n = D D. {z } n Vi skriver jmj for domenet D til modellen M. Institutt for informatikk (UiO) INF4170 { Logikk / 119

37 Frsteordens logikk - semantikk Modeller Noen kommentarer 1 Et funksjonssymbol f med aritet 0 kan betraktes som en konstant. Da er f M en funksjon fra D 0 til D. Siden D 0 bestar av kun ett element hi - det tomme tuppelet - sa bestar f M ogsa av kun ett element hhi; ei, hvor e 2 D. Vi kan derfor identisere f M med e. 2 Et relasjonssymbol R med aritet 0 kan betraktes som en utsagnsvariabel. Da er RM en delmengde av D 0. Siden D 0 bestar av kun ett element hi - det tomme tuppelet -sa ns det nyaktig to muligheter for RM. Enten sa er RM tom eller sa er hi 2 RM. Vi kan derfor tenke pa D 0 som Bool. 3 Et tuppel hei, hvor e 2 D, kan vi identisere med elementet e. Nar et relasjonssymbol R har aritet 1,sa skriver vi derfor fe 1 ; : : : ; e n g i stedet for fhe 1 i; : : : ; he n ig. Vi antar derfor ogsa at RM D. Institutt for informatikk (UiO) INF4170 { Logikk / 119

38 Frsteordens logikk - semantikk Hovedeksempel - et gursprak Hovedeksempel - et gursprak Relasjonssymbol aritet Sirkel 1 Firkant 1 Trekant 1 Stor 1 Liten 1 Mindre 2 Konstantsymboler: a; b; c; d; e; f. Funksjonssymboler: ingen. Vi leser pa denne maten: Sirkel(x): \x er en sirkel" Firkant(x): \x er en rkant" Trekant(x): \x er en trekant" Stor(x): \x er stor" Liten(x): \x er liten" Mindre(x; y): \x er mindre enn y" La oss na lage en modell for dette spraket! Institutt for informatikk (UiO) INF4170 { Logikk / 119

39 Frsteordens logikk - semantikk Hovedeksempel - et gursprak Hovedeksempel - et gursprak En tolkning av gurspraket n La M vre en modell med domene D = ; ; ; ; ; o. a M = Sirkel M = n ; o b M = Firkant M = n ; o c M = Trekant M = n ; o d M = Stor M = n ; ; o e M = Liten M = f ; ; g f M = Mindre M = nd ; E D ; ; E D ; ; E D ; ; E o ; : : : Institutt for informatikk (UiO) INF4170 { Logikk / 119

40 Frsteordens logikk - semantikk Hovedeksempel - et gursprak Hovedeksempel - et gursprak Vi foregriper begivenhetene og ser pa hvilke atomre formler som er sanne og usanne i modellen M. a b c d e f Sant Sirkel(a) Firkant(c) Liten(b) Mindre(b; e) Usant Trekant(a) Stor(b) Mindre(a; b) Mindre(a; a) Institutt for informatikk (UiO) INF4170 { Logikk / 119

41 Frsteordens logikk - semantikk Tolkning av termer og formler Tolkning av termer og formler Vi sa i eksempelet over at vi hadde et konstantsymbol for hvert element i domenet, men det er ikke alltid slik. Nar vi skal tolke formler er det nyttig a ha en konstant for hvert element. Denisjon (Utvidet sprak L(M)) La L vre et frsteordens sprak og M en modell for L. Da er L(M) det frsteordens spraket man far fra L ved a legge til nye konstantsymboler for hvert element i jmj. Hvis a er i jmj, sa skriver vi a for den nye konstanten. Hvis N er en modell for L(M), sa krever vi at a N = a. Nar vi tolker termer og formler fra spraket L i en modell M, sa bruker vi det utvidete spraket L(M) og antar at M er en L(M)-modell. Institutt for informatikk (UiO) INF4170 { Logikk / 119

42 Frsteordens logikk - semantikk Tolkning av termer og formler Tolkning av termer og formler Denisjon (Tolkning av lukkede termer) La L vre et frsteordens sprak og M en modell for L. Anta at M er en L(M)-modell. Da tolker vi en lukket term f (t 1 ; : : : ; t n ) pa flgende mate: f (t 1 ; : : : ; t n ) M = f M (t M 1 ; : : : ; tm n ): Oppgave Dette er en rekursiv denisjon. Skriv ut hele denisjonen. Institutt for informatikk (UiO) INF4170 { Logikk / 119

43 Frsteordens logikk - semantikk Tolkning av termer og formler Tolkning av termer og formler Denisjon (Tolkning av lukkede formler) La L vre et frsteordens sprak og M en modell for L. Anta a M er en L(M)-modell. Vi denerer ved rekursjon hva det vil si at en lukket formel ' er sann i M; vi skriver M j= ' nar ' er sann i M / M gjr ' sann. For atomre formler: M j= R(t 1 ; : : : ; t n ) hvis ht M 1 ; : : : ; tm n i 2 R M. M j= :' hvis det ikke er tilfelle at M j= '. M j= ' ^ hvis M j= ' og M j=. M j= ' _ hvis M j= ' eller M j=. M j= '! hvis M j= ' impliserer M j=. M j= 8x' hvis M j= '[a=x] for alle a i jmj. M j= 9x' hvis M j= '[a=x] for minst en a i jmj. Institutt for informatikk (UiO) INF4170 { Logikk / 119

44 Frsteordens logikk - semantikk Tolkning av termer og formler Tolkning av termer og formler Denisjon (Oppfyllbarhet) En lukket formel ' er oppfyllbar hvis det ns en modell M som gjr ' sann. Vi sier ogsa at M oppfyller ' og at M en en modell for '. Oppfyllbar 9xLiten(x) 9x(Liten(x) ^ Stor(x)) 9xPx! 8xPx Ikke oppfyllbar Pa ^ :Pa 9x(Liten(x) ^ :Liten(x)) :Stor(a) ^ 8xStor(x) Institutt for informatikk (UiO) INF4170 { Logikk / 119

45 Frsteordens logikk - semantikk Tolkning av termer og formler Tolkning av termer og formler Denisjon (Gyldighet) En lukket formel ' er gyldig hvis den er sann i alle modeller M, ellers sa er den falsiserbar. Gyldig 8xPxa! 8zPza (8xPx ^ 8yQy)! 8xPx 9xLiten(x) _ 9x:Liten(x) Ikke gyldig (falsserbar) 8xPx 9xStor(x)! 8xStor(x) 9xPx! 9x(Px ^ Qx) Institutt for informatikk (UiO) INF4170 { Logikk / 119

46 Frsteordens logikk - semantikk Oppsummering Oppsummering En modell M for et sprak L bestar av 1 en ikke-tom mengde jmj, kalt domenet til M, og 2 en tolkning av alle ikke-logiske symboler i spraket. For eksempel, hvis L er spraket h y, x, K ; I ; ~, i, sa ma en modell M gi et domene og en tolkning til alle symbolene. y M, x M og K M ma vre elementer i domenet. I M ma vre en funksjon pa domenet ~ M og M ma vre relasjoner pa domenet. Husk pa ariteten til symbolene. (I har aritet 2; ~ og har aritet 1.) Institutt for informatikk (UiO) INF4170 { Logikk / 119

47 Frsteordens logikk - semantikk Oppsummering Oppsummering Hvis M er en modell og ' er en lukket formel, sa denerte vi M j= '. Vi brukte det utvidete spraket - med konstanter for hvert element i domenet - for a gjre dette. For atomre formler: M j= R(t 1 ; : : : ; t n ) hvis ht M 1 ; : : : ; tm n i 2 R M. M j= :' hvis det ikke er tilfelle at M j= '. M j= ' ^ hvis M j= ' og M j=. M j= ' _ hvis M j= ' eller M j=. M j= '! hvis M j= ' impliserer M j=. M j= 8x' hvis M j= '[a=x] for alle a i jmj. M j= 9x' hvis M j= '[a=x] for minst en a i jmj. Institutt for informatikk (UiO) INF4170 { Logikk / 119

48 Frsteordens logikk - semantikk Sprak og modeller - et komplekst forhold Sprak og modeller - et komplekst forhold Ved frsteordens sprak har vi fatt betydelig strre uttrykkskraft. Modeller kan vre rike pa struktur. Det er et ikke-trivielt forhold mellom sprak og modeller. Noe av det vi er interessert i: Sjekke om en formel er sann i en modell. (Modellsjekking) Sjekke om en formel er oppfyllbar eller falsiserbar. Sjekke om en formel er gyldig. Sjekke om formler er uavhengige av hverandre. Bruke spraket til a beskrive modeller, forske a \fange inn" og beskrive virkeligheten. Institutt for informatikk (UiO) INF4170 { Logikk / 119

49 Frsteordens logikk - semantikk En utvidelse av gurspraket En utvidelse av gurspraket Atomr formel Sirkel(x) Firkant(x) Trekant(x) Stor(x) Liten(x) Mindre(x; y) Over(x; y) Under(x; y) VenstreFor(x; y) HoyreFor(x; y) Inntil(x; y) Mellom(x; y ; z) Intendert tolkning x er en sirkel x er en rkant x er en trekant x er stor x er liten x er mindre enn y x er nrmere toppen enn y x er nrmere bunnen enn y x er lenger til venstre enn y x er lenger til hyre enn y x er rett ved siden av, rett over eller rett under y x, y og z er i samme kolonne, rad eller diagonal, og x er mellom y og z Institutt for informatikk (UiO) INF4170 { Logikk / 119

50 Frsteordens logikk - semantikk En utvidelse av gurspraket En utvidelse av gurspraket Forklarende eksempler til semantikken: a c b d a M =, b M =, c M =, d M = (vi antar at dette er alle konstantene) Trekant M = f ; g Stor M = f ; g Liten M = f ; g M j= Under(a; c) fordi ha M ; c M i = h ; i 2 Under M M j= :Under(a; b) M j= VenstreFor(a; c) ^ :VenstreFor(b; c) M j= Inntil(a; b) ^ :Inntil(a; c) M j= Mellom(c; a; d) ^ :Mellom(c; b; d) Institutt for informatikk (UiO) INF4170 { Logikk / 119

51 Frsteordens logikk - semantikk Oppfyllbarhet av frsteordens formler Oppfyllbarhet av frsteordens formler Er det slik at M 9xLiten(x)? For a svare, ma vi se pa denisjonen av j=. M j= 9xLiten(x) m det ns en a 2 jmj slik at M j= Liten(a) m det ns en a 2 jmj slik at a M 2 Liten M m det ns en a 2 jmj slik at a 2 Liten M Siden Liten M = f ; JA. g, kan vi konkludere med Institutt for informatikk (UiO) INF4170 { Logikk / 119

52 Frsteordens logikk - semantikk Oppfyllbarhet av frsteordens formler Oppfyllbarhet av frsteordens formler Er det slik at M j= 8xStor(x)? For a svare, ma vi se pa denisjonen av j=. M j= 8xStor(x) m for alle a 2 jmj sa M j= Stor(a) m for alle a 2 jmj sa a M 2 Stor M m for alle a 2 jmj sa a 2 Stor M Siden jmj = f ; ; g og Stor M = f ; g, sa kan vi konkludere med NEI. Institutt for informatikk (UiO) INF4170 { Logikk / 119

53 Frsteordens logikk - semantikk Oppfyllbarhet av frsteordens formler Oppfyllbarhet av frsteordens formler M j= 8x(Stor(x)! Sirkel(x)) m for alle a 2 jmj sa M j= Stor(a)! Sirkel(a) m for alle a 2 jmj sa M j= Stor(a) impliserer M j= Sirkel(a) m for alle a 2 jmj sa hvis a 2 Stor M, sa a 2 Sirkel M m \alle store objekter er sirkler" Pastander holder ikke. Institutt for informatikk (UiO) INF4170 { Logikk / 119

54 Frsteordens logikk - semantikk Oppfyllbarhet av frsteordens formler Oppfyllbarhet av frsteordens formler M j= 8x(Sirkel(x)! 9y9zMellom(x; y ; z)) m for alle a 2 jmj sa M j= Sirkel(a)! 9y9zMellom(a; y ; z) m for alle sirkler a 2 jmj sa M j= 9y9zMellom(a; y ; z) m for alle sirkler a 2 jmj sa ns b; c 2 M slik at M j= Mellom(a; b; c) Pastanden holder, fordi M j= Mellom( ; ; ) og M j= Mellom( ; ; ). Institutt for informatikk (UiO) INF4170 { Logikk / 119

55 Frsteordens logikk - semantikk Oppfyllbarhet av frsteordens formler Oppfyllbarhet av frsteordens formler a b Er flgende formler oppfyllbare samtidig? 1 Stor(a) ^ Liten(b) 2 8x(Trekant(x)) 3 8x(Inntil(x; a) _ Inntil(x; b)) 4 :9x(VenstreFor(x; a) _ HoyreFor(x; a)) 5 8x(Stor(x)! 9yOver(y ; x)) Svaret er JA! Institutt for informatikk (UiO) INF4170 { Logikk / 119

56 Frsteordens logikk - semantikk Oppfyllbarhet av frsteordens formler Oppfyllbarhet av frsteordens formler Er flgende formler oppfyllbare? 1 :Sirkel(a) ^ :Trekant(a) ^ :Firkant(a)) a Svaret er JA! La jmj = f g og a M =. 2 Liten(a) ^ Stor(a) Svaret er JA! La jmj = f g, a M = og Liten M = Stor M = f g Institutt for informatikk (UiO) INF4170 { Logikk / 119

57 Frsteordens logikk - semantikk Bruke spraket til a beskrive modeller Bruke spraket til a beskrive modeller a b Gi en mengde formler som beskriver denne modellen nyaktig, dvs. som har denne og (essensielt) ingen andre modeller. 1 Sirkel(a) ^ Firkant(b) 2 8x Liten(x) 3 VenstreFor(a; b) 4 8x(Inntil(x; a) _ Inntil(x; b)) 5 8x(:Over(x; a) ^ :Under(x; a)) 6 8x(:VenstreFor(x; a) ^ :HoyreFor(x; b)) Ganske vanskelig... Institutt for informatikk (UiO) INF4170 { Logikk / 119

58 Frsteordens sekventkalkyle 4 Frsteordens sekventkalkyle Introduksjon Sekventer og aksiomer Sekventkalkyleregler Slutninger Utledninger Bevis Eksempler Institutt for informatikk (UiO) INF4170 { Logikk / 119

59 Frsteordens sekventkalkyle Introduksjon Introduksjon Vi har til na sett sekventkalkyle for utsagnslogikk. Vi har bevist sunnhet og kompletthet av denne kalkylen. Na skal vi gjre det samme for frsteordens logikk! Gitt en frsteordens formel ', er ' gyldig? Husk: vi introduserte LK som et systematisk forsk pa a falsisere. La oss se pa et eksempel. Institutt for informatikk (UiO) INF4170 { Logikk / 119

60 Frsteordens sekventkalkyle Introduksjon :Qa; Pa :Qa ` Pa ` :Pa; Pa Qa Qa; :Qa ` Pa; :Qa! :Pa Qa ` :Qa! :Pa Pa! Qa ` :Qa! :Pa 8x(Px! Qx) ` :Qa! :Pa ` Qa; :Pa ` :Pa 8x(Px! Qx) ` 8x(:Qx! :Px) Eksempel Falsisere formelen 8x(:Qx! :Px): Introdusere et vitne som gjr formelen usann. Sette inn et nytt konstantsymbol a for x. Oppfylle formelen 8x(Px! Qx): Da ma delformelen vre sann uansett hva vi setter inn for x. Spesielt ma delformelen vre sann nar vi setter inn a for x. Vi kan na anvende - og -reglene og lukke. Institutt for informatikk (UiO) INF4170 { Logikk / 119

61 Frsteordens sekventkalkyle Introduksjon La oss forske med en annen regel-rekkeflge: 8x(Px! Qx);:Qa; Pa; Po! Qo ` Pa 8x(Px! Qx);Qa; Po! Qo 8x(Px! Qx);:Qa; Po! Qo ` :Pa; Pa 8x(Px! Qx);Qa; :Qa; Po! Qo 8x(Px! Qx); Po! Qo ` Pa; :Qa! :Pa 8x(Px! Qx);Qa; Po! Qo 8x(Px! Qx); Pa! Qa; Po! Qo ` :Qa! :Pa 8x(Px! Qx); Po! Qo ` :Qa! :Pa 8x(Px! Qx); Po! Qo ` 8x(:Qx! :Px) 8x(Px! Qx) ` 8x(:Qx! :Px) ` Qa; :Pa ` :Pa ` :Qa! :Pa Eksempel Oppfylle 8x(Px! Qx): Hva skal vi sette inn for x? Vi bruker en dummykonstant o. Falsisere 8x(:Qx! :Px): Vitnet ma vre ubrukt. Kan derfor ikke sette inn o. Setter inn a. Oppfylle 8x(Px! Qx). Da ma vi kunne sette inn a for x! Vi ma ta kopi av 8-formelen nar vi setter inn for x. Setter inn a for x. Vi kan na anvende - og -reglene og lukke. Institutt for informatikk (UiO) INF4170 { Logikk / 119

62 Frsteordens sekventkalkyle Introduksjon Motivasjon Vi skal na denere sekventkalkylen LK for frsteordens logikk. Vi trenger slutningsregler for formler med kvantorene 8/9. Fra de foregaende eksemplene har vi: Hvis vi skal oppfylle en formel 8x ' sa ma vi oppfylle '[t=x] for alle valg av term t. I tillegg trenger vi en ekstra kopi av 8x '. Hvis vi skal falsisere 8x ' ma vi velge et vitne { et ubrukt konstantsymbol a { slik at '[a=x] er usann. A oppfylle/falsisere 9-formler blir dualt. Vi skal na denere begreper som sekvent, aksiom, utledning og bevis for frsteordens sprak. Institutt for informatikk (UiO) INF4170 { Logikk / 119

63 Frsteordens sekventkalkyle Sekventer og aksiomer Sekventer og aksiomer Denisjon (Parameter) La L vre et frsteordens sprak og la par vre en tellbart uendelig mengde av konstantsymboler, kalt parametre, forskjellige fra konstantsymbolene i L. La L par vre frsteordens spraket man far ved a ta med disse som konstantsymboler. Denisjon (Sekvent) En sekvent er et objekt pa formen ` slik at og er multimengder av lukkede frsteordens formler i L par. Denisjon (Aksiom) Et aksiom er en sekvent pa formen ; A ` A; slik at A er en atomr formel. Institutt for informatikk (UiO) INF4170 { Logikk / 119

64 Frsteordens sekventkalkyle Sekventer og aksiomer Sekventer og aksiomer Oppgave Hvilke av uttrykkene nedenfor er sekventer? Px ` Qx 8xPx ` 9xQx Pa; 8x(Qx! Rx) ` Qb! Rb 8xPx; Pa ` Pa; 9xPa Hvilke av sekventene over er aksiomer? Institutt for informatikk (UiO) INF4170 { Logikk / 119

65 Frsteordens sekventkalkyle Sekventkalkyleregler Sekventkalkyleregler Denisjon (-regler) -reglene i sekventkalkylen LK er: t er en lukket term ; 8x'; '[t=x] ` L8 ; 8x' ` ` ; 9x'; '[t=x] ` ; 9x' R9 Merk: kopieringen av hovedformelen i -reglene medfrer at bevissk i frsteordens logikk ikke ndvendigvis behver a terminere! Institutt for informatikk (UiO) INF4170 { Logikk / 119

66 Frsteordens sekventkalkyle Sekventkalkyleregler Sekventkalkyleregler Denisjon (-regler) -reglene i sekventkalkylen LK er: ; '[a=x] ` L9 ; 9x' ` ` ; '[a=x] ` ; 8x' R8 a er en parameter som ikke forekommer i konklusjonen. Institutt for informatikk (UiO) INF4170 { Logikk / 119

67 Frsteordens sekventkalkyle Sekventkalkyleregler Sekventkalkyleregler -reglene erstatter den bundne variabelen med en lukket term. -reglene erstatter den bundne variabelen med et konstantsymbol. Det betyr at hvis hovedformelen er lukket, sa er ogsa de aktive formlene lukkede. - og -reglene er derfor veldenerte i den forstand at alle sekventer forblir lukket. Denisjon (Slutningsreglene i frsteordens LK) Slutningsreglene i frsteordens LK er - og -reglene fra utsagnslogisk LK og - og -reglene. Institutt for informatikk (UiO) INF4170 { Logikk / 119

68 Frsteordens sekventkalkyle Slutninger Slutninger Som i utsagnslogikk denerer reglene slutninger ved at vi erstatter symbolene i reglene med lukkede frsteordens formler: ; 8x'; '[t=x] ` L8 ; 8x' ` Pa; 8x(Px! Qx); Pa! Qa ` Qa L8 Pa; 8x(Px! Qx) ` Qa Begrepene innfrt i tilknytning til regler/slutninger i utsagnslogisk LK gjelder ogsa i frsteordens LK: Sekventene over streken kalles premisser. Sekventen under streken kalles konklusjon. Teksten til hyre for streken er regelens navn. Formelen som forekommer eksplisitt i konklusjonen kalles hovedformel. Formlene som forekommer eksplisitt i premissene kalles aktive formler. Formlene som forekommer i og kalles ekstraformler. Institutt for informatikk (UiO) INF4170 { Logikk / 119

69 Frsteordens sekventkalkyle Utledninger Utledninger Ett-premissregler: -, - og -reglene. To-premissregler: -reglene. Denisjon (LK-utledninger { basistilfelle) En sekvent `, hvor og er multimengder av lukkede frsteordens formler i L, er en LK-utledning. ` Her er ` bade rotsekvent og lvsekvent. Merk: spraket L par brukes ikke i rotsekventen, men kun for a introdusere nye parametre i -reglene. Institutt for informatikk (UiO) INF4170 { Logikk / 119

70 Frsteordens sekventkalkyle Utledninger Utledninger Denisjon (LK-utledninger { ett-premissutvidelse) Hvis det nnes en LK-utledning med en lvsekvent ` og en ett-premisslutning med konklusjon ` og premiss 0 ` 0, sa er objektet vi far ved a plassere 0 ` 0 over ` en LK-utledning. ` 0 ` 0 ` Institutt for informatikk (UiO) INF4170 { Logikk / 119

71 Frsteordens sekventkalkyle Utledninger Utledninger Denisjon (LK-utledninger { to-premissutvidelse) Hvis det nnes en LK-utledning med en lvsekvent ` og en to-premisslutning med konklusjon ` og premisser 0 ` 0 og 00 ` 00, sa er objektet vi far ved a plassere 0 ` 0 og 00 ` 00 over ` en LK-utledning. ` 0 ` 0 00 ` 00 ` Institutt for informatikk (UiO) INF4170 { Logikk / 119

72 Frsteordens sekventkalkyle Bevis Bevis Denisjon (LK-bevis) Et LK-bevis er en LK-utledning der alle lvsekventene er aksiomer. Denisjon (LK-bevisbar) En sekvent ` er LK-bevisbar hvis det nnes et LK-bevis med ` som rotsekvent. Institutt for informatikk (UiO) INF4170 { Logikk / 119

73 Frsteordens sekventkalkyle Eksempler Eksempel 1 8xPx; Pa ` Pa 8xPx ` Pa 8xPx ` 8xPx Dette viser at sekventen 8xPx ` 8xPx er bevisbar. Sekventen er ogsa gyldig, noe som er lett a se: Envher modell som oppfyller antecedenten, ma oppfylle succedenten. At sekventen er gyldig flger ogsa fra sunnhetsteoremet. Institutt for informatikk (UiO) INF4170 { Logikk / 119

74 Frsteordens sekventkalkyle Eksempler Eksempel 2 8xPx; Po ` 9xPx; Po 8xPx ` 9xPx; Po 8xPx ` 9xPx Dette viser at sekventen 8xPx ` 9xPx er bevisbar. Sekventen er ogsa gyldig: Anta at modellen M gjr 8xPx sann. Domenet ma besta av minst ett element e. Siden M gjr 8xPx sann, ma M gjre formelen Pe sann. Siden M gjr Pe sann, ma M gjre formelen 9xPx sann. At sekventen er gyldig flger ogsa fra sunnhetsteoremet. Institutt for informatikk (UiO) INF4170 { Logikk / 119

75 Frsteordens sekventkalkyle Eksempler Eksempel 3 8x(Px ^ Qx); Pa; Qa 8x(Px ^ Qx); Pa ^ Qa ` Pa ` Pa 8x(Px ^ Qx) ` Pa 8x(Px ^ Qx) ` 8xPx 8x(Px ^ Qx); Pa; Qa 8x(Px ^ Qx); Pa ^ Qa 8x(Px ^ Qx) ` 8xPx ^ 8xQx ` Qa ` Qa 8x(Px ^ Qx) ` Qa 8x(Px ^ Qx) ` 8xQx Dette viser at sekventen 8x(Px ^ Qx) ` 8xPx ^ 8xQx er bevisbar. Sekventen er ogsa gyldig: Anta at modellen M gjr 8x(Px ^ Qx) sann. Velg et vilkarlig element e i domenet til M. Ved antakelsen ma M gjre Pe ^ Qe sann. Da ma M gjre Pe og Qe sann. Siden e var vilkarlig valgt, ma M ogsa gjre 8xPx og 8xQx sanne. At sekventen er gyldig flger ogsa fra sunnhetsteoremet. Institutt for informatikk (UiO) INF4170 { Logikk / 119

76 Frsteordens sekventkalkyle Eksempler Eksempel 4 8yLya; Lba 8yLya; Lba 8yLya 8yLya 9x8yLyx ` Lba; 9yLby ` 9yLby ` 9yLby ` 8x9yLxy ` 8x9yLxy Dette viser at sekventen 9x 8yLyx ` 8x 9yLxy er bevisbar. Sekventen er ogsa gyldig: Anta at modellen M gjr 9x8yLyx sann. Da ns det et element a slik at 8yLya er sann i M. For a vise at 8x9yLxy er sann i M, velg et vilkarlig element b. Det er nok a vise at 9yL by er sann i M. Vi har at L ba er sann i M, siden 8yLya er sann i M. \Hvis det ns en som blir likt av alle, sa har alle noen de liker." At sekventen er gyldig flger ogsa fra sunnhetsteoremet. Institutt for informatikk (UiO) INF4170 { Logikk / 119

77 Frsteordens sekventkalkyle Eksempler Eksempel 5 8x9yLxy ; Lbc; Loa 8x9yLxy ; Lbc; Loa 8x9yLxy ; Lbc; Loa 8x9yLxy ; 9yLby ; Loa 8x9yLxy8x9yLxy ; Loa 8x9yLxy ; Loa 8x9yLxy ; Loa 8x9yLxy ; 9yLoy 8x9yLxy. ` Lba; Ldc; 9x8yLyx ` Lba; 8yLyc; 9x8yLyx ` Lba; 9x8yLyx ` Lba; 9x8yLyx ` Lba; 9x8yLyx ` 8yLya; 9x8yLyx ` 9x8yLyx ` 9x8yLyx ` 9x8yLyx Institutt for informatikk (UiO) INF4170 { Logikk / 119

78 Frsteordens sekventkalkyle Eksempler Eksempel 5 Vi klarte ikke a bevise sekventen 8x9yLxy ` 9x8yLyx. Kan vi klare a lage en motmodell? Nar vi kommer til kompletthet, sa skal vi se at det alltid ns en motmodell for ikke-bevisbare sekventer. JA, la M = fa; bg og la L M = fha; ai; hb; big. \Alle liker seg selv og ingen andre." Da vil M j= 8x9yLxy. M j= 9yLay, siden M j= Laa. M j= 9yL by, siden M j= L b b. Og M 6j= 9x8yLyx. M 6j= 8yLya, siden M 6j= L ba. M 6j= 8yLy b, siden M 6j= La b. Institutt for informatikk (UiO) INF4170 { Logikk / 119

79 Frsteordens sekventkalkyle Eksempler Eksempel 6 Po; Pa Po Po Po ` 8xPx; Pa; 9x(Px! 8xPx) ` Pa; Pa! 8xPx; 9x(Px! 8xPx) ` Pa; 9x(Px! 8xPx) ` 8xPx; 9x(Px! 8xPx) ` Po! 8xPx; 9x(Px! 8xPx) ` 9x(Px! 8xPx) Dette viser at sekventen ` 9x(Px! 8xPx) er bevisbar. \Det ns en x slik at hvis x liker fotball, sa liker alle fotball." Dette er ikke den samme pastanden som: \Hvis det ns en x som liker fotball, sa liker alle fotball." Oppgave: vis at formelen er gyldig. Argumenter for at formelen er sann i enhver modell. Institutt for informatikk (UiO) INF4170 { Logikk / 119

80 Sunnhet av frsteordens sekventkalkyle 5 Sunnhet av frsteordens sekventkalkyle Overblikk Antakelser om frsteordens sprak Reglene bevarer falsiserbarhet Alle aksiomer er gyldige Sunnhetsbeviset Institutt for informatikk (UiO) INF4170 { Logikk / 119

81 Sunnhet av frsteordens sekventkalkyle Overblikk Overblikk Vi skal na vise at enhver sekvent som kan bevises ved a bruke LK-reglene er gyldig. Hvis vi kunne bevise noe som ikke var gyldig, sa ville LK ha vrt ukorrekt eller usunn... Denisjon (Sunnhet) En sekventkalkyle er sunn hvis enhver sekvent som er bevisbar i kalkylen, er gyldig. Teorem (Sunnhet) Sekventkalkylen LK for frsteordens logikk er sunn. Institutt for informatikk (UiO) INF4170 { Logikk / 119

82 Sunnhet av frsteordens sekventkalkyle Antakelser om frsteordens sprak Antakelser om frsteordens sprak Vi antar i beviset at et frsteordens sprak L er gitt. En rotsekvent ` bestar altsa av lukkede L-formler. Fra antakelsen om at ` er bevisbar, skal vi vise at ` er gyldig. Med gyldig mener vi gyldig i alle L-modeller. I en utledning av ` brukes det utvidete spraket L par. Vi antar derfor i sunnhetsbeviset at alle modeller er L par -modeller. Nar vi har vist at ` er gyldig i alle L par -modeller, sa ma ` ogsa vre gyldig i alle L-modeller, siden ` kun bestar av L-formler. Institutt for informatikk (UiO) INF4170 { Logikk / 119

83 Sunnhet av frsteordens sekventkalkyle Antakelser om frsteordens sprak Strukturen i beviset for sunnhet Vi viser flgende lemmaer: 1 Alle LK-reglene bevarer falsiserbarhet oppover. 2 En LK-utledning med falsiserbar rotsekvent har minst en falsiserbar lvsekvent. 3 Alle aksiomer er gyldige. Til slutt vises sunnhetsteoremet ved hjelp av lemmaene. Institutt for informatikk (UiO) INF4170 { Logikk / 119

84 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Reglene bevarer falsiserbarhet Denisjon En LK-regel er falsiserbarhetsbevarende (oppover) hvis hver gang konklusjonen i en -slutning er falsiserbar, sa er ogsa minst ett av premissene i slutningen falsiserbart. Lemma Alle LK-reglene er falsiserbarhetsbevarende. Vi har vist at - og -reglene har egenskapen. Gjenstar a vise at - og -reglene har egenskapen. Institutt for informatikk (UiO) INF4170 { Logikk / 119

85 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Bevis for at L8 bevarer falsiserbarhet ; 8x'; '[t=x] ` L8 ; 8x' ` t er en lukket term Anta at modellen M falsiserer konklusjonen ; 8x' `. M gjr alle formlene i [ f8x'g sanne og alle formlene i usanne. Det holder a vise at M j= '[t=x]. Da er premisset falsisert av M. Anta at t M = e, hvor e 2 jmj. (Her bruker vi denisjonen av modell og at t er en lukket term.) Siden M j= 8x' har vi at M j= '[ d=x] for alle d 2 jmj. (Her bruker vi denisjonen av oppfyllbarhet.) Spesielt har vi at M j= '[e=x]. t og e ma tolkes likt (som elementet e). Derfor har vi M j= '[t=x]. Institutt for informatikk (UiO) INF4170 { Logikk / 119

86 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Lemma Mot slutten av beviset brukte vi egentlig flgende lemma. La M vre en modell og ' en formel med hyst x fri. Anta at s og t er termer slik at s M = t M. Da vil M j= '[s=x] hvis og bare hvis M j= '[t=x]. Oppgave: bevis lemmaet. Hint: induksjon pa '. Institutt for informatikk (UiO) INF4170 { Logikk / 119

87 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Bevis for at L9 bevarer falsiserbarhet ; '[a=x] ` L9 ; 9x' ` a er en parameter som ikke forekommer i konklusjonen Anta at modellen M falsiserer konklusjonen ; 9x' `. M gjr alle formlene i [ f9x'g sanne og alle formlene i usanne. Vi ma nne en modell som falsiserer premisset. Men, vi kan ikke uten videre anta at M j= '[a=x]. Siden M j= 9x' har vi at M j= '[ d=x] for en d 2 jmj. Fra modellen M lager vi en ny modell M 0 pa flgende mate: M0 skal vre helt lik M bortsett fra nar det gjelder tolkningen av a. Parameteren a skal tolkes som elemenet d, dvs. am0 = d. Vi konkluderer med at M 0 falsiserer premisset: Siden a ikke forekommer i konklusjonen, sa ma M0 og M tolke formlene i og likt. M0 gjr derfor alle formlene i sanne og alle formlene i usanne. Siden a og d ma tolkes likt (som elementet d), ma M0 j= '[a=x]. Institutt for informatikk (UiO) INF4170 { Logikk / 119

88 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Et eksempel Anta at M er en modell med domene f1; 2g slik at P M = f2g. Anta at a og b er parametre slik at a M = b M = 1. Da vil M 6j= Pa og M 6j= Pb. Pb ` Pa 9xPx ` Pa Vi har at M falsiserer konklusjonen: M j= 9xPx, siden M j= P2. M 6j= Pa. Men, M falsiserer ikke premisset, siden M 6j= Pb. Vi lager en ny modell M 0 som er slik at b M0 = 2. Da vil M 0 falsiserer premisset. Institutt for informatikk (UiO) INF4170 { Logikk / 119

89 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Bevis for at R9 bevarer falsiserbarhet ` ; 9x'; '[t=x] ` ; 9x' R9 t er en lukket term Anta at modellen M falsiserer konklusjonen ` 9x';. M gjr alle formlene i sanne og alle formlene i [ f9x'g usanne. Det holder a vise at M 6j= '[t=x]. Da er premisset falsisert av M. Anta at t M = e, hvor e 2 jmj. (Her bruker vi denisjonen av modell og at t er en lukket term.) Siden M 6j= 9x' ns det ikke noen d 2 jmj slik at M j= '[ d=x]. (Her bruker vi denisjonen av oppfyllbarhet.) Spesielt har vi at M 6j= '[e=x]. t og e ma tolkes likt (som elementet e). Derfor har vi M 6j= '[t=x]. Institutt for informatikk (UiO) INF4170 { Logikk / 119

90 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Bevis for at R8 bevarer falsiserbarhet ` ; '[a=x] ` ; 8x' R8 a er en parameter som ikke forekommer i konklusjonen Anta at modellen M falsiserer konklusjonen ` ; 8x'. M gjr alle formlene i sanne og alle formlene i [ f8x'g usanne. Vi ma nne en modell som falsiserer premisset. Men, vi kan ikke uten videre anta at M 6j= '[a=x]. Siden M 6j= 8x' har vi at M 6j= '[ d=x] for en d 2 jmj. Fra modellen M lager vi en ny modell M 0 pa flgende mate: M0 skal vre helt lik M bortsett fra nar det gjelder tolkningen av a. Parameteren a skal tolkes som elemenet d, dvs. am0 = d. Vi konkluderer med at M 0 falsiserer premisset: Siden a ikke forekommer i konklusjonen, sa ma M0 og M tolke formlene i og likt. M0 gjr derfor alle formlene i sanne og alle formlene i usanne. Siden a og d ma tolkes likt (som elementet d), ma M0 6j= '[a=x]. Institutt for informatikk (UiO) INF4170 { Logikk / 119

91 Sunnhet av frsteordens sekventkalkyle Reglene bevarer falsiserbarhet Reglene bevarer falsiserbarhet Lemma Hvis rotsekventen i en LK-utledning er falsiserbar, sa er minst en av lvsekventene i falsiserbar. Beviset gar likt som for utsagnslogikk ved strukturell induksjon pa LK-utledningen. Basissteget ( er en sekvent ` ) er trivielt, siden eneste sekvent ` er bade rot- og lvsekvent. To induksjonssteg: ettpremiss- og topremissutvidelse. Begge bruker lemmaet om falsiserbarhetsbevaring (oppover). Institutt for informatikk (UiO) INF4170 { Logikk / 119

92 Sunnhet av frsteordens sekventkalkyle Alle aksiomer er gyldige Alle aksiomer er gyldige Lemma Alle aksiomer er gyldige. Beviset gar likt som for utsagnslogikk. Et aksiom er pa formen: ; P(s 1 ; : : : ; s n ) ` P(t 1 ; : : : ; t n ); slik at termene s i og t i er like for 1 i n. Enhver modell som oppfyller antecedenten ma oppfylle P(s 1 ; : : : ; s n ). Dermed oppfylles en formel i succedenten, P(t 1 ; : : : ; t n ). Institutt for informatikk (UiO) INF4170 { Logikk / 119

93 Sunnhet av frsteordens sekventkalkyle Sunnhetsbeviset Sunnhetsbeviset Teorem (Sunnhet) Sekventkalkylen LK for frsteordens logikk er sunn. Bevis. Anta at ` er LK-bevisbar. La vre et LK-bevis med rotsekvent `. Anta for motsigelse at ` ikke er gyldig, men er falsiserbar. Ved Lemma ns det minst en lvsekvent i som er falsiserbar. Siden er et bevis, ma lvsekventen vre et aksiom. Ved Lemma ma lvsekventen vre gyldig. Det gir en motsigelse. Da ma ` vre gyldig. Institutt for informatikk (UiO) INF4170 { Logikk / 119

94 Kompletthet av LK 6 Kompletthet av LK Overblikk Strategier Herbranduniverset Rettferdige strategier Konigs lemma Bevis for modelleksistensteoremet Eksempler pa eksistens av motmodell Institutt for informatikk (UiO) INF4170 { Logikk / 119

95 Kompletthet av LK Overblikk Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige sekventer. Det er ingen \hull" i mengden av LK-bevisbare formler. Det er to mater a forsta \fra ' flger " pa: 1 Semantisk: ', hvis ' er sann, sa er sann. 2 Syntaktisk: ' `, det ns et bevis for sekventen ' ` / fra antakelsen ', sa kan bevises. Med sunnhet og kompletthet, sa blir disse ekvivalente. Institutt for informatikk (UiO) INF4170 { Logikk / 119

96 Kompletthet av LK Overblikk Kurt Godel ( ) Kurt Godel ( ) En av de mest betydningsfulle logikere noensinne. Har hatt enorm innytelse pa logikk, matematikk og loso. Det er han som frst viste kompletthet av frsteordens logikk (1929). Er mest kjent for ufullstendighetsteoremene (1931) og at kontinuumshypotesen er konsistent med mengdelren (1937). Institutt for informatikk (UiO) INF4170 { Logikk / 119

97 Kompletthet av LK Overblikk Overblikk Teorem (Kompletthet) Hvis ` er gyldig, sa er den bevisbar i LK. For a vise kompletthet, viser vi den ekvivalente pastanden: Lemma (Modelleksistens) Hvis ` ikke er bevisbar i LK, sa er den falsiserbar. Dvs. det nnes en modell som gjr alle formler i sanne og alle formler i usanne. Merk at vi uansett gar fra en universell pastand (\for alle modeller") til en eksistensiell pastand (\det ns et bevis"). Institutt for informatikk (UiO) INF4170 { Logikk / 119

98 Kompletthet av LK Strategier Strategier Hvis en formel eller sekvent er gyldig, kan vi ha en garanti for at vi nner et bevis ved a begynne med en rotsekvent og anvende LK-reglene gjentatte ganger? For a gjre dette litt mer presist, innfrer vi begrepet strategi. Denisjon (Strategi) En strategi for LK er en angivelse av hvordan LK-reglene systematisk skal anvendes pa formler i LK-utledninger. Med vilje litt vagt. Mye kan vre en strategi. Vi er interessert i strategier som garanterer at vi far et bevis til slutt hvis det er slik at bevis ns. La oss kalle slike strategier for \gode". Institutt for informatikk (UiO) INF4170 { Logikk / 119

Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen februar 2006

Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen februar 2006 Forelesning 6: Frste-ordens logikk: syntaks og semantikk Roger Antonsen - 27. februar 2006 1 Frsteordens logikk - syntaks 1.1 Repetisjon og presiseringer Et frsteordens sprak L bestar av: 1. Logiske symboler

Detaljer

Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen februar 2007

Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen februar 2007 Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen - 19. februar 2007 1 Førsteordens logikk - syntaks 1.1 Repetisjon Et førsteordens språk L består av: 1. Logiske symboler

Detaljer

Førsteordens logikk - syntaks

Førsteordens logikk - syntaks INF3170 Logikk Forelesning 5: Førsteordens logikk syntaks og semantikk Institutt for informatikk Universitetet i Oslo Førsteordens logikk - syntaks 23. februar 2010 (Sist oppdatert: 2010-02-09 17:42) INF3170

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5. INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen 1 Institutt for informatikk, Universitetet i Oslo 2 5. mars 2007 Institutt for informatikk

Detaljer

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L:

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L: INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Repetisjon: Førsteordens syntaks og semantikk

Detaljer

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon INF3170 Logikk Dagens plan Forelesning 4: og førsteordens logikk Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 12. februar 2007 3 Institutt for informatikk (UiO) INF3170 Logikk

Detaljer

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170.

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170. Forelesning 4: Repetisjon og førsteordens logikk Christian Mahesh Hansen - 12. februar 2007 1 Repetisjon Motivasjon Er utsagnene sanne? Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170,

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 1 Repetisjon: Førsteordens syntaks og semantikk Et førsteordens språk L består av: 1. Logiske symboler

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 6: Førsteordens logikk syntaks og semantikk. Martin Giese. 25. februar 2008.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 6: Førsteordens logikk syntaks og semantikk. Martin Giese. 25. februar 2008. INF3170 Logikk Dagens plan Forelesning 6: og semantikk Martin Giese Institutt for informatikk Universitetet i Oslo 1 Innledning til førsteordens logikk 2 25. februar 2008 3 Institutt for informatikk (UiO)

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 1 Førsteordens sekventkalkyle 1.1 Introduksjon Vi har til nå sett sekventkalkyle for utsagnslogikk. Vi

Detaljer

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006 Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige

Detaljer

Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese februar 2008

Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese februar 2008 Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese - 25. februar 2008 1 Innledning til førsteordens logikk 1.1 Introduksjon I utsagnslogikk kan vi analysere de logiske konnektivene,,

Detaljer

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig. Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar

Detaljer

INF1800 Forelesning 17

INF1800 Forelesning 17 INF1800 Forelesning 17 Førsteordens logikk Roger Antonsen - 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon og kommentarer Vi skal nå kunne Utsagnslogikk: syntaks og semantikk

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 18: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 15. oktober 2008 (Sist oppdatert: 2008-10-15 23:50) Repetisjon og noen løse

Detaljer

Repetisjon og noen løse tråder

Repetisjon og noen løse tråder INF1800 LOGIKK OG BEREGNBARHET FORELESNING 18: FØRSTEORDENS LOGIKK Roger Antonsen Repetisjon og noen løse tråder Institutt for informatikk Universitetet i Oslo 15. oktober 2008 (Sist oppdatert: 2008-10-15

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 17: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon

Detaljer

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo INF4170 { Logikk Forelesning 1: Utsagnslogikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 20. august 2013 Dagens plan 1 Utsagnslogikk 2 Sekventkalkyle 3 Sunnhet 4 Kompletthet Institutt

Detaljer

INF1800 Forelesning 18

INF1800 Forelesning 18 INF1800 Forelesning 18 Førsteordens logikk Roger Antonsen - 15. oktober 2008 (Sist oppdatert: 2008-10-15 23:50) Repetisjon og noen løse tråder Førsteordens språk Et førsteordens språk L består av: 1. Logiske

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28 16:50) Førsteordens sekventkalkyle

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Førsteordens sekventkalkyle Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28

Detaljer

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo 6. april 2010 (Sist oppdatert: 2010-04-06 14:23) Fortsettelse INF3170 Logikk 6.

Detaljer

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fortsettelse 6. april 2010 (Sist oppdatert: 2010-04-06 14:24) INF3170 Logikk 6.

Detaljer

INF3170 Forelesning 4

INF3170 Forelesning 4 INF3170 Forelesning 4 Sunnhet og kompletthet - 16. februar 2010 (Sist oppdatert: 2010-02-09 17:43) Dagens plan Innhold Sunnhet 1 Introduksjon.......................................... 1 Bevaring av falsifiserbarhet..................................

Detaljer

2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold

2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold Forelesning 7: Frsteordens logikk { seantikk og sekventkalkyle Roger Antonsen - 6. ars 2006 1 Frsteordens logikk og seantikk 1.1 Repetisjon En odell M for et sprak L bestar av 1. en ikke-to engde jmj,

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF3170 Logikk Forelesning 7: Sekventkalkyle for førsteordens logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Førsteordens sekventkalkyle 16. mars 2010 (Sist oppdatert: 2010-04-06

Detaljer

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere! Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:

Detaljer

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk

Detaljer

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet.

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet. INF4170 Logikk Dagens plan Forelesning 10: fri-variabel sekventkalkyle og sunnhet Martin iese 1 Institutt for informatikk, Universitetet i Oslo 14. april 2008 Institutt for informatikk (UiO) INF4170 Logikk

Detaljer

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.

Detaljer

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007 Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å

Detaljer

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2.

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2. Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet 1 Mengdelære III 1.1 Multimengder Multimengder Mengder der antall forekomster av hvert element teller Definisjon (Multimengde). En

Detaljer

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel.

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel. INF3170 Logikk Dagens plan Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet 1 Sekventkalkyle Christian Mahesh Hansen 2 Institutt for informatikk, Universitetet i Oslo 3 5. februar 2007

Detaljer

INF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo

INF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo INF3170 { Logikk Forelesning 5: Automatisk bevissk Arild Waaler Institutt for informatikk, Universitetet i Oslo 29. oktober 2013 Dagens plan 1 Automatisk bevissk 2 Automatisk bevissk II 3 Kompletthet av

Detaljer

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo 9. februar 2010 (Sist oppdatert: 2010-02-09 15:10) Utsagnslogikk INF3170

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Sekventkalkyle for utsagnslogikk Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59)

Detaljer

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 1 Sekventkalkyle 1.1 Semantikk for sekventer Semantikk for sekventer Definisjon 1.1 (Gyldig

Detaljer

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet Forelesning 4-13. februar 2006 Intuisjonistisk logikk 1 Intuisjonistisk logikk 1.1 Innledning Til na i kurset Det utsagnslogiske spraket: konnektiver og formler Bevissystem: sekventkalkylen LK for klassisk

Detaljer

Repetisjonsforelesning

Repetisjonsforelesning Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk

Detaljer

INF1800 Forelesning 15

INF1800 Forelesning 15 INF1800 Forelesning 15 Utsagnslogikk Roger Antonsen - 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk Introduksjonseksempel Hvordan finne ut om en gitt formel er en

Detaljer

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21. INF3170 Logikk Dagens plan Forelesning 1: Introduksjon. og sekventkalkyle Arild Waaler Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 21. januar 2008 3 Institutt for informatikk

Detaljer

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens)

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens) INF4170 Logikk Dagens plan Forelesning 11: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 31. april 2008 Institutt

Detaljer

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008 Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler - 21. januar 2008 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: Martin Giese (martingi@ifi.uio.no) Arild Waaler

Detaljer

FOL: syntaks og representasjon. 15. og 16. forelesning

FOL: syntaks og representasjon. 15. og 16. forelesning FOL: syntaks og representasjon 15. og 16. forelesning Førsteordens logikk Førsteordens logikk: et formelt system som man bruker til å representere og studere argumenter. Som utsagnslogikk, men mer uttrykkskraftig,

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 7

INF3170 Logikk. Ukeoppgaver oppgavesett 7 INF3170 Logikk Ukeoppgaver oppgavesett 7 Unifisering I forelesning 10 så vi på en unifiseringsalgoritme som finner en mest generell unifikator for to termer. I automatisk bevissøk har vi imidlertid bruk

Detaljer

Forelesning januar 2006 Induktive denisjoner og utsagnslogikk

Forelesning januar 2006 Induktive denisjoner og utsagnslogikk Forelesning 2-30. januar 2006 Induktive denisjoner og utsagnslogikk 1 Praktisk informasjon INF5170 { Logikkseminar Tirsdager 14:15-16:00 pa Buerommet (3. etg, I). Flg med pa forskning og aktuelle temaer

Detaljer

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning. Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,

Detaljer

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21.

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21. INF3170 Logikk Dagens plan Forelesning 15: Oppgaveløsing Christian Mahesh Hansen 1 Generelle eksamenstips Institutt for informatikk, Universitetet i Oslo 2 21. mai 2007 Institutt for informatikk (UiO)

Detaljer

INF1800 Forelesning 19

INF1800 Forelesning 19 INF1800 Forelesning 19 Førsteordens logikk Roger Antonsen - 21. oktober 2008 (Sist oppdtert: 2008-10-21 20:12) Repetisjon Semntikk Hvis M er en modell og ϕ er en lukket formel, så definerte vi M = ϕ. Vi

Detaljer

Metode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon.

Metode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon. Forelesning 15: Avanserte emner Roger Antonsen - 29. mai 2006 1 Resolusjon 1.1 Overblikk John Alan Robinson, 1965. Metode for a avgjre gyldighet av formler. Populr, eektiv og enkel a implementere. En av

Detaljer

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk.

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk. INF3170 Logikk Dagens plan Forelesning 9: Arild Waaler 1 Institutt for informatikk, Universitetet i Oslo 2 Konsistens 19. mars 2007 Institutt for informatikk (UiO) INF3170 Logikk 19.03.2007 2 / 28 Innledning

Detaljer

Intuisjonistisk logikk

Intuisjonistisk logikk INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Intuisjonistisk logikk 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) INF3170 Logikk

Detaljer

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Intuisjonistisk logikk INF3170 Logikk

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar. Forelesning 16: Repetisjon Christian Mahesh Hansen - 4. juni 2007 1 Kompletthet 1.1 Introduksjon Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Detaljer

INF3170 Forelesning 11

INF3170 Forelesning 11 INF3170 Forelesning 11 Intuisjonistisk logikk Roger Antonsen - 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Innhold Intuisjonistisk logikk 1 Innledning........................................... 1

Detaljer

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden.

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden. Forelesning 15: Oppgaveløsing Christian Mahesh Hansen - 21. mai 2007 1 Generelle eksamenstips 1.1 Disponér tiden! Sett opp et grovt tidsbudsjett. En tre timers eksamen har 3 * 60 = 180 minutter. Oppgavene

Detaljer

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens)

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens) INF3170 Logikk Dagens plan Forelesning 16: Repetisjon Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 4. juni 2007 3 Institutt for informatikk (UiO) INF3170 Logikk 04.06.2007

Detaljer

1 Utsagnslogikk (10 %)

1 Utsagnslogikk (10 %) 1 Utsagnslogikk (10 %) a1) A A, C A A C A B A B (A C) B, C B B C B B, C A, C B, C A C B C A C B C B (A C) A (B C) B (A C) Utledningen lukkes ikke og vi får følgende valuasjon v som falsifiserer formelen:

Detaljer

Predikatlogikk Syntaks Semantikk INF3170 / INF4171. Predikatlogikk: Syntaks og semantikk. Andreas Nakkerud. 1. september 2015

Predikatlogikk Syntaks Semantikk INF3170 / INF4171. Predikatlogikk: Syntaks og semantikk. Andreas Nakkerud. 1. september 2015 INF3170 / INF4171 Predikatlogikk: Syntaks og semantikk Andreas Nakkerud 1. september 2015 Predikatlogikk Utsagnslogikk: p 0, p 1, p 1 p 6, p 2 p 1 Predikatlogikk: (( x)p 1 (x)), (( x)(( y)p 4 (x, y)))

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

INF3170 Forelesning 10

INF3170 Forelesning 10 INF3170 Forelesning 10 Fri-variabel sekventkalkyle Roger Antonsen - 20. april 2010 (Sist oppdatert: 2010-04-27 11:37) Innhold Fri-variabel sekventkalkyle 1 Introduksjon..........................................

Detaljer

Fri-variabel sekventkalkyle

Fri-variabel sekventkalkyle INF3170 Logikk Forelesning 10: Fri-variabel sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fri-variabel sekventkalkyle 20. april 2010 (Sist oppdatert: 2010-04-27 11:38) INF3170

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken Forelesning 4: Intuisjonistisk logikk Arild Waaler - 11. februar 2008 1 Intuisjonistisk logikk 1.1 Innledning Til nå i kurset Det utsagnslogiske språket: konnektiver og formler Bevissystem:LK og DPLL for

Detaljer

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen Forelesning 1-23. januar 2006 Introduksjon, mengdelre og utsagnslogikk 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: { Christian Mahesh Hansen (chrisha@ifi.uio.no) { Roger Antonsen (rantonse@ifi.uio.no)

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen INF3170 Logikk Forelesning 14: Avanserte emner Dagens plan 1 Christian Mahesh Hansen 2 Dualiteter Institutt for informatikk, Universitetet i Oslo 3 14. mai 2007 4 5 Teorier, aksiomer og ufullstendighet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. desember 2015 Tid for eksamen: 08.15 12:15 Oppgave 1 Grunnleggende mengdelære

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Praktisk informasjon Endringer

Detaljer

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet.

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet. INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Praktisk informasjon Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Endringer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. november 2012 Tid for eksamen: 13:00 16:00 Oppgave 1 Mengdelære (15 poeng)

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 4: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

INF1800 Forelesning 4

INF1800 Forelesning 4 INF1800 Forelesning 4 Utsagnslogikk Roger Antonsen - 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger Kursets hjemmeside blir stadig oppdatert: http://www.uio.no/studier/emner/matnat/ifi/inf1800/

Detaljer

Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk

Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk Sekventkalkyle System for å bevise sekventer fra aksiomer ved hjelp av regler Bevis er oppstilling som viser hvordan nye sekventer kan avledes

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte

Detaljer

Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon.

Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon. INF3170 / INF4171 Predikatlogikk: Semantikk og naturlig deduksjon Andreas Nakkerud 3. september 2015 Eksempel Gitt en similaritetstype 0, 2; 1; 2 bygger vi en struktur (modell) hvor A = {c 1, c 2, a, b},

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

Databaser fra et logikkperspektiv

Databaser fra et logikkperspektiv Databaser fra et logikkperspektiv Evgenij Thorstensen IFI, UiO Høst 2013 Evgenij Thorstensen (IFI, UiO) Databaser fra et logikkperspektiv Høst 2013 1 / 31 Outline 1 Logikk som verktøy 2 Relasjonsdatabaser

Detaljer

v : T, kan bare ha verdi av typen T. n =0 slyfes alltid parentesene. Typet uttrykkssprak type representerer en verdimengde. variabel, deklarert funksjon, herunder karakteriseres syntaktisk ved a angi navn

Detaljer

Logiske symboler. Ikke-logiske symboler. Konnektiver Kvantorer Har fast tolking

Logiske symboler. Ikke-logiske symboler. Konnektiver Kvantorer Har fast tolking Inf 3170 Logiske symboler Konnektiver Kvantorer Har fast tolking Ikke-logiske symboler Relasjonssymboler Funksjonssymboler Ariteten er alltid gitt Tolkningen kan variere Vi får formelspråket Start med

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)

Detaljer

Sekventkalkyle for første ordens predikatlogikk uten likhet

Sekventkalkyle for første ordens predikatlogikk uten likhet Sekventkalkyle for første ordens predikatlogikk uten likhet Tilleggslitteratur til INF1800 Versjon 29/9 07 Vi definerer sekventer for predikatlogikk på samme måte som i utsagnslogikk. En sekvent består

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 6

INF3170 Logikk. Ukeoppgaver oppgavesett 6 INF3170 Logikk Ukeoppgaver oppgavesett 6 Normalformer Negasjons normalform I dette oppgavesettet skal vi se nærmere på normalformer. Formelen (P Q) kan også skrives som P Q. Formlene er ekvivalente, dvs.

Detaljer

Karakteriseringen av like mengder. Mengder definert ved en egenskap.

Karakteriseringen av like mengder. Mengder definert ved en egenskap. Notat 2 for MAT1140 2 Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:50) Mer om førsteordens

Detaljer

Mer om førsteordens logikk

Mer om førsteordens logikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Mer om førsteordens logikk Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 10. februar 2009 (Sist oppdatert: 2009-02-11 01:52) Kapittel 4: Logikk (predikatlogikk)

Detaljer