EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl

Størrelse: px
Begynne med side:

Download "EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl"

Transkript

1 NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel , eller Jon Andreas Støvneng, tel , eller EKSAMEN I TFY415 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 008 kl Tillatte hjelpemidler: Godkjent kalkulator; Rottmann: Matematisk formelsamling; Øgrim & Lian: Størrelser og enheter i fysikk og teknikk, eller Lian og Angell: Fysiske størrelser og enheter; Aylward & Findlay: SI Chemical Data. Ark med uttrykk og formler (vedlegg 1) samt kjemiske navnsettingsregler (vedlegg ) er heftet ved.) Sensuren faller i august 008. Oppgave 1 (Teller 34 %) En partikkel med masse m befinner seg i et endimensjonalt potensial for x > a, V (x) = V 0 for a/ < x < a, 0 for a/ < x < a/. I denne oppgaven holdes parameteren a fast, mens V 0 er en parameter som kan varieres, fra store negative verdier og helt opp til +.

2 Side av 6 Figuren viser en prinsippskisse av grunntilstandsenergien E 1 som funksjon av V 0. Det opplyses at E 1 i likhet med alle andre energiegenverdier E n for dette systemet er en strengt stigende funksjon av V 0. a. Anta at V 0 er endelig. Angi uten bevis antall nullpunkter i intervallet a < x < a og beskriv symmetriegenskapene for grunntilstanden ψ 1 og første eksiterte tilstand ψ. Hvilke krav må alle energiegenfunksjoner ψ n for potensialet V (x) oppfylle i punktene x = ±a og x = ±a/? For spesialtilfellet V 0 = 0 har alle energiegenfunksjonene sinusform for x < a; ψ n = A n sin[k n (x a)]. Skissér grunntilstanden ψ 1 og første eksiterte tilstand ψ for V 0 = 0. b. Bestem bølgetallene k 1 og k for grunntilstanden og første eksiterte tilstand for spesialtilfellet V 0 = 0. Kontrollér at de resulterende løsningene ψ 1 og ψ oppfyller den tidsuavhengige Schrödingerligningen, og finn energiene E 1 (0) og E (0) for spesialtilfellet V 0 = 0. Hva blir energiene (E 1 ( ) og E ( )) når V 0 er uendelig stor? c. For en viss negativ verdi av V 0 (V 0 = V a < 0) er grunntilstandsenergien E 1 lik null (jf diagrammet ovenfor). Bruk (bl.a) den tidsuavhengige Schrödingerligningen til å finne formen til grunntilstanden ψ 1 i området a/ < x < a/ i dette tilfellet. Skissér ψ 1 for alle x. Bestem (den negative) potensialverdien V a, med utgangspunkt i skissen og den tidsuavhengige Schrödingerligningen.

3 Side 3 av 6 d. For en viss positiv verdi av V 0 (V 0 = V b > 0) er grunntilstandsenergien akkurat lik V 0 (se diagrammet øverst på forrige side). Lag en prinsippskisse av grunntilstanden ψ 1 for dette tilfellet. For dette tilfellet kan vi sette V b = E 1 = h k b m. Finn en betingelse som bestemmer bølgetallet k b. Gjør et røfft overslag over bølgetallet k b med utgangspunkt i skissen. Finn en nøyaktig verdi for k b og dermed potensialverdien V b, uttrykt ved a. Oppgave (Teller 5 %) En partikkel med masse m beveger seg i det endimensjonale harmoniske oscillatorpotensialet V (x) = 1 mω x. Grunntilstanden for dette systemet er ψ g = ( ) mω 1/4 e mωx / h, π h med energien E g = 1 hω. a. Bruk formelen K ψ = p x = h m m ψ ψ dx x til å vise at forventningsverdien av den kinetiske energien i grunntilstanden kan skrives på formen K g = 1 mω x g, dvs er like stor som forventningsverdien V g av den potenselle energien. [Hint: Bruk at ψ g / x = ( mωx/ h)ψ g.] Hva er K + V g for grunntilstanden? Bruk dette til å finne x g og p x g for grunntilstanden. Finn også forventningsverdiene x g og p x g for grunntilstanden, og bestem usikkerhetene ( x) g og ( p x ) g samt usikkerhetsproduktet ( x) g ( p x ) g.

4 Side 4 av 6 b. Anta at dette systemet ved t = 0 prepareres i (den normerte) begynnelsestilstanden Ψ(x, 0) = 10 ( ) mω 1/4 e 100mωx / h ψ b (x), π h som er sterkt skviset i forhold til grunntilstanden (se figuren). For t 0 kan bølgefunksjonen for systemet utvikles i det stasjonære løsningssettet for oscillatoren (se formelarket): Ψ(x, t) = c n ψ n (x)e ient/ h ; c n = ψ n, Ψ(0) = ψ n (x)ψ(x, 0)dx. n=0 Hva er den fysiske tolkningen av koeffisientene c n? Hvorfor er c n lik null for n = 1, 3, 5,? Hvilken symmetriegenskap medfører dette for Ψ(x, t)? Som funksjon av t vil Ψ(x, t) i høyeste grad endre form og utstrekning, men etter halvparten av den klassiske periodetiden, T/ = π/ω, er sannsynlighetstettheten faktisk uendret. Vis dette. [Hint: Finn først konstanten f i relasjonene exp[ ie n (t + T/)/ h] = f exp[ ie n t/ h] (n = 0,, 4, ), og bruk dette til å finne sammenhengen mellom Ψ(x, t + T/) og Ψ(x, t).] c. Skvisingen av begynnelsestilstanden innebærer at forventningsverdien V b av den potensielle energien er en faktor 100 mindre enn i grunntilstanden. Ved t = 0 befinner altså partikkelen seg praktisk talt i origo. Av samme grunn er forventningsverdien K b av den kinetiske energien en faktor 100 større enn i grunntilstanden, så partikkelen er nokså energisk. Du inviteres nå til å spekulere kvalitativt rundt hva som skjer med sannsynlighetsfordelingen mellom hver gang den gjenskapes, dvs mellom tidspunktene t = 0, T/, T, 3T/ osv. Prøv også å gjøre et halvklassisk overslag over den midlere kvadratiske avstanden fra origo (og dermed av usikkerheten x) når disse er på sitt største. [Hint: Hvor langt ut beveger partikkelen seg klassisk dersom den har en energi E? Hva er E i tilstanden Ψ(x, t)?]

5 Side 5 av 6 Oppgave 3 (Teller 16 %) a. For en partikkel med masse m i det endimensjonale harmoniske oscillatorpotensialet V (x) = 1 mω x er egenfunksjonene ψ n (x) oppgitt på formelarket de eneste løsningene av energiegenverdiligningen som går mot null når x ±. Bruk dette som utgangspunkt for å angi bølgefunksjonene og energiene for grunntilstanden og første eksiterte tilstand når partikkelen beveger seg i det endimensjonale potensialet V (x) = { 1 mω x for x > 0, for x < 0. b. Et elektron beveger seg i det tredimensjonale potensialet e for z > 0, V = 4πɛ 0 r for z < 0. Finn, med utgangspunkt i de kjente energiegenfunksjonene for hydrogenlignende systemer, grunntilstanden for dette systemet og den tilhørende energien. Hva blir energien og degenerasjonsgraden for første eksiterte nivå?

6 Oppgave 4 (Teller 10%) Svar kort på disse fire spørsmålene: Side 6 av 6 I kvantemekaniske beregninger på atomer og molekyler benyttes som regel den såkalte Born Oppenheimer approksimasjonen. Hva innebærer det? Hva uttrykker Pauliprinsippet? Et (ikke-lineært) molekyl med N atomer har 3N (romlige) frihetsgrader. Hvor mange av disse er knyttet til henholdsvis translasjon av molekylet, rotasjon av molekylet, og vibrasjoner i molekylet? Tegn opp og navngi de tre ulike isomere av dibrometen. Oppgave 5 (Teller 15%) En kjemisk likevekt A B beskrives av følgende energifunksjon E(x): Her er E systemets totale energi, og reaksjonskoordinaten x kan (f.eks) være det relative avvik fra likevektsverdien R 0 til en bestemt interatomær avstand i systemet, dvs x = (R R 0 )/R 0. Diskuter hvordan kinetikken og den termodynamiske likevekten mellom de to tilstandene A og B avhenger av de ulike energiene angitt i figuren. Vi kan modellere en slik kjemisk likevekt med energifunksjonen ( ) 35x 4 E(x) = E 0 x 3 + x 8 4 der E 0 = 343 ev. Bestem x A, x TS og x B. Verifiser at x TS tilsvarer et (lokalt) energimaksimum. (Tips: Betrakt den andrederiverte av E.) Anta at A og B er ulike konformasjoner av samme molekyl (dvs at B kan oppnås fra A, og omvendt, ved f.eks dreining omkring en av systemets kjemiske bindinger). Bestem forholdet N A /N B mellom antall molekyler i tilstand A og tilstand B i en slik gass i termodynamisk likevekt ved romtemperatur (T = 300 K). Vil dette forholdet bli mindre eller større dersom temperaturen senkes? Begrunn svaret kort. Oppgitt: Boltzmanns konstant k B = ev/k.

7 Vedlegg 1: Formler og uttrykk Endimensjonal harmonisk oscillator (Noe av dette kan du få bruk for.) ( h m ) x + 1 mω x ψ n (x) = hω(n + 1)ψ n(x); ψ n, ψ k = δ nk ; ψ n (x) = ( ) mω 1/4 1 / π h n n! e y H n (y), y = x h/mω ; H 0 (y) = 1, H 1 (y) = y, H (y) = 4y, H 3 (y) = 8y 3 1y, ; Pψ n (x) ψ n ( x) = ( 1) n ψ n (x). Laplace-operatoren og dreieimpulsoperatorer i kulekoordinater ˆL x = h i = r + r r ˆL h r ; ( ˆL = h θ + cot θ θ + 1 ) sin, θ φ ˆLz = h i ( sin φ ) cot θ cos φ, ˆLy = h ( cos φ θ φ i θ [ L, L z ] = 0, [ L x, L y ] = i h L z, osv. φ ; cot θ sin φ φ ) ; Vinkelfunksjoner { ˆL ˆL z } { h l(l + 1) Y lm = hm } Y lm, l = 0, 1,,...; π 0 1 dφ d(cos θ)y l 1 m Y lm = δ l lδ m m; Y 0 = Y px = Y 10 = 3 4π 5 16π (3 cos θ 1); 3 3 4π cos θ = 4π z r Y p z, x r = 1 (Y 1, 1 Y 11 ), Y py = 3 Y 1±1 = 8π sin θ e±iφ ; 3 y 4π r = i (Y 11 + Y 1, 1 ); 15 Y,±1 = 8π sin θ cos θ e±iφ ; Y,± = PY lm = ( 1) l Y lm. 15 3π sin θ e ±iφ. Energiegenfunksjoner og radialligning, kulesymmetrisk potensial V (r) [ h d ] m dr + V eff(r) l u(r) = E u(r), ψ(r, θ, φ) = u(r) r Y lm (θ, φ); V l eff(r) V (r) + h l(l + 1) mr, u(0) = 0.

8 Energiegenverdier og -egenfunksjoner, hydrogenlignende system, V (r) = Ze /(4πɛ 0 r) R 10 = a 3/ e r/a ; R 0 = Noen konstanter E n = E 1 n E 1 (l n r ), E 1 = 1 (αz) m e c ; 1 a 3/ ψ nlm = R nl (r)y lm (θ, φ); ( 1 r a ) e r/a ; R 1 = a 0 = 4πɛ 0 h m e e m (Bohr-radien); 1 r 6 a 3/ a e r/a ; a = a 0 Z. α = e 4πɛ 1 0 hc α m e c = h m e a ev (finstrukturkonstanten); (Rydberg-energien). Noen formler sin a = (e ia e ia )/i, cos a = (e ia + e ia )/; tan y = 1 cot y = tan(y + nπ), n = 0, ±1, ; sinh y = 1 (ey e y ); cosh y = 1 (ey + e y ); tanh y = 1 coth y = sinh y cosh y ; cosh y sinh y = 1; d d sinh y = cosh y; dy cosh y = sinh y. dy

9 Vedlegg. Navnsettingsregler i organisk kjemi. Tabell 1. Noen funksjonelle grupper rangert etter avtagende prioritet Rang Hovedgruppe Funksjonell gruppe Forstavelse Endelse 1 Karboksylsyre -COOH (karboksy-) -syre Syreanhydrid -CO O CO- -syreanhydrid 3 Ester -COOR -oat eller -at 4 Syrehalid -COX halokarbonyl- -oylhalid 5 Amid -CONH amido- -amid 6 Nitril -CN cyano- -nitril 7 Aldehyd -COH okso- -al 8 Keton -CO- okso- -on 9 Alkohol -OH hydroksy- -ol 10 Thiol -SH merkapto- -thiol 11 Amin -NH amino- -amin 1 Imin >C=N- imino- -imin 13 Alken -C=C- -en 14 Alkyn -C C- -yn 15 Alkan -C C- -an Underordnede grupper (ingen rangering) Funksjonell gruppe Forstavelse Endelse Eter -C O C- alkoksy- -eter Halid -X halo- (f.eks. kloro-) Nitro -NO nitro- X = en halogen (F, Cl, Br eller I), R = (normalt) en alkylgruppe (C n H n+1 ) Navnsetting av organiske forbindelser: [Forstavelse(r) inklusive nummerering] - [Hovedskjelett] - [Endelse] Endelse: funksjonell gruppe med høyest rang Hovedskjelett: lengste sammenhengende karbonkjede, nummerert slik at endelsesgruppen sitter på lavest mulig nummer Forstavelse(r) inkl nummerering: alle substituenter på hovedskjelettet, i alfabetisk rekkefølge

10 ENGLISH TEXT Page 1 of 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel , eller Jon Andreas Støvneng, tel , eller EKSAMEN I TFY415 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 008 kl Tillatte hjelpemidler: Godkjent kalkulator; Rottmann: Matematisk formelsamling; Øgrim & Lian: Størrelser og enheter i fysikk og teknikk, eller Lian og Angell: Fysiske størrelser og enheter; Aylward & Findlay: SI Chemical Data. Sheets with formulae and expressins (attachment 1) and chemical naming rules (attachment ) are attached. Sensuren faller i august 008. Question 1 (Counts 34 %) A particle with mass m is moving in a one-dimensional potential for x > a, V (x) = V 0 for a/ < x < a, 0 for a/ < x < a/. In this Problem the parameter a is kept fixed, while V 0 is a parameter that can be varied, from large negative values towards +.

11 Page of 6 The figure shows a sketch of the ground-state energy E 1 as a function of V 0. It turns out that E 1 is a monotonically increasing function of V 0, as are all the other energy eigenvalues. a. Suppose that V 0 is finite. State without proof the number of zeros in the interval a < x < a and describe the symmetry properties for the ground state ψ 1 and the first excited state ψ. Which conditions must be satisfied by all energy eigenfunctions ψ n for the potential V (x) in the points x = ±a and x = ±a/? For the special case V 0 = 0, all the energy eigenfunctions are sinusoidal for x < a; ψ n = A n sin[k n (x a)]. Sketch the ground state ψ 1 and the first excited state ψ for V 0 = 0. b. Determine the wave numbers k 1 and k for the ground state and the first excited state for the special case V 0 = 0. Check that the resulting solutions ψ 1 and ψ satisfy the timeindependent Schrödinger equation, and find the energies E 1 (0) and E (0), for the special case V 0 = 0. What are the energies (E 1 ( ) and E ( )) when V 0 is infinitely high? c. For a certain negative value of V 0 (V 0 = V a < 0), the ground-state energy E 1 is equal to zero (cf the diagram above). Use (among other things) the time-independent Schrödinger equation to find the form of the ground state ψ 1 in the region a/ < x < a/ in this case. Sketch ψ 1 for all x. Determine (the negative) potential value V a, based on the sketch and the time-independent Schrödinger equation.

12 Page 3 of 6 d. For a certain positive value of V 0 (V 0 = V b > 0), the ground state energy equal to V 0 (see the diagram at the top of the preceding page). Make a sketch of the ground state ψ 1 for this case. For this case, we may write V b = E 1 = h k b m. Find a condition that determines the wave number k b. Make a rough estimate of the wave number k b based on the sketch. Find an accurate value for k b and hence for the potential value V b, expressed in terms of a. Question (Counts 5 %) A particle with masse m is moving in the one-dimensional harmonic oscillator potential V (x) = 1 mω x. The ground state of this system is ψ g = ( ) mω 1/4 e mωx / h, π h with the energy E g = 1 hω. a. Use the formula K ψ = p x = h m m ψ ψ dx x to show that the expectation value of the kinetic energy in the ground state may be written on the form K g = 1 mω x g, which means that it is equal to the expectation value V g of the potential energy. [Hint: Use that ψ g / x = ( mωx/ h)ψ g.] What is K + V g for ground state? Use this to find x g and p x g for the ground state. Find also the expectation values x g and p x g for the ground state, and determine the uncertainties ( x) g and ( p x ) g, together with the uncertainty product ( x) g ( p x ) g.

13 Page 4 of 6 b. Suppose that this system is at t = 0 prepared in (the normalized) initial state Ψ(x, 0) = 10 ( ) mω 1/4 e 100mωx / h ψ b (x), π h which is strongly squeezed compared to the ground state (see the figure). For t 0, the wave function of this system may be expanded in terms of the set of stationary states of the oscilator (see the formula sheet): Ψ(x, t) = c n ψ n (x)e ient/ h ; c n = ψ n, Ψ(0) = ψ n (x)ψ(x, 0)dx. n=0 What is the physical interpretation of the coefficients c n? Why is c n equal to zero for n = 1, 3, 5,? Which symmetry property for Ψ(x, t) follows from this? As a function of t, the wave function Ψ(x, t) will vary strongly in form and extension but, after one half of the classical period, T/ = π/ω, the probability density is in fact unchanged. Show this. [Hint: Start by finding the constant f in the relations exp[ ie n (t + T/)/ h] = f exp[ ie n t/ h] (n = 0,, 4, ), and use this to find the relation between Ψ(x, t + T/) and Ψ(x, t).] c. As a consequence of the she squeezing of the initial state, the expectation value V b of the potential energy is a factor 100 less than in the ground state. Thus, at t = 0 the particle is located at the origin, roughly speaking. For the same reason the expectation value K b of the kinetic energy is a factor 100 larger than in the ground state, so that the particle is fairly energetic. You are now invited to speculate in a qualitative way about what happens with the probability distribution between the times when it is recreated, i.e., between the times t = 0, T/, T, 3T/ etc. Try also to make a semiclassical estimate of the average squared distance from the origin (and hence of the uncertainty x) when these quantities are on their largest. [Hint: How far out does the particle move classically if it has an energy E? And what is E in the state Ψ(x, t)?]

14 Page 5 of 6 Question 3 (Counts 16 %) a. For a particle with mass m in the one-dimensional harmonic oscillator potential V (x) = 1 mω x, the eigenfunctions ψ n (x) given on the formula sheet are the only solutions of the energy eigenvalue equation which go to zero when x ±. Base on this, state the results for the wave functions and the energies of the ground state and the first excited state when the particle is moving in the one-dimensional potential V (x) = { 1 mω x for x > 0, for x < 0. b. An electron is moving in the three-dimensional potential e for z > 0, V = 4πɛ 0 r for z < 0. Find, using the known energy eigenfunctions for hydrogenlike systems, the ground-state wave function for this system and the corresponding energy. What is the energy and the (degree of) degeneracy for the first excited level?

15 Oppgave 4 (Teller 10%) Svar kort på disse fire spørsmålene: Side 6 av 6 I kvantemekaniske beregninger på atomer og molekyler benyttes som regel den såkalte Born Oppenheimer approksimasjonen. Hva innebærer det? Hva uttrykker Pauliprinsippet? Et (ikke-lineært) molekyl med N atomer har 3N (romlige) frihetsgrader. Hvor mange av disse er knyttet til henholdsvis translasjon av molekylet, rotasjon av molekylet, og vibrasjoner i molekylet? Tegn opp og navngi de tre ulike isomere av dibrometen. Oppgave 5 (Teller 15%) En kjemisk likevekt A B beskrives av følgende energifunksjon E(x): Her er E systemets totale energi, og reaksjonskoordinaten x kan (f.eks) være det relative avvik fra likevektsverdien R 0 til en bestemt interatomær avstand i systemet, dvs x = (R R 0 )/R 0. Diskuter hvordan kinetikken og den termodynamiske likevekten mellom de to tilstandene A og B avhenger av de ulike energiene angitt i figuren. Vi kan modellere en slik kjemisk likevekt med energifunksjonen E(x) = E 0 ( 35x 4 8 ) x 3 + x 4 der E 0 = 343 ev. Bestem x A, x TS og x B. Verifiser at x TS tilsvarer et (lokalt) energimaksimum. (Tips: Betrakt den andrederiverte av E.) Anta at A og B er ulike konformasjoner av samme molekyl (dvs at B kan oppnås fra A, og omvendt, ved f.eks dreining omkring en av systemets kjemiske bindinger). Bestem forholdet N A /N B mellom antall molekyler i tilstand A og tilstand B i en slik gass i termodynamisk likevekt ved romtemperatur (T = 300 K). Vil dette forholdet bli mindre eller større dersom temperaturen senkes? Begrunn svaret kort. Oppgitt: Boltzmanns konstant k B = ev/k.

16 Attachment 1: Formulae and expressions be useful.) One-dimensional harmonic oscillator ( h m (Some of this may turn out to ) x + 1 mω x ψ n (x) = hω(n + 1)ψ n(x); ψ n, ψ k = δ nk ; ψ n (x) = ( ) mω 1/4 1 / π h n n! e y H n (y), y = x h/mω ; H 0 (y) = 1, H 1 (y) = y, H (y) = 4y, H 3 (y) = 8y 3 1y, ; Pψ n (x) ψ n ( x) = ( 1) n ψ n (x). The Laplace operator and angular-momentum operators in polar coordinates ˆL x = h i = r + r r ˆL h r ; ) ( ˆL = h θ + cot θ θ + 1 sin, θ φ ˆLz = h i ( sin φ ) cot θ cos φ, ˆLy = h ( cos φ θ φ i θ [ L, L z ] = 0, [ L x, L y ] = i h L z, osv. φ ; cot θ sin φ φ ) ; Angular functions { ˆL ˆL z } { h l(l + 1) Y lm = hm } Y lm, l = 0, 1,,...; π 0 1 dφ d(cos θ)y l 1 m Y lm = δ l lδ m m; Y 0 = Y px = Y 10 = 3 4π 5 16π (3 cos θ 1); 3 3 4π cos θ = 4π z r Y p z, x r = 1 (Y 1, 1 Y 11 ), Y py = 15 3 Y 1±1 = 8π sin θ e±iφ ; 3 y 4π r = i (Y 11 + Y 1, 1 ); Y,±1 = 8π sin θ cos θ e±iφ ; Y,± = PY lm = ( 1) l Y lm. 15 3π sin θ e ±iφ. Energy eigenfunctions and radial equation, spherically symmetric potential V (r) [ h d ] m dr + V eff(r) l u(r) = E u(r), ψ(r, θ, φ) = u(r) r Y lm (θ, φ); V l eff(r) V (r) + h l(l + 1) mr, u(0) = 0.

17 Energy eigenfunctions and eigenvalues, hydrogenlike system, V (r) = Ze /(4πɛ 0 r) R 10 = a 3/ e r/a ; R 0 = Some constants E n = E 1 n E 1 (l n r ), E 1 = 1 (αz) m e c ; 1 a 3/ ψ nlm = R nl (r)y lm (θ, φ); ( 1 r a ) e r/a ; R 1 = a 0 = 4πɛ 0 h m e e m (Bohr-radien); 1 r 6 a 3/ a e r/a ; a = a 0 Z. α = e 4πɛ 1 0 hc α m e c = h m e a ev (finstrukturkonstanten); (Rydberg-energien). Some formulae sin a = (e ia e ia )/i, cos a = (e ia + e ia )/; tan y = 1 cot y = tan(y + nπ), n = 0, ±1, ; sinh y = 1 (ey e y ); cosh y = 1 (ey + e y ); tanh y = 1 coth y = sinh y cosh y ; cosh y sinh y = 1; d d sinh y = cosh y; dy cosh y = sinh y. dy

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 3 55 Jon Andreas Støvneng, tel. 73

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 16. august 2008 kl ENGLISH TEXT Page 1 of 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 3 55 Jon Andreas Støvneng, tel.

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 6. august 2007 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 6. august 2007 kl NRSK TEKST Side 1 av 7 NRGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK

Detaljer

NORSK TEKST Side 1 av 5

NORSK TEKST Side 1 av 5 NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 6. juni 2007 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 6. juni 2007 kl NRSK TEKST Side 1 av 7 NRGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK mandag 26. mai 2008 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK mandag 26. mai 2008 kl NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7 NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0, BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 29. mai 2010 kl BOKMÅL Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3 FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 Kvantefysikk Tirsdag 13. desember 2005 kl ENGLISH TEXT (and NORWEGIAN) Page 1 of 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 18 67, eller 97 01 2 55 Jon Andreas Støvneng, tel. 7 59 6

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00

Detaljer

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245/TFY425 KVANTEMEKANIKK

Detaljer

NORSK OG ENGELSK TEKST Side 1 av 10

NORSK OG ENGELSK TEKST Side 1 av 10 NORSK OG ENGELSK TEKST Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

FY1006/TFY Øving 7 1 ØVING 7

FY1006/TFY Øving 7 1 ØVING 7 FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Lørdag 9. desember 2006 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Lørdag 9. desember 2006 kl ENGLISH TEXT and NORWEGIAN Page of 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM-

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast

Detaljer

TFY Øving 8 1 ØVING 8

TFY Øving 8 1 ØVING 8 TFY4215 - Øving 8 1 ØVING 8 Mye av poenget med oppgave 2 er å øke fortroligheten med orbitaler, som er bølgefunksjoner i tre dimensjoner. Fordi spørsmålene/oppdragene er spredt litt rundt omkring, markeres

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 Løsning oppgave 5 LØSNING ØVING 2 Krumningsegenskaper for endimensjonale energiegenfunksjoner a. For oscillator-grunntilstanden i oppgave 3b har vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Tirsdag 4. desember 2007 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Tirsdag 4. desember 2007 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.

FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse

Detaljer

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom

TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke

Detaljer

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator

TFY Løsning øving 7 1 LØSNING ØVING 7. 3-dimensjonal isotrop harmonisk oscillator TFY415 - Løsning øving 7 1 Løsning oppgave a. Med z = r cos θ har vi at LØSNING ØVING 7 3-dimensjonal isotrop harmonisk oscillator ψ 1 = C C 1 e mωr / h r cos θ, som er uavhengig av asimutvinkelen φ, dvs

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I TFY450 ATOM- OG MOLEKYLFYSIKK

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Tirsdag 4. desember 2007 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK og FY2045 KVANTEFYSIKK Tirsdag 4. desember 2007 kl ENGLISH TEXT and also in NORWEGIAN Page of 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene. FY16/TFY415 - Løsning øving 8 1 Løsning oppgave 3 Vinkelfunksjoner, radialfunksjoner og orbitaler for hydrogenlignende system LØSNING ØVING 8 a. (a1: Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

Detaljer

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for

Detaljer

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons. Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur

Detaljer

EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl

EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 970355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 18 67, eller 97 01 2 55 Jon Andreas Støvneng, tel. 7 59 6

Detaljer

Eksamen FY1006/TFY mai løsningsforslag 1

Eksamen FY1006/TFY mai løsningsforslag 1 Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store

Detaljer

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk

Detaljer

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x

Detaljer

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk

Detaljer

LØSNING EKSTRAØVING 2

LØSNING EKSTRAØVING 2 TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Quantum. collection) Number. of pages: Number. Checked. Date. Signature 1

Quantum. collection) Number. of pages: Number. Checked. Date. Signature 1 Department of Physics Examinationn paper for TFY4250/FY2045 Quantum Mechanics 1 Academic contactt during examination: Peter Berg Phone: 735 93462 Examination date: December 18 th, 2013 Examination time

Detaljer

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h

Detaljer