Mot 5: Støy i bipolare transistorer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Mot 5: Støy i bipolare transistorer"

Transkript

1 1/34 Mot 5: Støy i bipolae tansistoe Vi ha tidligee unnet Eni, En, og n o en osteke. Vi vil nå gjøe dette o en bipola tansisto. Vi vil se at støyen e både avhengig av opeasjonspunktet (støm og spenning) og tansistoens posess og utleggspaametee.

2 /34 Hybid- modellen Fø vi se på støyen vil vi se på en vanlig modell o bipolae tansistoe. Denne gjelde både o npn og pnp. modellen skille en mellom den ekstene tilkoblingsnoden o basen og den inde, eektive tilkoblingsnoden '. : e den ohmske spedemotstanden i basen : kke-esistiv A-motstand c: Kondensato '-E og c modulee inngangsimpedansen til tansistoen gmv: Stømgeneato som bestemme. 0: Dynamisk utgangsmotstand på µ og µ : Modulee deplesjonssonen mellom og E. gnoees hvis en vil ha en enklee lavekvensmodell.

3 3/34 Noen kjente uttykk: β 0 E g V m V g m Foutsette µ og alle 0 (d.v.s. lavekvent betaktning.) q g m kt Tanskonduktans. N! Småsignal ac-paamete elatet til en dc-støm > egenset gyldighetsomåde e Ω g m Emittemotstand. β 0 β g 0 m e i ohold til noen av de oegående.

4 4/34 g m µ T En sental vedi e gain-bandwidth poduktet. Det uttykkes som T og tilsvae den ekvens hvo ostekningen e -3d (1/). Vi kan egne om videe slik at vi å: g m T ( ) µ he e "beta-cuto-ekvensen". Dette e ekvensen hvo β e 1/ av sin lavekvente vedi β0. he β T β 0 Noen eksempelvedie: 97kΩ 01.6MΩ 78Ω µ15mω gm0.0036s µ4pf β0350 5pF T19.8MHz β56.5khz

5 5/34 Støymodellen o JT gi temisk støy. og gi shot-noise. i gjennom base-emitte deplesjonssonen gi lickestøy.

6 6/34 Vi ha nå ie støykilde o tansistoen. tillegg komme støy i kilden. og 0 e ikke-ohmske acmotstande og geneee ikke temisk støy. µ og µ ha blitt utelatt o å gjøe det enklee D.v.s. vi se på ekvense unde T/ β0. Ove denne gensen bli støykildene noe koelete og vi vil ha mee støy en denne modellen indikee. Temisk støy i : E 4kT Shot-noise p.g.a. og e henholdsvis: og nb q nc q

7 7/34 Flickestøyen kan uttykkes med: K γ α Ote kan en sette ala til en og estatte K med ql hvo L e en hjøneekvens typisk i omådet 3kHz til 7MHz. Vi å da: γ q L Støyspenningen som e et esultat av denne stømmen inne vi ved å multiplisee den med motstanden den vil gå igjennom:. Men ekspeimentelle data vise at den eektive i denne sammenheng e minde. Vi lage deo en ny ' som e ca. /. γ q L ' E

8 8/34 Ekvivalent inngangsstøy. Metode: 1) Støy på utgang ) Fostekning 3) Støy på inngang støy på utgang/ostekning 1) Støy på utgang: Finne øst støy på utgang. Hvis utgangen e kotsluttet til E så å vi: ( ) E g m nc no He e E støyspenning mellom ' og E. nnsatt vedi o E så å vi: ( ) ( ) ( ) ( ) ( ) Z Z Z Z E E g s s nb s s m nc no ) Fostekning: Z Z V g V g s s m m O Z Z g V K s m s o t

9 9/34 3) Støy på inngang ( )( ) ( ) Z g Z E E K E m s nc s nb s t no ni Sette vi inn o støyspenninge og støystømme så å vi med 1: ( ) ( ) ( ) ( ) ' 4 γ Z g Z q q q kt E m S s L S s ni Ved lave ekvense kan det siste leddet skives som: ( ) 0 β q S og ved høyee ekvense opp mot T/ β0.som ( ) 1 T S m S q g q ω ω Oppdelt i en lavekvent komponent og en høyekvent å vi: ( ) ( ) ( ) ( ) ( ) 0 ' 4 T S S L S S s ni q q q q kt E γ β

10 10/34 En og n o bipolae tansistoe En: Vi inne En ved å sette s0 i uttykket o støyen på inngangen. T L n q q q q kt E 0 ' 4 γ β Siden β0e og ² << β0e² så kan vi sette ' 4 T L e n q q q kt E γ n: Vi inne n ved å la s bli høy. Vi dele alle ledd med s² og la s gå mot. T L o n q q q q γ β Siden /β0²<< så vil øste leddet dominee ove ande leddet og ande leddet kan demed jenes. Vi å da: T L n q q q γ

11 11/34 E t Eksempel: Finn Eni² o en N450 hvo 1mA, S10kΩ, 10Hz, 1kHz Støy i kildemotstand kan egnes ut: 4kT S Ws / K 300K Fo videe utegning buke vi: E E E ni ( ) t n n S 10kΩ Ut a opplysningene i boka ha vi to måte vi kan inne En og n: Ut a avlesning av igue elle ved hjelp av utegning. 1) Avlesning av igu: igu 5-9 avlese vi En til ca nv/ Hz og n til ca 1pA/ Hz. nnsatt i ligningen ove å vi da at Eni e ca 51.4nV. [ ( 10 ) ( 10 ) ( 10 ) ]( 10) E ni E ni E ni [ ]( 10) V E ni 51. 4nV 16 WsΩ

12 1/34 ) Utegning tillegg til de oppgitte vedie, vedie i tabell 5-1 og kjente konstante, må e og egnes ut. Disse kan innes ved hjelp av omlene og de øvige vedie. E n γ 4 q L ' kt q e q T,48 10^-18,14 10^-19 1,39 10^-1 1,15 10^-7,70 10^-18 n γ q L q q T 8,59 10^-53,30 10^-55,11 10^-3 1,19 10^-4 E ni ( E E ) t n n S (1,65 10^-16,70 10^-181,19 10^-16 (10 10^3)^) 10,867 10^-15V² E ni 5. 8nV

13 13/34 Mellombåndstøyen (minimumsstøyen) Som vi se av uttykkene e En og n ekvensavhengige. Ved lave ekvense vil 1/støyen væe vesentlig mens ved høye ekvense vil vi å et eksta ekvensavhengig ledd o shotnoise i kollekto. Vi kan snakke om et mellomomåde hvo støyen ikke e stekt ekvensavhengig og hvo ande bidag enn de ekvensavhengige e domineende. Dette mellomomådet angi på en måte minimumsstøyen vi kan oppnå. Hvis vi jene de ekvensavhengige leddene i utykkene o En og n så å vi: og E n n q 4kT q e Nå S e liten vil En dominee og det vil væe ønskelig med en liten basemotstand. Nå S e sto vil n²s²-leddet lett kunne dominee. Det vil da væe viktig å ha en liten. Fo å kunne å til det bø væe liten og β sto.

14 14/34 (Noise cuent på Y-aksen i nedeste igu.)

15 15/34 Minimaliseing av støyaktoen. Vi ant tidligee ølgende uttykk o optimal støyakto: En n Fopt 1 kt (Denne kan bae oppnås nå en kan velge S itt slik at SOEn/n.) Vi sette inn de ekvensuavhengige uttykkene vi ant o En og n og å: F opt 1 β 0 e 1 β 0 Fo å oppnå lav støy må: edusees β0 økes edusees (e 1/) Nomalt vil man oppnå lavest støy nå kollektostømmen e minde en 100µA. Hvis kollektostømmen e svæt liten vil vi sitte igjen med: F opt 1 1 β 0

16 16/34 Optimal S: Optimalbetingelsen ove outsette at S0En/n. Vi sette inn uttykkene o En og n og å: β 0 ( 0.05) Vi se da at eduset keve støe S!! Nå base motstanden kan neglisjees så ha vi: 0.05 β 0 0 β 0

17 17/34 Fekvensomåde dominet av 1/-støy (d.v.s. lave ekvense) Ved lave ekvense vil licke (1/)-støyen dominee. Vi gå tilbake til våe oppinnelige uttykk o En og n og beholde bae lickestøyen. Vi å da: E q γ L ' n α og γ q L n α Disse e like med unntak av motstanden '². Optimal S vil i dette tilelle væe: E S 0 n n ' Vi se at S he e uavhengig av alle ande vedie enn '². dette ekvensomådet ha vi: F opt 1 q L kt ' γ α

18 18/34 Hvodan oppnå lav støy i dette omådet? Liten ' Liten (og demed liten ). Dette gi gode ohold også i mellomekvensomådet vi diskutete tidligee. Med det sike ikke gode høyekvensegenskape.

19 19/34 Opeasjonsbetingelse og støy Ekvivalent inngangsstøy uttykkes ved: E E E ni t n n S igu 5-4 så vi at En avtok med voksende mens n vokse med voksende. Ut a dette kan en ovente at støyen vil væe sto o lav og høy og ha et minimum i midten. (Temisk støy i kilden (Et) vil selvølgelig ikke væe påviket av.) Siden bidaget a n skalees med S vil minimumsvedien lytte seg. Siden n vokse med voksende så bety det at med voksende S så vil minimumspunktet bevege seg mot lavee. Dette kan ses i iguen unde hvo hoisontal akse e støm mens kuvene o noen utvalgte motstande e skisset.

20 0/34 kuven unde bytte vi om og la hoisontal akse væe motstand mens kuvene o noen utvalgte stømme e skisset. Konklusjon: Fo en gitt S innes det et støyminimum. Fo en gitt innes det et støyminimum. Optimal S avta med økende.

21 1/34 Figuen ove vise en altenativ måte å pesentee kuvene. De seks bildene e seks oskjellige ekvense. Gitt en ekvens så bø en inne en kombinasjon av S og som gi støst 1domåde undt punktet o den valgte S og.

22 /34 Ote vil det væe nyttig å vudee støy som unksjon av ekvens. Fo lave ekvense øke støyen (med eduksjon i ekvens) som 1/ mens o høye ekvense e den poposjonal med. mellomomådet e det latt og kuvene ha sitt minimum som omtalt tidligee.

23 3/34 Popcon støy Obsevet i: tunnel diode, diode ovegange, ilm motstande, tansistoe og integete ketse. Spektaltettheten til eekten av denne støyen e 1 α hvo α e mellom 1 og.

24 4/34 Fo en vanlig pn-ovegang så e pulsene maks noen titals mikoampee og med en lengde på noen mikosekunde. Anta at popconstøyens stømgeneato kan uttykkes slik: K' bb hvo K e en dimensjoneings konstant med Ampee som benevning. Et me nøyaktig uttykk e: bb K 1 4a hvo K e en konstant med Ampee p Hetz som benevning og konstanten a epesentee antallet av busts p. sekund.

25 5/34 Oppdeling av asemotstanden kan deles i to dele: a kontakt (metall) til næmeste base-emitte ovegang og eektiv motstand o distibusjon av base støm langs base-emitte ovegangen. Den øste navnsettes til i mens den ande navnsettes til a. 1/ støy som ha sammenheng med kystallovelaten skal bae elatees til i mens 1/ støy som ha sammenheng med den aktive base egionen skal elatees til hele. Popcon støy vise seg også å væe elatet bae til i.

26 6/34 En ny støymodell hvo e delt opp e vist ove. He ha vi ått to 1/-støykilde 1 og samt en popcon støykilde bb. Shot: nb q Shot: nc q Themal: E 4kT ust: K 1/: 1/: bb 1 1 4a K K (Disse gjelde o 1Hz båndbedde.) 1 γ 1 γ

27 7/34 Måling av popcon støy. Popcon støy e øst og emst et poblem o lave ekvense i audioomådet. Skjemaet unde vise en måte å måle denne støyen. Teskelspenningen V må velges slik at temisk støy ikke tigge denne. Dette bety også at de laveste vediene av popcon-støyen ikke bli målt.

28 8/34

29 9/34 Flickestøy og pålitelighet Det vise seg at støelsen av lickestøyen i en komponent gi en god indikasjon på komponentens tilstand. to like komponente vil en kunne anta at den med støst licke støy e minst pålitelig og ha kotest levetid. Måling av lickestøy og målingen av utviklingen vil demed kunne si noe om et systems tilstand.

30 30/34 evesspenning og støy. Hvis evesspenningen ove base-emitte passee sammenbuddspenningen så vil tansistoens kaakteistikk endes. β0 vil avta noe mens 1/støyen vil øke damatisk. Endingen vil væe avhengig av støelsen på evesstømmen og hvo lenge den e de Ved å legge på en sto ospenning så vil skaden delvis bli ettet opp slik det e vist ove. (1E4s t 46m 40s, 1E5s 7t 46m 40s)

31 31/34 Eksempel på utilsiktet oveskidelse av evesospenning #1. Hvis punktet A kotsluttes tilsiktet elle utilsiktet mot powe elle powe av osteke slås av kan ladningen ove medøe at inngangstansistoene til ostekeen å o sto evesospenning. Ved å koble opp diodene som vist så vil en sike seg mot at spenningen bli o høy og ostekeen skades.

32 3/34 Eksempel på utilsiktet oveskidelse av evesospenning #. Fø V e tilkoblet e spenningen ove og 3 null volt. Det vil den også væe umiddelbat ette at V e tilkoblet spenningsosyning. Vi kan da anse 4 og 6 o å væe kotsluttet. Q1 og Q3 vil lede sto støm og Q s base vil ha lav spenning mens Q s emitte vil ha høy spenning. Q vil demed kunne ha en evesospenning støe en sammenbuddspenningen og å endet egenskape i negativ etning.

33 33/34 Det kan motvikes på lee måte. Felles o metodene e at de beskytte Q ved spenningstilkobling og deette gi vanlig unksjon. 3 kobles mot jod istedeno mot V. Ved spenningstilkobling vil nå stømmen gå gjennom 6 og ikke gjennom Q3. Q3 vil demed ikke tekke så sto støm og Q s emitte vil obli lav. Dioden D1 vil søge o at evesospenningen ove Q s base-emitte ikke bli o sto. Ved nomal opeasjon vil dioden ha tilnæmet ingen vikning.

34 34/34 Hvis Q kan væe en pnp isteden o en npn så å en denne løsningen og Q vil ikke kunne bli evesospent.

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: /3 0. Fosteke akitektue Nå e tasisto skal bukes til e fosteke, oscillato, filte, seso, etc. så vil det væe behov fo passive elemete som motstade, kodesatoe og spole udt tasistoe. Disse vil søge fo biasig

Detaljer

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581

Detaljer

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (

Detaljer

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel. Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)

Detaljer

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall. FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 8 Faglig kontakt unde eksamen: Navn: jøn Toge Stokke Tl: 93434 EKSAMEN I FAG SIF45 FYSIKK Mandag 7. desembe 1998 Tid: kl.

Detaljer

Øving nr. 7. LØSNINGSFORSLAG

Øving nr. 7. LØSNINGSFORSLAG FAG 4 PÅLITELIGHET I ELKRAFTSYSTEMER - GRUNNKURS. Øving n. 7. LØSNINGSFORSLAG Tilstandsdiagam: : Begge enhete i funksjon µ : En av enhetene feile Mek: seiell epaasjon innebæe at ovegangsintensiteten µ,

Detaljer

Eksamen TFY 4240: Elektromagnetisk teori

Eksamen TFY 4240: Elektromagnetisk teori NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00

Detaljer

a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.

a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel. Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.

Detaljer

Fysikkolympiaden 1. runde 25. oktober 5. november 2004

Fysikkolympiaden 1. runde 25. oktober 5. november 2004 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva

Detaljer

Løsningsforslag Fysikk 2 Høst 2014

Løsningsforslag Fysikk 2 Høst 2014 Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke

Detaljer

ρ = = = m / s m / s Ok! 0.1

ρ = = = m / s m / s Ok! 0.1 Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6

Detaljer

Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE

Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle

Detaljer

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002 Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.

Detaljer

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1 Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d

Detaljer

1 Virtuelt arbeid for stive legemer

1 Virtuelt arbeid for stive legemer 1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,

Detaljer

Figur 1 viser et nettverk med et batteri på 18 volt, 2 silisiumdioder og 4 motstander.

Figur 1 viser et nettverk med et batteri på 18 volt, 2 silisiumdioder og 4 motstander. Forslag til løsning på eksamen i FYS 20 våren 2006 (rev 4) Oppgave. Figur Figur viser et nettverk med et batteri på 8 volt, 2 silisiumdioder og 4 motstander. a) Hva er spenningen i punktene AA og BB målt

Detaljer

sosiale behov FASE 2: Haug barnehage 2011-2012

sosiale behov FASE 2: Haug barnehage 2011-2012 : Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.

Detaljer

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov.

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov. Side av 8 LØSNINGSFORSLAG KONINUASJONSEKSAMEN 006 SMN694 VARMELÆRE DAO: 04. Mai 007 ID: KL. 09.00 -.00 OPPGAVE (Vekt: 40%) a) emodynamikkens. hovedsats:. hovedsetning: Enegi kan hveken oppstå elle fosvinne,

Detaljer

Løsningsforslag Fysikk 2 Vår 2013 Oppgav e

Løsningsforslag Fysikk 2 Vår 2013 Oppgav e Løsningsfoslag Fysikk 2 Vå 203 Løsningsfoslag Fysikk 2 Vå 203 Oppgav e Sva Foklaing a) B Feltet E gå adielt ut fa en positivt ladning. Siden ladning og 2 e like stoe, og ligge like langt unna P vil E væe

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

Betinget bevegelse

Betinget bevegelse Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell

Detaljer

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative

Detaljer

Sammendrag, uke 14 (5. og 6. april)

Sammendrag, uke 14 (5. og 6. april) Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme

Detaljer

9. Lavstøy konstruksjonsmetoder

9. Lavstøy konstruksjonsmetoder 1/32 9. Lavstøy konstruksjonsmetoder Fra en systemkonstruktørs utgangspunkt er utfordringen: Gitt en sensor med et kjent signal, en kjent støy, og en kjent impedans og respons karakteristikk, hvordan optimaliserer

Detaljer

Notat i FYS-MEK/F 1110 våren 2006

Notat i FYS-MEK/F 1110 våren 2006 1 Notat i FYS-MEK/F 1110 våen 2006 Rulling og skliing av kule og sylinde Foelest 24. mai 2006 av Ant Inge Vistnes Geneelt Rotasjonsdynamikk e en svæt viktig del av mekanikkuset våt. Dette e nytt stoff

Detaljer

Billige arboresenser og matchinger

Billige arboresenser og matchinger Billige aboesense og matchinge Magnus Lie Hetland 16. jan 009 Dette e foelesningsnotate til føste foelesning i faget Algoitmekonstuksjon, videegående kus, ved Institutt fo datateknikk og infomasjonsvitenskap,

Detaljer

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2 Poblemet Datamaskinbasete dosebeegninge Beegne dosefodeling i en pasient helst med gunnlag i CT-bilde Eiik Malinen Sentale kilde: T. Knöös (http://www.clin.adfys.lu.se/downloads.htm) A. Ahnesjö (div. publikasjone)

Detaljer

Fysikk-OL Norsk finale 2005

Fysikk-OL Norsk finale 2005 Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på

Detaljer

Innhold. 1. Innledning... 3

Innhold. 1. Innledning... 3 Risikobaset tilsyn Modul fo makeds- og kedittisiko i fosiking Evalueing av makeds- og kedittisikonivå DAO: 15.09.2010 Innhold 1. Innledning... 3 2. Makedsisiko... 4 2.1 Metodikken... 4 2.2 Renteisiko...

Detaljer

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00 NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C

Detaljer

Løsningsforslag Eksamen i fag TEP4110 Fluidmekanikk

Løsningsforslag Eksamen i fag TEP4110 Fluidmekanikk Oppgave Løsningsfoslag Eksamen i fag TEP40 Fluidmekanikk Onsdag 8 desembe 00 kl 500 900 Hastighetspotensialet fo en todimensjonal potensialstømning av en inkompessibel fluid e gitt som: (, ) Acos ln ()

Detaljer

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 3k3 )

g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 3k3 ) Forslag til løsning på eksamensoppgavene i FYS1210 våren 2011 Oppgave 1 Figure 1 viser en enkel transistorforsterker med en NPN-transistor BC546A. Transistoren har en oppgitt strømforsterkning β = 200.

Detaljer

g m = I C / V T = 60 ms r π = β / g m = 3k3

g m = I C / V T = 60 ms r π = β / g m = 3k3 Forslag til løsning eksamen FYS20 vår 20 Oppgave Figure viser en enkel transistorforsterker med en NPN-transistor BC546A. Transistoren har en oppgitt strømforsterkning β = 200. Kondensatoren C har verdien

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete

Detaljer

FYS Forslag til løsning på eksamen våren 2014

FYS Forslag til løsning på eksamen våren 2014 FYS1210 - Forslag til løsning på eksamen våren 2014 Oppgave 1 Figure 1. viser en forsterker sammensatt av 2 operasjonsforsterkere. Operasjonsforsterkeren 741 har et Gain Band Width produkt GBW = 1MHz.

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14. TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet

Detaljer

Om bevegelsesligningene

Om bevegelsesligningene Inst. fo Mekanikk, Temo- og Fluiddynamikk Om bevegelsesligningene (Repetisjon av utledninge fa IO 1008 Fluidmekanikk) P.-Å. Kogstad I det ettefølgende epetees kot utledningene av de fundamentale bevegelsesligninge,

Detaljer

Betraktninger rundt det klassiske elektronet.

Betraktninger rundt det klassiske elektronet. Betaktninge undt det klassiske elektonet. Kistian Beland Matteus Häge - 1 - - - Innholdsfotegnelse: 1. Sammendag - 5 -. Innledning - 6 -. Innledende betaktninge - 7-4. Vå elektonmodell - 8-5. Enegi i feltene

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage maianne@futuia.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning av nye

Detaljer

FASIT FRAMSKUTT EKSAMEN VÅREN Oppg. 1

FASIT FRAMSKUTT EKSAMEN VÅREN Oppg. 1 FASIT FRAMSKUTT EKSAMEN VÅREN 00 SENSORTEORI Oppg. Ein elastisk pendel ha eit lodd ed asse 0,0 kg og ei fjø ed fjøkonstant 0,0 N/. Pendelen svinga ed aplitude 0. a) Finn svingetida (peioden) til pendelen.

Detaljer

Kapittel 2: Krumlinjet bevegelse

Kapittel 2: Krumlinjet bevegelse Kapittel : Kumlinjet bevegelse Vannett kast v = v v = gt x 0 1 x = vt 0 y= gt y Skått kast v = v v = v gt x 0x y 0y 1 x = v0 t y = v x 0 t gt y Sving uten dosseing U+ G = ma N = G v R = m R = μn = μmg

Detaljer

Løsningsforslag Fysikk 2 Høst 2015

Løsningsforslag Fysikk 2 Høst 2015 Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i

Detaljer

Forslag til løsning på Eksamen FYS1210 våren 2004

Forslag til løsning på Eksamen FYS1210 våren 2004 Oppgave Forslag til løsning på Eksamen FYS20 våren 2004 Figure Figur viser et enkelt nettverk bestående av 2 batterier ( V = 9volt og V2 = 2volt) og 3 motstander på kω. a) Hva er spenningen over motstanden

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.

Detaljer

Forslag til løsning på eksamen FYS1210 høsten 2005

Forslag til løsning på eksamen FYS1210 høsten 2005 Forslag til løsning på eksamen FYS1210 høsten 2005 Oppgave 1 Figur 1 viser et nettverk tilkoplet basen på en bipolar transistor. (For 1a og 1b se læreboka side 199) 1 a ) Tegn opp Thevenin-ekvivalenten

Detaljer

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage 2011 maianne@fuedesign.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 2

VEILEDNING TIL LABORATORIEØVELSE NR 2 VEILEDNING TIL LABORATORIEØVELSE NR 2 «TRANSISTORER» FY-IN 204 Revidert utgave 2000-03-01 Veiledning FY-IN 204 : Oppgave 2 1 2. Transistoren Litteratur: Millman, Kap. 3 og Kap. 10 Oppgave: A. TRANSISTORKARAKTERISTIKKER:

Detaljer

Forslag til løsning på Eksamen FYS1210 våren 2008

Forslag til løsning på Eksamen FYS1210 våren 2008 Oppgave 1 Forslag til løsning på Eksamen FYS1210 våren 2008 1a) Hvor stor er strømmen gjennom? 12 ma 1b) Hvor stor er strømmen gjennom? 6 ma 1c) Hva er spenningen i punktene AA og BB målt i forhold til

Detaljer

Lærebok ijernba neteknikk L531. Kapittel4. Krengetogstilpa sning. Utgitt:

Lærebok ijernba neteknikk L531. Kapittel4. Krengetogstilpa sning. Utgitt: Læebok ijenba neteknikk L531 Kapittel4 Kengetogstilpa sning Utgitt:28.09.99 1. INNLEDNING 4 1.1 INNFØRING AV KRENGETOG I NORGE 4 1.2 METODER FOR MÅLING AV KOMFORT 5 1.3 BETRAKTNINGER FRA ABSOLUTTE TESTER

Detaljer

Oppgave 1 Svar KORT på disse oppgavene:

Oppgave 1 Svar KORT på disse oppgavene: Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Fomelsamling i medisinsk statistikk Dette e fomelsamling til O. O. Aalen: Innføing i statistikk med medisinske eksemple, 2. utg., Ad Notam Gyldendal, 998. Fomelsamlingen e utabeidet i okt. 2000, med små

Detaljer

TRANSISTORER Transistor forsterker

TRANSISTORER Transistor forsterker Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORAORIEØELSE NR 4 Omhandler: RANSISORER ransistor forsterker 27. februar 2012. Lindem Utført dato: Utført av: Navn: email:

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING

Detaljer

Rettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger

Rettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger Rettelse til Øistein Bjønestad Tom Rune Kongelf Teje Myklebust Alfa Oppgaveløsninge 007 Kapittel S. 7: Fasit til oppgave.9e): Slik oppgaven stå, skal svaet væe 065 (noe ha falt ut i oppgaveteksten). S.

Detaljer

Eksamen i Elektronikk 24. Mai Løsningsforslag Knut Harald Nygaard

Eksamen i Elektronikk 24. Mai Løsningsforslag Knut Harald Nygaard Eksamen i Elektronikk 24. Mai 2017 Løsningsforslag Knut Harald Nygaard Oppgave 1 Operasjonsforsterkeren i kretsløpet i figuren nedenfor kan regnes som ideell. v inn R C v ut a) Overføringsfunksjonen er

Detaljer

Gjennomgang eksamensoppgaver ECON 2200

Gjennomgang eksamensoppgaver ECON 2200 Gjeomgag eksamesoppgave ECON 00 Kjell Ae Bekke 6. mai 008 Oppgave 3 V06 a)kuvee edefo tege kuvee fo 0 ha de oppgitte egeskape y.0.5.0 0.5 0.0 3 4 5 6 7 8 9 0 3 4 5 x b)føst, mek desom optimal po tt ved

Detaljer

Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r

Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft

Detaljer

Forslag til løsning på eksamen FYS1210 våren Oppgave 1

Forslag til løsning på eksamen FYS1210 våren Oppgave 1 Forslag til løsning på eksamen FYS1210 våren 201 Oppgave 1 Nettverksanalyse. Legg spesielt merke til diodenes plassering. Figur 1 viser et nettverk bestående av en NPN silisium transistor Q1 ( β = 200

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : 1. juni 2007 Tid for eksamen : Kl. 14:30 17:30 (3 timer) Oppgavesettet

Detaljer

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning: nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : 1. juni 2011 Tid for eksamen : 09:00 (3 timer) Oppgavesettet er

Detaljer

TRANSISTORER. Navn: Navn: Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2.

TRANSISTORER. Navn:   Navn:   Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2. Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: TRANSISTORER Revidert utgave 23.02.2001 Utført dato: Utført av: Navn: email:

Detaljer

Midtsemesterprøve fredag 10. mars kl

Midtsemesterprøve fredag 10. mars kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på

Detaljer

RAPPORT. Endring E014 Flomvurdering eksisterende E6 STATENS VEGVESEN OPPDRAGSNUMMER [ R01] 29/05/2015 SWECO NORGE AS

RAPPORT. Endring E014 Flomvurdering eksisterende E6 STATENS VEGVESEN OPPDRAGSNUMMER [ R01] 29/05/2015 SWECO NORGE AS RAPPORT STATENS VEGVESEN Ending E014 Flomvudeing eksisteende E6 OPPDRAGSNUMMER 12143214 [12143214-R01] 29/05/2015 SWECO NORGE AS SAMUEL VINGERHAGEN epo002.docx 2013-06-14 Sweco epo002.docx 2013-06-14

Detaljer

Løsningsforslag Fysikk 2 Vår 2014

Løsningsforslag Fysikk 2 Vår 2014 Løsninsfosla Fysikk Vå 014 Løsninsfosla Fysikk Vå 014 Opp Sva Foklain ave a) B Det elektiske feltet å adielt ut fa en positivt ladet patikkel. Fo å få et elektisk felt som på fiuen må demed X væe positivt

Detaljer

Forslag til løsning på eksamen FYS1210 V-2007 ( rev.2 )

Forslag til løsning på eksamen FYS1210 V-2007 ( rev.2 ) Forslag til løsning på eksamen FYS20 V-2007 ( rev.2 ) Oppgave Figur a viser et nettverk med et atteri på 24 volt og 4 motstander. R = 3kΩ, R2 =,5 kω, R3 = 9 kω, R4 = 3 kω a) Hva er spenningen i punktene

Detaljer

Løsningsforslag Elektronikk 1 (LO342E) høst 2006 eksamen 1. desember, 3timer

Løsningsforslag Elektronikk 1 (LO342E) høst 2006 eksamen 1. desember, 3timer Løsningsforslag Elektronikk 1 (LO342E) høst 2006 eksamen 1. desember, 3timer (Bare kalkulator og tabell tillatt.) Oppgave 1 Vi regner med n = 1,3 i EbersMoll likninga, U BEQ = 0,7V, og strømforsterkning

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl

Midtsemesterprøve onsdag 7. mars 2007 kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive

Detaljer

EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING

EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING NTNU Noges teknisk-natuvitenskapelige univesitet Side 1 av 8 Fakultet fo infomatikk, matematikk og elektoteknikk Institutt fo fysikalsk elektonikk Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Navn:

Detaljer

Eksamensoppgave i TEP4105 FLUIDMEKANIKK

Eksamensoppgave i TEP4105 FLUIDMEKANIKK Institutt fo enegi- og posessteknikk Eksamensoppgave i TEP45 FLUIDMEKANIKK Faglig kontakt unde eksamen: Ive Bevik Tlf.: 7359 3555 Eksamensdato: 7. august 23 Eksamenstid : 9. 3. Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 Eksamensdag : 18 juni 2002 Tid for eksamen : l.0900-1500 Oppgavesettet er på 5 sider. Vedlegg Tillatte hjelpemidler

Detaljer

Forslag til løsning på eksame n FY-IN 204 våren 2002

Forslag til løsning på eksame n FY-IN 204 våren 2002 Forslag til løsning på eksame n FY-N 04 våren 00 Spenningsforsterkningen er tilnærmet gitt av motstandene og. Motstanden har ingen innflytelse på forsterkningen. For midlere frekvenser ser vi bort fra

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : Eksamens dag : Tid for eksamen : Oppgavesettet er på 6 sider Vedlegg : Tillatte hjelpemidler : FYS1210-Elektronikk med prosjektoppgaver

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

Fiktive krefter. Gravitasjon og planetenes bevegelser

Fiktive krefter. Gravitasjon og planetenes bevegelser iktive kefte Gavitasjon og planetenes bevegelse 30.04.013 YS-MEK 1110 30.04.013 1 Sentifugalkaft inetialsstem S f N G fiksjon mellom passasje og sete sentipetalkaft passasje bevege seg i en sikelbane f

Detaljer

Forslag B til løsning på eksamen FYS august 2004

Forslag B til løsning på eksamen FYS august 2004 Forslag B til løsning på eksamen FYS20 3 august 2004 Oppgave (Sweeper frekvensområdet 00Hz til 0MHz Figur viser et båndpassfilter. Motstandene R og R2 har verdi 2kΩ. Kondensatorene C = 00nF og C2 = 0.nF.

Detaljer

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 9..17 Oblig e lagt ut. Innleveing: Mandag,.. FYS-MEK 111 9..17 1 Skått kast med luftmotstand F net F D G D v v mg ˆj hoisontal og vetikal bevegelse ikke lenge uavhengig:

Detaljer

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT)

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT) FYS1210 Repetisjon 2 11/05/2015 Bipolar Junction Transistor (BJT) Sentralt: Forsterkning Forsterkning er et forhold mellom inngang og utgang. 1. Spenningsforsterkning: 2. Strømforsterkning: 3. Effektforsterkning

Detaljer

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved 84 8 Eksamenstening 8 Eksamens tening Uten hjelpemidle E1 (Kapittel 1) Polynomfunksjonen P e gitt ved P ( ) = 7 + 14 8, DP = R. a Det kan vises at alle heltallige løsninge av P() = 0 gå opp i konstantleddet

Detaljer

Figur 1. 1e) Uten tilkopling på inngangene A og B - Hva er spenningen på katoden til dioden D1? 1,4 volt

Figur 1. 1e) Uten tilkopling på inngangene A og B - Hva er spenningen på katoden til dioden D1? 1,4 volt Forslag til løsning på eksamen FYS1210 våren 2013 Oppgave 1 Nettverksanalyse. Legg spesielt merke til diodenes plassering. Figur 1 viser et nettverk bestående av en NPN silisium transistor Q1 ( β = 200

Detaljer

Forslag til løsning på eksamen FYS1210 våren 2010

Forslag til løsning på eksamen FYS1210 våren 2010 Forslag til løsning på eksamen FYS1210 våren 2010 Oppgave 1 n seriekopling av solceller forsyner ubest med elektrisk energi. Ubelastet måler vi en spenning på 5 volt over solcellene (Vi måler mellom og

Detaljer

Fysikkolympiaden Norsk finale 2016

Fysikkolympiaden Norsk finale 2016 Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel

Detaljer

INF1411 Oblig nr. 4 Vår 2011

INF1411 Oblig nr. 4 Vår 2011 INF1411 Oblig nr. 4 Vår 2011 Informasjon og orientering Alle obligatoriske oppgaver ved IFI skal følge instituttets reglement for slike oppgaver. Det forutsettes at du gjør deg kjent med innholdet i reglementet

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 / FY108 Eksamensdag : 16 juni 2003 Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : Logaritmepapir

Detaljer

Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi

Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius

Detaljer

Løsningsforslag. FY-ME100 eksamen 13. juni 2003

Løsningsforslag. FY-ME100 eksamen 13. juni 2003 1 Løsningsfoslag FY-ME100 eksamen 13. juni 003 Oppgaveteksten e gjengitt fo at løsningsfoslaget skal kunne leses uten at den oiginale oppgaveteksten e tilgjengelig samtidig. I en nomal studentbesvaelse

Detaljer

INF 5460 Elektrisk støy beregning og mottiltak

INF 5460 Elektrisk støy beregning og mottiltak INF 5460 Elektrisk støy beregning og mottiltak Obligatorisk oppgave nummer 3. Frist for levering: 30 April (kl 23:59). Vurderingsform: Godkjent/Ikke godkjent. Oppgavene leveres på individuell basis. Oppgavene

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fakultet for teknologi, kunst og design Teknologiske fag Ny/utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 2. august 2016 Tid: 0900-1200 Antall sider (inkl. forside): 6 (inkludert Vedlegg 1 side)

Detaljer

trygghet FASE 1: barnehage

trygghet FASE 1: barnehage tygghet banehage De voksnes olle Banemøte Leikeguppe Guppeaktivitet Hjemmebesøk Samlinge Måltid Påkledning Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 tygghet tygghet «Banehagen skal bistå

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 2. juni 2015 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet

Detaljer