4. Rad i energija 4.1. Rad Rad u svakodnevnom životu bilo koji oblik aktivnosti koji zahtjeva miši

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "4. Rad i energija 4.1. Rad Rad u svakodnevnom životu bilo koji oblik aktivnosti koji zahtjeva miši"

Transkript

1 4. Rad i energija 4.1. Rad Rad u svakodnevnom životu predstavlja bilo koji oblik aktivnosti koji zahtjeva mišićni napor ili djelovanje strojeva. Rad u fizici se općenito definira kao - svladavanje sile na danom putu - djelovanje sile na odreñenom putu

2 4.1. Rad Što je potrebno da bismo izvršili odreñeni rad? Sila odreñenog iznosa i smjera. Primjer 1: Djelovanje stalne sile u smjeru gibanja tijela. Primjer : Djelovanje stalne sile pod kutom θ prema smjeru gibanja tijela. a) F s F s θ F cosθ W = F s b) F c) s W = 0 W = F s cosθ F θ s W = - F s cosθ

3 4.1. Rad W = F s Rad je skalarna veličina i može biti: a) pozitivan 0 < θ < π/ F s b) nula θ = π/ F s c) negativan π/ < θ < π F s Primjer za F: sila (komp.) u smjeru gibanja centriptralna sila sila trenja a) b) c)

4 4.1. Rad stalne sile W = F l guranje nošenje F/N F-s dijagram spuštanje W = F s rad = površina ispod krivulje F(s) s/m

5 4.1. Rad promjenjive sile Čestica se giba duž krivocrtne putanje od točke A do točke B pod utjecajem promjenljive sile: Putanju od A do B rastavimo na N malih odsječaka ( s i ) tako da je u svakom od njih sila gotovo nepromjenljiva: F-s dijagram A s Element rada: W F s i s Ti i B N W = lim FTi si = FT ds si 0 i = 1 B A

6 4.1. Rad Rad sile F na elementarnom pomaku dr: dw = F d r Rad sile F na putanji čestice od točke A do točke B: B A B W F dr F d s = = A elementarni pomak dr = d s elementarni put Rad je linijski integral sile duž putanje čestice od početne do krajnje točke. Mjerna jedinica = džul (joule), J J = N m = kg m /s - elektronvolt (ev) = energija elektrona ubrzanog razlikom potencijala 1 V (1 ev = J) - vatsat (W h) rad električne struje (1 Wh = 3600 J)

7 4.1. Rad Primjer: Rad pri podizanju tijela : rad podizanja = mgh rad sile teže = -mgh rad sile teže = mgh rad nošenja = 0 Automobil mase 1000 kg giba se uz brijeg nagiba 10 stalnom brzinom 36 km/h. Rad sile motora za vrijeme 1 min je: W = F s = mg s = mg vt = W = mg h = mg vt sinθ 6 sinθ sinθ 1, 0 10 J θ s G sin θ F G h

8 4.1. Rad Primjer: Rad pri podizanju tijela : Rad po zatvorenoj krivulji (A-B-C-D-A) je nula.

9 4.1. Rad Primjer: Rad pri rastezanju opruge : F/N Oprugu rastežemo silom koja je jednaka po iznosu, a suprotna po smjeru, elastičnoj sili opruge: F = k x = -F o -sila opruge: F o = -kx - Hookeov zakon: sila je proporcionalna deformaciji i suprotnog smjera W x/m Rad koji izvršimo pri rastezanju (stezanju) opruge za elongaciju x jednak je: x 1 W = Fdx = kxdx = kx x 0 0

10 4.1. Rad Primjer: Rad pri svladavanju sile trenja : Tijelo se giba jednoliko F = F tr F tr s F Rad sile F: s W = Fds = F s = µ mg s 0 tr Rad sile F tr : W = µ mg s Rad sile trenja je uvijek negativan!

11 4.. Snaga Definicijom rada se ne uzima u obzir vrijeme u kojem sila djeluje razumno je definirati neku fizikalnu veličinu koja opisuje brzinu izvršavanja rada. Snaga = količina izvršenog rada u jedinici vremena P W t J s 1 P = = Js = W Srednja snaga: P 1 P = = 1 Mjerna jedinica je vat. W W W t t t Trenutna ili prava snaga: W dw F d s F v dt lim t 0 = = = = t dt dt dt P = F v = F v cos α, α = F, v ( )

12 4.3. Energija = sposobnost tijela ili sustava da djeluje ili obavlja rad više energije veći rad - ako tijelo obavlja rad energija mu se smanjuje - ako okolina obavlja rad na tijelu energija tijela raste - rad i energija imaju istu mjernu jedinicu čemu potreba za dvije različite fizikalne veličine? Energija stanje sustava: - t 1, r 1 E 1 - t, r E Rad promjena stanja sustava: W 1 t 1, r 1 E 1 î t,r 1 E

13 4.3. Energija Pojavni oblici energije MEHANIČKA = zbroj kinetičke i potencijalne energije tijela NEMEHANIČKI oblici - električna, - kemijska - sunčeva - toplinska - nuklearna, Energija može prelaziti iz jednog oblika u drugi, ali se ne može ni stvoriti ni uništiti.

14 4.4. Kinetička energija = energija koju tijelo posjeduje kao posljedicu svoga gibanja nekom brzinom Kolika je kinetička energija tijela mase m koje se giba brzinom v? izračunajmo rad potreban da sila F ubrza to tijelo iz mirovanja dv dv 1 W = F ds = ma ds = m ds = m vdt = m vdv = mv dt dt E k mv p = = m E k = kinetička energija tijela mase m i brzine v (impulsa p). v 0

15 4.4. Kinetička energija - rad sile F da bi ubrzala tijelo od početne brzine v 1 do konačne brzine v je: s mv mv W = Fds = m vdv = s 1 1 W = E E = E k k1 k v v 1 Poučak o radu i kinetičkoj energiji Izvršeni rad jednak je promjeni kinetičke energije, i obratno promjena kinetičke energije jednaka je izvršenom radu. Ako tijelo vrši rad (W < 0), kinetička energija mu se smanjuje ( E k < 0). Ako se nad tijelom vrši rad (W > 0), kinetička energija mu se povećava ( E k > 0). Ako je rad jednak nuli, energija tijela ostaje konstantna.

16 4.5. Potencijalna energija = energija koju tijelo posjeduje zbog svoga položaja prema drugim tijelima - može se pretvoriti u kinetičku energiju i obratno, a isto tako i u rad Primjeri potencijalne energije (ovisno o sili koja djeluje na tijelo): - gravitacijska - elastična - elektrostatska - magnetska

17 4.5. Gravitacijska potencijalna energija Izračunajmo potencijalnu energiju tijela u gravitacijskom polju na Zemljinoj površini. Rad sile teže na putu od A do B je: B B A g A ( ) B A W = F d r = mg d r = mg r r Budući je F g = mg = mg j j r r = y y ( ) Rad sile teže jednak je razlici dvaju funkcija položaja. B A B A ( ) W = mgy mgy B A Ep = mgy Gravitacijska potencijalna energija Razlika potencijalne energije početne i konačne točke jednaka je radu sile teže. W = E E = E p1 p p

18 4.5. Gravitacijska potencijalna energija Referentni nivo (E p =0) može se odabati proizvoljno te je potencijalna energija odreñene do na konstantu. Potencijalna energija može biti i pozitivna i negativna, dok je E k uvijek pozitivna veličina. ( i f ) W = mg y y = mgd E p = 0 (y=0)

19 4.5. Elastična potencijalna energija Rad vanjske sile pri rastezanju opruge: W = Rad sile opruge : W op x kx ( ) ( x ) Wop = Fdx = kx1 kx op = x p kx W = E x E Potencijalna energija elastične opruge : p 1 Ep x kx ( ) =

20 4.6. Konzervativne i nekonzervativne sile Konzervativne sile su one sile kod kojih je rad po svakoj zatvorenoj putanji jednak nuli, ma kakav oblik ta putanja imala. rad konzervativnih sila ovisi samo o početnoj i konačnoj točki, a ne o putanji izmeñu tih dviju točaka. F k ds = 0 Rad po zatvorenoj putanji=0. W W x y + W + W y z = = 0 W 0 x = W z Konzervativne sile su: -Elastična sila -Gravitacijska sila -Elektrostatska sila

21 4.6. Konzervativne i nekonzervativne sile Nekonzervativne (disipativne) sile su one sile kod kojih rad ovisi o obliku putanje kojom je tijelo došlo iz početne u konačnu točku. F NK ds 0 Rad sile trenja ovisi o putu: što je put duži, rad je veći!

22 4.6. Veza izmeñu rada vanjske sile i energije sustava Kada vanjska sila djeluje na tijelo koje se nalazi u polju konzervativnih sila (gravitacija), tijelu se mijenja E p i E k. Primjer: gibanje tijela uz kosinu djelovanjem vanjske sile F (bez trenja). II Newtonov zakon: ma = F ' mg sinα Rad sile F : dv W ' = F ' ds = mg sinα + m ds = dt s dv W ' = mg sinαds + m vdt = dt s 1 1 mv mv1 W ' = mg ( y y1 ) + = W ' = E r E r + E E ( ) ( ) p p 1 k k1 W ' = Ep + Ek v v

23 4.6. Veza izmeñu rada vanjske sile i energije sustava Rad vanjske sile W i rad konzervativne sile W mijenjaju E k : Rad konzervativne sile W: Rad ostalih sila F : W + W = ' Ek Ek1 W E r ( ) ( ) = F d s = k p 1 Ep r W E E E E ' = p p1 + k Ek1 = E1 - mijenja ukupnu mehaničku energiju sustava

24 4.7. Zakon očuvanja energije U zatvorenom sustavu ukupna energija ostaje sačuvana. Ei = const Primjer: slobodni pad. E + E = const p k

25 4.7. Zakon očuvanja energije mgh = 1 mv

26 4.8. Sudari Zakoni očuvanja impulsa i energije! Savršeno elastičan sudar - tijela se nakon sudara vraćaju u prvobitni oblik E p (deformacije) = E k vrijedi ZOE -centralni sudar: čestice se prije i poslije sudara gibaju po pravcu - izoliran sustav (nema vanjskih sila) - III Newtonov zakon: F 1 = -F 1 ZOP: p 1 +p = p 1 +p ZOP: ZOE: ' ' m1 v + m 1 v = m 1v + m 1 v m1 v m m 1v 1v m1 v + = + ' ' 1 1

27 4.8. Sudari Savršeno elastičan sudar v v m m v + m v ( ) ' = m1 + m m m v + m v ( ) ' = m + m 1 Posebni slučajevi: ' ' 1. m 1 =m =m čestice zamijene brzine v1 = v v = v1 '. m 1 <<m ; v =0 udar u zid; zid prima impuls m 1 v 1 v = v 3. m 1 >>m ; v =0 v 1 v 1, v v 1 1 1

28 4.8. Sudari Savršeno neelastičan sudar - tijela se nakon sudara deformiraju, slijepe i gibaju zajedno istom brzinom (miruju) - E k nije očuvana dio prijeñe na promjenu unutrašnje energije (toplinu) - ukupna energija ostaje sačuvana - impuls je očuvan ZOP: ZOE: ' m1 v + m 1 v = ( m1 + m ) v m1 v + m 1 v v ' = m1 + m m1 v m ' 1 1v 1 + = ( m1 + m ) v + Q E k = E k + Q

29 4.8. Sudari Savršeno elastičan sudar Primjer: Balističko njihalo. Odredi brzinu metka v. ZOP: ZOE: mv = ( m + M ) v ' 1 ( ) ' ( ) m + M v = m + M gh v ' = gh m + M v = m gh

30 Domaća zadaća 1. Je li lakše gurati tijelo ili ga vući? Zašto? Obrazložite odgovor bez trenja i uzimanjem trenja u obzir. Koliki je rad sile na putu s? F F θ θ F a) b) c)

31 Domaća zadaća. Tri identične kugle bačene su s vrha zgrade istom početnom brzinom: prva je bačena horizontalno, druga pod nekim kutom prema gore, a treća pod nekim kutom prema dolje. Zanemarujući otpor zraka, poredajte kugle: a) po redosljedu pada na tlo, b) po iznosu brzine pri padu na tlo. Obrazložite odgovore!

1 REALNE FUNKCIJE REALNE VARIJABLE

1 REALNE FUNKCIJE REALNE VARIJABLE REALNE FUNKCIJE REALNE VARIJABLE. Neka je f() = ln 4e 3 e. Odredite a) f b) D(f) i R(f) c) Odredite min f, inf f, ma f, sup f. 2. Odredite prirodnu domenu funkcije f() = ln (3e e 3 ) + 5 log 5 +3 + ( cos

Detaljer

Neprekidne funkcije nestandardni pristup

Neprekidne funkcije nestandardni pristup nestandardni pristup Predavanje u sklopu Teorije, metodike i povijesti infinitezimalnih računa fniksic@gmail.com PMF Matematički odsjek Sveučilište u Zagrebu 10. veljače 2011. Ciljevi predavanja Ciljevi

Detaljer

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i n æ r t s am e i e rm øt e i S am e i e t W al d em a rs H a g e, a v h o l d e s t o rs d a g 1 8. j u n i 2 0 0 9, k l.

Detaljer

Kartlegging av leseferdighet Trinn 2 og 3 på bosnisk

Kartlegging av leseferdighet Trinn 2 og 3 på bosnisk Lærerveiledning Bosnisk, 2. og 3. trinn Lærerveiledning Kartlegging av leseferdighet Trinn 2 og 3 på bosnisk Priručnik za učitelje Ispitivanje sposobnosti čitanja 2. i 3. razred na bosanskom jeziku 2013

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a

Detaljer

Sveučilište u Zagrebu PMF Matematički odsjek. Mreže računala. Vježbe 04. Zvonimir Bujanović Slaven Kožić Vinko Petričević

Sveučilište u Zagrebu PMF Matematički odsjek. Mreže računala. Vježbe 04. Zvonimir Bujanović Slaven Kožić Vinko Petričević Sveučilište u Zagrebu PMF Matematički odsjek Mreže računala Vježbe 04 Zvonimir Bujanović Slaven Kožić Vinko Petričević Klijent / Server paradigma internet daje infrastrukturu koja omogućava komunikaciju

Detaljer

Ord og begreper. Norsk Morsmål: Tegning (hvis aktuelt)

Ord og begreper. Norsk Morsmål: Tegning (hvis aktuelt) Ord og begreper Norsk Morsmål: Tegning (hvis aktuelt) Få Dobiti Mange Mnogo Venstre Lijevo Høyre Desno Øverst Iznad Nederst Niže Lite Malo Mye Mnogo Flest Vecina Færrest Najmanje Oppe Gore Nede Dole Mellom

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

Programiranje 1 grupno spremanje (zadaci) datoteke

Programiranje 1 grupno spremanje (zadaci) datoteke Programiranje 1 grupno spremanje (zadaci) datoteke Tipovi datoteka Datoteke se mogu podeliti na binarne i tekstualne. Iako su na prvi pogled ova dva tipa veoma slična oni se suštinski razlikuju. Binarne

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii) 1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Eksamen FSP5822/PSP5514 Bosnisk nivå II Elevar og privatistar / Elever og privatister. Nynorsk/Bokmål

Eksamen FSP5822/PSP5514 Bosnisk nivå II Elevar og privatistar / Elever og privatister.  Nynorsk/Bokmål Eksamen 20.11.13 FSP5822/PSP5514 Bosnisk nivå II Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Oppgåve 1 Skriv ein kort tekst på 4 5 setningar der du svarer på spørsmåla nedanfor. Skriv

Detaljer

Riješeni zadaci: Funkcije

Riješeni zadaci: Funkcije Riješeni zadaci: Funkcije Domena funkcije, kompozicija funkcija, invertiranje funkcije, parnost funkcije Domene nekih funkcija: f(x) = x D f = [0, f(x) = x D f = R \ {0} f(x) = log a x, a > 0, a D f =

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

ALUMINIJSKE VODILICE ZA ODJELJIVANJE PROSTORA

ALUMINIJSKE VODILICE ZA ODJELJIVANJE PROSTORA ALUMINIJSKE VODILICE ZA ODJELJIVANJE PROSTORA ALU. VODILICE ZA ODJELJIVANJE PROSTORA AV 04.01-04.10...jer o tome mnogo ovisi... S C H W O L L E R - L U Č I Ć AL 400 AV 04.01 minijska vodilica za odjeljivanje

Detaljer

Cilj usvajanje i razumijevanje osnovnih pojmova i terminologije iz područja geodetske znanosti i struke. Oblik izvođenja nastave: predavanja i vježbe

Cilj usvajanje i razumijevanje osnovnih pojmova i terminologije iz područja geodetske znanosti i struke. Oblik izvođenja nastave: predavanja i vježbe Geodezija obavezni predmet ECTS bodovi:4.0 Cilj usvajanje i razumijevanje osnovnih pojmova i terminologije iz područja geodetske znanosti i struke Oblik izvođenja nastave: predavanja i vježbe Predavanja:

Detaljer

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska

Detaljer

Plan. I dag. Neste uke

Plan. I dag. Neste uke Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt

Detaljer

Kap. 3 Arbeid og energi. Energibevaring.

Kap. 3 Arbeid og energi. Energibevaring. Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

CJENIK POŠTANSKIH USLUGA U MEĐUNARODNOM PROMETU PRIMJENA OD GODINE

CJENIK POŠTANSKIH USLUGA U MEĐUNARODNOM PROMETU PRIMJENA OD GODINE CJENIK POŠTANSKIH USLUGA U MEĐUNARODNOM PROMETU PRIMJENA OD. 7. 203. GODINE Zagreb, lipanj 203. godine STAVKA I UNIVERZALNA USLUGA 2. 25 PISMOVNA POŠILJKA 2.. 25 PISMO bez -a 25 do 50 g kom 7,60 252 iznad

Detaljer

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer

Detaljer

Topografske karte. Dr. sc. Aleksandar Toskić, izv. prof.

Topografske karte. Dr. sc. Aleksandar Toskić, izv. prof. Topografske karte Dr. sc. Aleksandar Toskić, izv. prof. Topografske karte u RH Izradba topografskih karata srednjih i sitnijih mjerila bila je prije osamostaljenja Republike Hrvatske u nadležnosti saveznih

Detaljer

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2005 Utarbeidet av A. E. Gunnæs Oppgave 2.1** a) Hva er akselerasjonen? 1kg T 1 2kg T 2 3kg S Newton s 2. lov sier at summen av kreftene

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 13. august 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Kap. 14 Mekaniske svingninger

Kap. 14 Mekaniske svingninger Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien og økonomien

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m

Detaljer

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg TFY4104 Fysikk ksamen 17. august 2016 Løsningsforslag 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. ) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3 π ( R

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

M-BOX INTELIGHT Inteligentno osvetljenje

M-BOX INTELIGHT Inteligentno osvetljenje INTELIGHT Inteligentno osvetljenje Regulatori osvetljenja UVOD Zašto koristiti regulatore osvetljenja? Smanjenje potrošnje električne energije kako u javnim tako i u privatnim zgradama postalo je tema

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

Činjenice o HIV u i aidsu

Činjenice o HIV u i aidsu Činjenice o HIV u i aidsu Bosnisk/kroatisk/serbisk/norsk Fakta om hiv og aids Aids er en alvorlig sykdom som siden begynnelsen av 1980-tallet har spredd seg over hele verden. Aids skyldes et virus, hiv,

Detaljer

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form Esamn i SIF4 Fsi 7. smb 999 LØYSINGAR Oppgav a S [ÃÃÃÃÃÃÃ[Ã [ S DVVHÃ ÃÂÃ [ÃÃ$NVHOHUDVMRQÃ t Kaft opp: S sinα -Ssinα S α S S Nwtons. lov gi som bølgjlininga, av fom S µ t µ S t v t m v bølgjfat som v v

Detaljer

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014 TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Projekat EUROWEB+ Ovo je program namenjem isključivo razmeni, a ne celokupnim studijama.

Projekat EUROWEB+ Ovo je program namenjem isključivo razmeni, a ne celokupnim studijama. Projekat EUROWEB+ 1. Otvoren je Konkurs za novi program mobilnosti studenata i osoblja na Univerzitetu u Nišu EUROWEB+ Konkurs je otvoren do 15.02.2015. 2. Ko može da se prijavi? Ovim programom biće omogućen

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

TOPLINSKA CRPKA ZRAK-VODA

TOPLINSKA CRPKA ZRAK-VODA UPUTE ZA KORIŠTENJE I UPRAVLJANJE KORISNIČKI TOPLINSKA CRPKA ZRAK-VODA UNUTARNJA JEDINICA - HYDROBOX GSH-IRAD H E A T P U M P S Prijevod originalnih uputa za korištenje BRZI VODIČ Opis upravljačke ploče

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

Vektorstørrelser (har størrelse og retning):

Vektorstørrelser (har størrelse og retning): Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 K e y s e r l ø k k a Ø s t B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d

Detaljer

EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap og teknologi Tid:

EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap og teknologi Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Hanne Mehli Tlf.: 7359367 EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

EKSAMEN i TFY4108 FYSIKK

EKSAMEN i TFY4108 FYSIKK Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:

Detaljer

Oppsummert: Kap 1: Størrelser og enheter

Oppsummert: Kap 1: Størrelser og enheter Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk

Detaljer

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8. Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk

Detaljer

Čujte naše glasove: Građani prije svega!

Čujte naše glasove: Građani prije svega! Čujte naše glasove: Građani prije svega! Europska konferencija samozastupnika 4. - 6.10.2013., Zagreb, Hrvatska Hotel Dubrovnik, Ljudevita Gaja 1, PP 246, 10000 Zagreb Program konferencije Uz podršku:

Detaljer

Arbeid og energi. Energibevaring.

Arbeid og energi. Energibevaring. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p

Detaljer

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y

Detaljer

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på: Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

Fasit for besvarelse til eksamen i A-112 høst 2001

Fasit for besvarelse til eksamen i A-112 høst 2001 Fasit for besvarelse til eksamen i A-112 høst 21 Oppgave I a Anta at hvert elektron beveger seg i et midlere, sfærisk symmetrisk felt =sentralfelt V r fra kjernen og alle de andre elektronene Ved å velge

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet

Detaljer

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G

I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 0 9 O r d i n æ r g e n e r a l f o rs am l i n g i N y b y g g A S, a v h o l d es o ns d a g 2 9. a p r i l 2 0 0 9, k l.

Detaljer

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag SIF53 Matematikk 1, 6. desember 2 Oppgave 1 Dreid om y aksen: iv). Dreid om x = 1: iii). Oppgave 2 Om bredden på rektanglet er 2x og høyden er y finner vi for det ukjente arealet A og den kjente omkretsen

Detaljer

Prof.dr.sc. Jasmin Velagić. Kolegij: Aktuatori

Prof.dr.sc. Jasmin Velagić. Kolegij: Aktuatori Lekcija 11 Piezo aktuatori Prof.dr.sc. Jasmin Velagić Elektrotehnički fakultet Sarajevo Kolegij: Aktuatori 11.1. 1 MEMS aktuatori 2/60 Mikro-elektro-mehanički sistemi (MEMS) predstavljaju integraciju mehaničkih

Detaljer

Oversikt over Matematikk 1

Oversikt over Matematikk 1 1 Oversikt over Matematikk 1 Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens av ekstrempunkt Elementære funksjoner Derivasjon Sekantsetningen Integrasjon Differensialligninger Kurver i planet

Detaljer

Likovna umjetnost umjetnost, matematika i algoritmi

Likovna umjetnost umjetnost, matematika i algoritmi Likovna umjetnost, matematika i algoritmi Vlatko Čerić Sadržaj Kratak pregled povijesti veze umjetnosti i matematike Matematika i računalna tehnologija u likovnoj umjetnosti Algoritamska umjetnost Neki

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

Kap. 14 Mekaniske svingninger

Kap. 14 Mekaniske svingninger Kap. 14 21.11.213 Kap. 14 Mekaniske svingninger Mye som svinger i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter

Detaljer

Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011

Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 011 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

OPPGAVER FOR FORUM

OPPGAVER FOR FORUM OPPGAVER FOR FORUM 2007-2008 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant.

a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant. NB: Alle deloppgavene teller like mye i vurderingen. Dvs. oppgave 1a teller like mye som oppgave 4. Oppgave 1 I en beholder er 50,0 mol luft avstengt av et stempel som kan bevege seg uten friksjon mot

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

Sustavi za rad u stvarnom vremenu

Sustavi za rad u stvarnom vremenu SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Skripta iz predmeta Sustavi za rad u stvarnom vremenu Leonardo Jelenković

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0, BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:

Detaljer

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:

Detaljer

Oppgavehefte om komplekse tall

Oppgavehefte om komplekse tall Oppgavehefte om komplekse tall Tore August Kro, tore.a.kro@hiof.no 11. august 009 1 Aritmetikk Eksempel 1.1 Vi skriver komplekse tall på kartesisk form z = a + ib. Tenk på i som et symbol som oppfyller

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = =

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = = til oppgavene i avsnitt 55 til oppgaver i avsnitt 55 551 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger cos( u + v) sin( u + v) cosu sin u u+ v u = sin( u v) cos( u v) sin

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Utarbeidet av: Jon Andreas Støvneng (jon.stovneng@ntnu.no) LØSNINGSFORSLAG (7 SIDER) TIL EKSAMEN I FY12 og TFY416 BØLGEFYSIKK Torsdag

Detaljer

Neko kao ti. Sara Desen. Prevela Sandra Nešović

Neko kao ti. Sara Desen. Prevela Sandra Nešović Neko kao ti Sara Desen Prevela Sandra Nešović 4 5 Naslov originala Sa rah Des sen So me o ne Li ke You Copyright Sarah Dessen, 1998 All rights reserved including the right of reproduction in whole or in

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S am B o B o l i g s am e i e, a v h o l d es o ns d a g 2 8. 04. 2 0 1 0, k l. 1 8. 3 0 i G r ef s e n m e n i g h e t s s

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l å r e t s g e n e r a l f o r s a m l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 21. februar 2017 Klokkeslett: kl. 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Karl Rottmann:

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 11. desember 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer