HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1"

Transkript

1 HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T T ) = N b b Ubc = Ub = N, Uc = c) 1.hovdstning: U = Q + W, hvor Q og ngir tilført vrm og rbid. Q = U W = N + P ( ) = N b b b b = (dibt) Q bc Utført rbid: W = P ( ) = N b b W = U = N bc bc d) For å brgn ffktivittn (virkningsgrdn må vi kjnn hl rbidt utført vd n hl syklus. Dt gjnstår å bstmm c 1

2 Arbid utført vd prosssn c d W = Pd = N = N ln = lnn 1 c c c c Tilført vrm: Q = W = lnn 1 c c Totlt rbid utført v systmt: W = W + W + W = N (1 ln) =.767N b bc c Effktivitt:.767N = = = =.6 Q inn Qb N Effktivittn for n Crnotmskin mllom tmprturn T b og T r gitt vd: T Crnot = =. Hr må vi husk på t Crnotmskinn oprrr md n fst øvr tmprtur T b, mns vår mskin oprrr md n øvr tmprtur som vrirr mllom T og T b. ) For å få systmt til å virk som n vrmpump må prosssn snus om. Ytlsn til n vrmpump r dfinrt vd: Q 1 η = ut = =.6 Ytlsn til n Crnotpump mllom tmprturn T b og T r gitt vd: η Crnot = = T T b Hr må vi igjn husk på t Crnotpumpn virkr mllom to fst tmprturr, mns vår pump vgir vrmn vd n vrirnd øvr tmprtur som strtr på dn høy tmprturn T=T b. Oppgv b) En rltivt nkl rgning gir: ( S C = C + T ) ( ) P T P

3 Eliminrr ntropin S: F F P = ( ) T, S =( ) P S Mxwll-rlsjon: ( ) = ( ) P C = C + T( ) ( ) P P c) Av rlsjonn gitt i oppgv 1.46c følgr så svrt gitt undr c): T CP C = T β κ T d) For n idll gss: P=N, β=1/t, κ T =1/P og C P -C =Nk, som kjnt fr tidligr. ) i vil vl for ll tnklig systmr finn t volumt vtr når trykkt økr, slik t κ T vil vær n positiv størrls. Sr vi bort fr ngtiv tmprtur (husk prmgntn!) vil vi d lltid finn t C P >C. f) Non ksmplr: nn, C P -C =.44JK -1 g -1 =.79JK -1 mol -1. (C P -C )/C =.1. Kvikksølv: Dt fr oppgv 1.46 og tblln bk i lærbok (sid 4) gir C P -C =.8JK -1 mol -1. (C P -C )/C P =.1. ) For n dimnsjon: Oppgv n Z1d = = n= 1 For tr dimnsjonr: n n= Z1 = = (1 )

4 b) F= -lnz=-nlnz 1, Z=Z 1 N (for N prtiklr). F c) Enklst bstmms µ f v µ f = ln Z1 N = T, Dt kjmisk potnsilt kn også finns fr Gibbs fri nrgi: µ=g/n G=U-TS+P=F+P Fst stoff: µ f =G/N=F/N+Pv f =F/N (når v f nglisjrs) µ f =-lnz 1 d) Likvkt: µ f =µ g, µ g r gitt vd Sckur-Ttrod (lign.(6.9)). Hr må vi pss på t d kjmisk potnsiln r nrgir som må h smm rfrns-nrgi. For gssn r dtt, og smm rfrns får vi for dt fst stofft vd å gi tomn nrgin - i lvst vibrsjonsnivå. ) Fr lign.(6.9) md Z int =1 (monotomisk gss) og btinglsn fr d) får vi: lnz1 = ln( ), = N / P N h = = π m P (1 ), Q Q Q Grnsn for høy tmprtur (>>): πm 1 Z1 = ( ), P = h Smmnlignt md dmptrykkformln P P RT = som også gjldr for likvktn fst/gss md smm tilnærmlsr som for likvktn væsk/gss, sr vi t vi hr fått n kstr litn tmprturvhngight uttrykt vd. idr hr vi fått t stimt for konstntn P (vd n pssnd tmprtur),og fordmpningsvrmn L pr mol (N A svrr til L). f) For å finn fordmpningsvrmn L må vi først finn ntropin s g og s f pr. prtikkl. s g finnr vi fr Sckur-Ttrod (lign.(6.9)), og s f bstmmr vi fr L 4

5 1 F sf = ( ), N= ( ln Z1 ) N Når vi bnyttr høytmprturgrnsn for Z 1 finnr vi ttr litt rgning hvor vi også bnyttr btinglsn fr d): 1 L = NTs A ( g sf ) = NA( ) Hr sr vi som ovnfor t L får t bidrg N A som ikk vhngr v tmprturn, mn også t L vtr md tmprturn. Dtt virkr rimlig, sidn høyr tmprtur i gjnnomsnitt gir mr vibrsjonsnrgi til tomn i dt fst stofft. Dtt førr til t dt bhøvs mindr nrgi for å riv dm løs fr krystlln, dvs. mindr fordmpningsvrm. Altrntivt kn L bstmms v v Clusius-Clpyrons lignig på formn dp L = dt T Dt blir imidlrtid ltt no grisrgning når dp/dt skl brgns! Ekstr kommntr: årt rsultt ovnfor gir (når vi d bhndlr vnndmpn som n monotomisk gss) t L for is/dmp skull synk md.8kjmol -1 fr T= - ο C til ο C. llvrdin ss å vær.6kjmol -1. På smm vis sr vi t L=1kJmol -1 fr tblln svrr til =., t gnsk rimlig rsultt (s tbll i fig..11 i lærbok).

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

Løsningsforslag: oppgavesett kap. 6 (1 av..) GEF2200

Løsningsforslag: oppgavesett kap. 6 (1 av..) GEF2200 Løsningsforslg: oppgvstt kp. 6 (1 v..) GEF2200 s.m.blichnr@go.uio.no Oppgv 1 () Hv r homogn nuklsjon? Hvorfor visr Figur 6.2 i bok t vi ikk hr homogn nuklsjon i tmosfærn? ˆ Homogn nuklsjon r prosssn hvor

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00 Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.

Detaljer

EKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er -

EKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er - I I høgskln i sl EKSAMESPPGAVE Emn: Fysikalsk kjmi Grupp(r): 2KA Eksamnsppgavn bstår av: Antall sidr (inkl frsidn): 4+1 Emnkd: L040IK Dat: 08.06.04 Antall ppgavr: 5 Faglig vildr Ingrid Gigstad Eksamnstid

Detaljer

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG Christiania Spigrvrk AS, Postboks 4397 Nydaln, 0402 Oslo BYGNINGSBESLAG www.spigrvrkt.no www.gunnbofastning.com Bygningsbslag fra Christiania Spigrvrk AS Dimnsjonringsundrlag Bygningsbslag r produsrt av

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk Fgvluring FYS3120 - Klssisk mknikk og lktroynmikk vår/høst 2009 Forlsr: Jon Mgn Lins Rgnøvlsr: Pr Øyvin Solli Fysisk Fgutvlg 1. mi 2009 Bsvrlsn r nonym, mn vi gjør oppmrksom på t orlsr hr tilgng til ll

Detaljer

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD

Kap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD Kap. DIMNSJONRINGSPRINSIPPR INNHOLD. Innldning. lting vd nakst spnningstilstand. lting vd to akst spnningstilstand. Mohrs sirkl 5. lthpotsr Når bgnnr flting? 6. Inhomogn spnningstilstand MSK0 Maskinkonstruksjon

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

Kompetansevurdering av MTS utøver

Kompetansevurdering av MTS utøver Norwgin Mnhstr Trig Group Komptnsvurring v MTS utøvr Tortisk l Hvrt spørsmål i tt skjm står v t utsgn ttrfulgt v fm yttrligr uttllsr. Hvr v uttllsn kn vær snn llr usnn. Kryss v snn / usnn for hvr uttlls.

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

Eksempel B Knekklengde av søyle leddlagret i begge ender, konstant aksiallast og konstant stivhet

Eksempel B Knekklengde av søyle leddlagret i begge ender, konstant aksiallast og konstant stivhet 58 B5 RAMMEFORMLER, KEKKLEGDER, VRIDD AVSRTIVIG 5. MODELLSØYLEMETODE BRUKT TIL Å BESTEMME KEKKLEGDER Mtodn går kort ut på å gi søn r søn i ksmpn n utbøning =. Dt kn mn gjør fordi knkning r krktrisrt bnt

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

Periodisk emne-evaluering FYS Relativistisk kvantefetteori

Periodisk emne-evaluering FYS Relativistisk kvantefetteori Prioisk mn-vluring FYS4170 - Rltivistisk kvntttori høst 2009 Forlsr: Jn Olv Eg Forlsr r nsvrlig or skjmt 23. novmr 2009 Svr på tt skjmt r nonym, mn orlsr, SUFU og stuimonistrsjonn v Fysisk institutt hr

Detaljer

B15 TILLEGG: RAMMEFORMLER, KNEKKLENGDER, VRIDD AVSTIVNING

B15 TILLEGG: RAMMEFORMLER, KNEKKLENGDER, VRIDD AVSTIVNING B5 TILLEGG: RAMMEFORMLER, KEKKLEGDER, VRIDD AVSTIVIG 5. MODELLSØYLEMETODE BRUKT TIL Å BESTEMME KEKKLEGDER Mtodn går kort ut på å gi søn r søn i ksmpn n utbøning =. Dt kn mn gjør fordi knkning r krktrisrt

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Ved å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor.

Ved å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor. Mtmtikk for ungomstrinnt KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET FLERE UTFORDRINGER Oppgv 1 Osr h htt tr ulik mtmtikkprøvr. Hn h rgnt riktig 90 % på n først prøvn, 80 % på n nr prøvn og 75 % på n trj prøvn.

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

Løsning til seminar 5

Løsning til seminar 5 Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t

Detaljer

TKP4100 Strømning og varmetransport Løsningsforslag til øving 10

TKP4100 Strømning og varmetransport Løsningsforslag til øving 10 TKP4 Strømning og vrmetrnsport Løsningsforslg til øving Oppgve ) Entlpi ved utløpet (5 br, ), kj/kg Entlpi ved innløpet (5 br, x,95), 7 kj/kg overført: kj/kg Dvs. 4*/6,7 kw b) I området med overhetet dmp

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

Formelsamling for matematiske metoder 3.

Formelsamling for matematiske metoder 3. Formlsmli for mmis modr 3 f f Grdi Slrfl f r rdi f Risdrivr drivr il slrfl f i p o i ri r f f f os vor risvor r svor o r vil mllom rdi o risvor rivr v vorfl F m : F R F R vær diffrsirr i r F i d drivr

Detaljer

ny student06 Published from to responses (10 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_MASTER) a b c d e f

ny student06 Published from to responses (10 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_MASTER) a b c d e f ..6 :: QustBk xport - ny stunt6 ny stunt6 Pulish rom..6 to 8..6 rsponss ( uniqu) Currnt iltr (SAMFØK_MASTER) "Hvilkt stuiprorm sturr u v? (Du kn inn inormsjon om hvilkt stuiprorm u hr ått opptk til i tilut

Detaljer

Spørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse

Spørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse Appniks til Tori Flttn Hlvorsn, Ol Rikr Hvt, Birgit Johnn Ryså, Tov Skrø, Elin Olug Rosvol. Psintrfringr m llmnnlgrs oppfølging v lvorlig spisforstyrrls. Tisskr Nor Lgforn 2014; 134: 2047-51. Dtt ppnikst

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, matematikk og informatikk Fredag 1. desember 2000 Tid:

BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, matematikk og informatikk Fredag 1. desember 2000 Tid: Sid av 5 Nrgs tknisk-naturvitnskaplig univrsitt Institutt fr fysikk Faglig kntakt undr ksamn: Navn: Ola Hundri Tlf.: 934 BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultt fr fysikk, matmatikk

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

Evaluering av NGU-dagen

Evaluering av NGU-dagen .. :: QustBk xport - Evlurin v NGU-n Evlurin v NGU-n Pulis rom.. to.. rsponss ( uniqu). Forrn på NGU-n vr li rlvnt 9 9,9 %, %,8 %,8 %, %, % Avr,9,,. Tmn or rupprit vr o, % %, % 8, %, %, %, % Avr, 9,8,

Detaljer

Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1

Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1 Løigforlg EKSMEN Mtmti - Eltro dmbr 6 OPPGVE ltrtiv. yttr prgfujor og "tigigtllbtrtig" f ut ) t ) f ut) t ) ft) ) )tigigtll ) 5-5) ) t -5) -5 - f ut ) 5t ) 5) -5) -5 f ut ) 5t ) f t) f f f f ut) t ut )

Detaljer

ny student06 Published from to responses (29 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_BA) a b c d e f 37,9 %

ny student06 Published from to responses (29 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_BA) a b c d e f 37,9 % .. 9:: QustBk xport - ny stunt ny stunt Pulish rom.9. to.9. 9 rsponss (9 uniqu) Currnt iltr (SAMFØK_BA) "Hvilkt stuiprorm sturr u v? (Du kn inn inormsjon om hvilkt stuiprorm u hr ått opptk til i tilut

Detaljer

Øvinger uke 42 løsninger

Øvinger uke 42 løsninger Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har

Detaljer

Eksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål

Eksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål FY4165 15. desember 2016 Side 1 av 7 Eksamen FY4165 ermisk fysikk kl 09.00-13.00 torsdag 15. desember 2016 Bokmål Ogave 1. (armeledning. Poeng: 10+10+10=30) Kontinuitetsligningen for energitetthet u og

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

MAYERS LIVSSITUASJONS - SKJEMA (1)

MAYERS LIVSSITUASJONS - SKJEMA (1) Nvn: MAYERS LIVSSITUASJONS - SKJEMA (1) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i n ktull rurikkn. 1. TA VARE PÅ DEG SELV: f g h i j k l m n o p q r s t u Er u i stn til å: - komm g

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2. Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P

Detaljer

Optimal pengepolitikk hva er det?

Optimal pengepolitikk hva er det? Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk

Detaljer

VG2 Naturbruk Hest Stalldrift

VG2 Naturbruk Hest Stalldrift VG2 Naturbruk Hst Stalldrift Årsplan i Vg2 Hst- og hovslagrfag vd Stnd vidargåand skul for skolårt 2010-2011. Innhold: Prsntasjon av tilbudt. Fag og timfordling. Plan for når vi skal jobb md d ulik tman

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005 2005/10 Notatr 2005 Ann Sofi Abrahamsn Notatr Analys av rvisjon Filkodr og ndringr i utnrikshandlsstatistikkn Sksjon for utnrikshandl Innhold 1. Innldning... 2 2. Filkodr... 2 3. Analys av filkodr - original

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

Sammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven

Sammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven Sammendrag, forelesning onsdag 17/10 01 Kjemisk likevekt og minimumspunkt for G Reaksjonsligningen for en kjemisk reaksjon kan generelt skrives: ν 1 X 1 + ν X +... ν 3 X 3 + ν 4 X 4 +... 1) Utgangsstoffer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matmati V-8 Løsigsorslag til øvig 7 OPPGVE Liigssttt på matrisorm: t b t y. t z t Et liært og vadratis liigsstt ar tydig løsig vis og bar vis dt Drsom dt må ølglig liigssttt a dlig mag løsigr llr ig løsig.

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (3) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Oppsummering - Kap. 3 Beregning av Egenskaper

Oppsummering - Kap. 3 Beregning av Egenskaper TEP 410 Trmodynamkk 1 pvt Systm Oppsummrng - Kap. 3 Brgnng av Egnskapr Q Tlstandsprnsppt Trmo-1 og M&S W uavh. arabl (pga. Q/W Enkl komprssbl Systmr Rn Stoffr/Komponntr og unform Blandngr av kkragrnd Gassr

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (2) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

Håndbok 014 Laboratorieundersøkelser

Håndbok 014 Laboratorieundersøkelser Vdlgg 1 sid 1 av 5 Hådbok Vdlgg 1 Jordartsklassifisrig Vdlgg 1 Jordartsklassifisrig Vrsjo mars 2005 rstattr vrsjo juli 1997 Omfag Jord ka bstå av t miralsk matrial, orgaisk matrial llr bladig av diss.

Detaljer

Oppgaven dekker ideell opamp, bodeplot og resonans.

Oppgaven dekker ideell opamp, bodeplot og resonans. Lønngfrlg fr ktvt flter gve FYS3 H9 Uke 4 H.Blk Aktvt flter Ogven ekker eell m, elt g renn. Dette flteret er ert å en relerng v et Sllen ey flter. Ref : Sllen, R. P.; E. L. ey 955-3. "A Prtl Meth f Degnng

Detaljer

Biogassteknologi. Det effektive varmesystemet for biogass

Biogassteknologi. Det effektive varmesystemet for biogass Biogasstknologi Dt ffktiv vamsystmt fo biogass GG: fa B R U md t n m. ing av f amilin f m a X v E p L F op i NIRO ø t koug BIOFLE X Biogasstknologi Systmløsning fo vamanlgg/oppvaming fmntingstank BIOFLEX

Detaljer

Postboks 133 Sentrum 7901 RØRVIK KOM 1750 V I K N A. vikna@vikna.kommune.no. www.vikna.kommune.no

Postboks 133 Sentrum 7901 RØRVIK KOM 1750 V I K N A. vikna@vikna.kommune.no. www.vikna.kommune.no S k j mr ua t f ya lv t Fornavn Ettrnavn Fødslsdato Informasjon om søkr N N E - U T H J N G D - En søknad må altid ha én søkr som har ansvart, slv om flr samarbidr om prosjktt. - Tilskudd som Hlsditoratt

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn

Detaljer

FOLKETS PIMPER PØLSA!

FOLKETS PIMPER PØLSA! DET FINNES EN PØLSE MED 80% KJØTT, OG DET FINNES EN HEL VERDEN AV TILBEHØR. FOLKETS PIMPER PØLSA! Vi yn pøln frtjnr å få dn trni rin hburrn tcn. Drfr lnrr vi ått frh ppriftr til inpirjn! FOLKETS WIENER

Detaljer

LØSNINGSFORSLAG for EKSAMEN i INF110 H 2002:

LØSNINGSFORSLAG for EKSAMEN i INF110 H 2002: LØSNINGSFORSLAG for EKSAMEN i INF110 H 2002: Løsningsforslg 1.1: Hvis nod i r forldr j, så rprsntrs dt vd forldr[i] = j. Hvis nod i r n rotnod, så rprsntrs dt vd forldr[i] = -1. Innoldt v forldr i ksmplt:

Detaljer

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk Sd v 8 NTNU Norgs tksk-turvtskpg uvrstt Fkutt for formsostkoog, mtmtkk og ktrotkkk Isttutt for dttkkk og formsosvtskp KONTINUASJONSEKSAEN I FAG SIF8 BILDETEKNIKK LØRDAG 6. AUGUST KL. 9.. Løsgsforsg - grfkk

Detaljer

Fagevaluering FYS Kvantefeltteori

Fagevaluering FYS Kvantefeltteori Fvlurin FYS4170 - Kvntlttori høst 05 Forlsr: Jn Olv E Fysisk Futvl 22. novmr 2005 Bsvrlsn r nonym, mn vi jør oppmrksom på t orlsr hr tiln til ll skjmn. Evlurinn lir orttt v Fysisk Futvl, som slv vlr hvilk

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Samfunnsøkonomisk tilnærming (vlfrdsøkonomi): vlfrdstormr, markdssvikt og fordling (Kapittl 3 arr; Kapittl 3 Rosn & Gayr) Maksimr sosial vlfrd gnrlt likvktsproblm Maks: W W(U,U ) Sosial vlfrdsfunksjon

Detaljer

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt

Detaljer

ISE matavfallskverner

ISE matavfallskverner ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j

Detaljer

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies. FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMISKE SYSTEMER Fredag 18. mai 2007 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMISKE SYSTEMER Fredag 18. mai 2007 Tid: kl. 09:00-13:00 Sd 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMISKE SYSTEMER Frdag 18. ma 2007 Td: kl. 09:00-13:00

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

KONSEPT/SITUASJON. Konseptet illustreres ovenfor med en 3D tegning av bygget i sammenheng med uteoppholdsarealene.

KONSEPT/SITUASJON. Konseptet illustreres ovenfor med en 3D tegning av bygget i sammenheng med uteoppholdsarealene. KONSEPT/SITUASJON Slå u i KJØKK Ap lt u / v i SYK For å illutrr rhg utoppholdrlr (MUA) o hgd og v god vlitt hr dt litt utridt t opt o dlr opp utoppholdrlt i fir forjllig tr, hvor hvrt t hr uli tivittr

Detaljer

Håndlaget kvalitet fra Toten. For hus og hytte

Håndlaget kvalitet fra Toten. For hus og hytte Håndlagt kvalitt fra Totn For hus og hytt Md stolpr Md Kloppn-søylr S forskjlln! Vakr fasadr md Kloppn-Søyla Bærnd laminrt søyl i tr Kloppn-søyln r n limtrkonstruksjon i gran av god kvalitt. Dtt gir god

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Løysingsforslag for TMA4120, Øving 6

Løysingsforslag for TMA4120, Øving 6 Løysingsforslg for TMA42, Øving 6 October, 26 2..3 Set inn i likning: 2 u t 2 = c2 2 u x 2 2 (cos 4t sin 2x t 2 = c 2 2 (cos 4t sin 2x x 2 6 cos 4t sin 2x = 4c 2 cos 4t sin 2x. u er med ndre ord ei løysing

Detaljer

LSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter

LSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter c UIVERSITETET I TRODHEIM ORGES TEKISKE HGSKOLE Institutt for datatknikk og tlmatikk sid av 5 Faglig kontakt undr ksamn: avn: Baak Amin Farshchian Tlf.: 9 4427 LSIGSFORSLAG TIL EKSAME I FAG 4560 SYSTEMERIG

Detaljer

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr

Detaljer

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart ÅRSPLAN Tinn: 5 Piod: Høst og vå U Omåd Komptansmål Dlmål/læingsmål Læmiddl/læv / mtod Kat og od Fag vis fosjll Himmltning Atlas Et synlig tntt Kat på data Knn ls og b papibast og digital at Kat Om attgn

Detaljer

Oppgave 1 (15%) KANDIDAT NR.:

Oppgave 1 (15%) KANDIDAT NR.: ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!

Detaljer

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

2 0 1 1 Media Publications

2 0 1 1 Media Publications Mdi Publictions 2011 Pubbliction: Dt: Fbrury 2011 itl: -FLEX (I INSULAION GROUP) -FLEX (I INSULAION GROUP) Dr Bruno R nd Amdo Spinlli, Prsidnt, I Insultion Group 2 At th Enviromx stnd At th Pkkns stnd

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer