Varmeledning, Eks. 1. Strøm i serie. Varmetransport (Y&F , L&H&L , H&S 13) I = I 1 = I 2! I 2 I 1. Q=Q j =Q s!

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Varmeledning, Eks. 1. Strøm i serie. Varmetransport (Y&F , L&H&L , H&S 13) I = I 1 = I 2! I 2 I 1. Q=Q j =Q s!"

Transkript

1 (Y&F , L&H&L , H&S 13) 2. hovedsetning: Varme fra varmt ti kadt egeme (og fra varm ti kad de av et egeme) Uike typer transport: Innen et egeme: 1. Varmeedning, Fouriers ov 2. Konveksjon (strømning) Meom egemer: 3. Varmeovergang (meom uike egemer). Varmestråing, Stefan-Botzmanns ov. j Q Varmeedning, Eks. 1 stort reservoar stort reservoar T H = T 0 s T L = A = 6,0 cm 2 = 6, m 2 j =,0 cm s = 6,0 cm κ j = 80 W/(Km) κ s = 29 W/(Km) A k = = ( T -T ) j j H 0 j A k = = ( T -T ) gir T s s 0 L s -T 100 K H 0 = = = Rtot 1,07 K/W der varmeresistans = R R R = + = j s tot j s Ak + j Ak = s 9 W 1,07 K/W Eks. 1: Temperaturforøp Strøm i serie 100 o C T/ o C o C jern 21,9 o C søv 0 o C 0 o C Eektrisk strøm R 1 = 1 Ω I 1 I R 2 = 1000 Ω I 2 I = I 1 = I 2! Potensiafa ΔV i = R i I uik Størst temperaturfa T i materiae med størst R (best isoasjon): T = dq/dt R Q Q=Q j =Q s! Varmestrøm Fe 21,9 cm 10 cm Q j Q s Temperaturfa ΔT = R i Q uik 1

2 Fouriers varmeedningsov, uike former T 1 A T x R dt j A dx j T Strømtetthetsvektor: j Konduktivitet: og Gradient(drivkraft) : Ohms ov, uike former V 1 I A V x R I dv j A dx j V E T og V E p Apropos spørsmå forrige time om isokorer og isobarer i TS-diagram: isobar Prosesskurver i pv og i TS-diagram: isokor isoterm: p α V -1 isentrop (adiabat): p α V -γ V T isoterm isentrop isokor: T α exp(s/nc V ) isobar: T α exp(s/nc p ) S Viktig for atmosfæren og vær Konveksjon T 1 A T 1. Varmeedning, Fouriers ov x R dt j A dx j T 2. Konveksjon (strømning). 3. Varmeovergang (vegg/uft). Varmestråing, Stefan-Botzmanns ov. 2

3 Varmeedningsevne, (k = ) κ For uike materiaer ved romtemp Tabe Wikipedia../List_of_therma_conductivities Eks. 2: Temperaturforøp dob.gassvindu 25,0 20,0 Varmeovergang Varmeovergangsta: α ute = 25 Wm -2 K -1 α inne = 7,5 Wm -2 K -1 T/oC 15,0 10,0 i j = αδt 5,0 Varmeedning 0, x/mm Beste isoator Tiper & Mosca Tab Y&F Tab 17.5 Gass: Stor varmeedning => negisjerbar T 1. Varmeedning, Fouriers ov 2. Konveksjon (strømning) 3. Varmeovergang (vegg/uft). Varmestråing, Stefan-Botzmanns ov (Y&F , L&H&L 18., H&S 13.3) Josef Stefan, eksperimenter 1879 Ludvig Botzmann, teori 188 j = e σ T Varmestråing K Ae egemer sender ut e.m.stråing: Infrarødt ved romtemp, rødt - hvitt ved høyere temperaturer Årsak: termiske vibrasjoner i moekyer = akseererende eektroner. 3

4 Emissivitet e for uike materiaer Materiae e Omhyggeig poert gu 0,02 0,03 Omhyggeig poert søv 0,02 0,03 Omhyggeig poert messing 0,03 Oksydert messing 0,6 Poert auminium og foie 0,0 0,06 Upoert auminium 0,06 0,07 Sterkt oksydert auminium 0,2 0,3 Karbon: grafitt 0,7 0,8 Karbon: sot på overfate 0,96 Gasert porseen 0,92 Gummi 0,85 0,95 Gips 0,93 Vann 0,95 0,96 Betong 0,85 Wofram (gødetråd) 0, 0,5 Liten Stor j = e σ T Emissivitet e = absorpsjonsevne a Fra Handbook og Physics & Chemistry og emissivity-coefficients-d_7.htm Eks. 3 Termisk stråing fra soa j so = eσt so = 1 5, (5800) W/m 2 = 6 MW/m 2 j so i ae retninger => tota effekt: P so = j so π R so2 = 3, W j so R so j so R sj =1, km Sooverfata: T so = 5800 K ( K) j so j so Jorda R j =600 km Varmestråing: Ae egemer/overfater stråer ut e.magn.stråing: Stefan-Botzmanns ov: j = e σ T (W/m 2 ) Eks. : Menneskekroppen: T = 32 O C = 305 K, e = 0,8 A = 1,8 m 2 P ut = e σ (305 K) 1,8 m 2 = 707 W (naken kropp) 20 O C omgiveser: P inn = e σ (293 K) = 602 W P netto = 105 W (ut) 0 O C omgiveser: P inn = e σ (273 K) = 5 W P netto = 253 W (ut) Steikende so 1,0 kw/m 2 : P inn = e 1,0 kw/m 2 0,5 m 2 + e σ (293 K) 1,8 m 2 = 1002 W P netto = 295 W (inn) Max Panck ( ) Grunnegger kvantemekanikk: 1900: Stråingens bøgeengdefordeing 1918: Nobepris fysikk Pancks stråingsov: -5 dj 2 I( ) = = 2phc d æ hc ö exp -1 çkt è ø B Interaktiv graf: phet.coorado.edu/en/simuation/backbody-spectrum

5 Høst 2012 Pancks stråingsov dj/dλ = -5 dj 2 I( ) = = 2phc d æ hc ö exp -1 çkt è ø B f λ = c = ysfart 3 dj 2ph f I( f ) = = 2 df c æ hf ö exp -1 ç kt çè ø B Y&F Figure λ max øker når T avtar λ max = 2898 μm K / T Wiens forskyvningsov (Wihem Wien 1893, fra termodyn.) Rottmann Eks 5: Temperaturforøp dob.gassvindu T H 25,0 T L n = 2 α = 1 Bernouita B = 1/30 => π /15 edning: stråing: j inn = fσt L T/oC 20,0 15,0 10,0 5,0 0, x/mm j j ut = fσt H f = (1-r)/(1+r)=0,72 der r = refeksjonskoeffisient 0,16 varmeedning: j = (T H -T L ) / AΣR i, AΣR i = A(R overgang + R gass + R uft ) = 0,83 m 2 K/W varmestråing: j s = j ut j inn = fσt H - fσt L fσ T 3 m (T H -T L ) = 3,70 W/m 2 K (T H -T L ) f = (1-r)/(1+r)=0,72 der r = refeksjonskoeffisient 0,16 Totat: j = (1,2 + 3,7) W/m 2 K (T H -T L ) Stråing vesentig bidrag! 5

6 Vinduer og vegger: U-verdi (tidigere k-verdi) Def: j = U ΔT Enhet: W/m 2 K DT 1 1 j = = = U DT U = A R A AR der R = varmeresistansen (K/W) U-verdi Enket gass i ramme 5,0 To gass i kobet vindu 2, Toags isoerrute 2, Toags isoerrute med ett beagt gass og uft 1,6 Toags isoerrute med ett beagt gass og argongass 1, Toags isoerrute med beagt gass, argongass, varmkant, ny ramme og karm 1,2-1,1 Treags isoerrute med to beagte gass, argongass, varmkant, ny ramme og karm 1,1-0,9 Treags isoerrute med to beagte gass, argongass, varmkant, isoert ramme og karm 0,9-0,7 Vårt vindu i Eks. 5 med varmeedning+stråing: U = (1,2+3,7) W/m 2 K =,9 W/m 2 K (svært dårig) Varmeedning (Fouriers ov) Varmestrøm (W): dq/dt = κ A ΔT/Δ = ΔT/R er ik for ae ag gjennom f.eks. vindu. Varmestrømtetthet (W/m 2 ): j = dq/dt/a = - κ dt/dx Konveksjon (materietransport) i gasser og væsker Varmeovergang meom to materiaer j = - α ΔT Varmestråing Ae egemer/overfater stråer ut e.magn.stråing, som øker sterkt med temperaturen T : Stefan-Botzmanns ov: j = e σ T e = a e = 1 het sorte overfater; e = 0 het banke overfater Linearisering: j = σ (T H -T L ) σt m3 (T H -T L ), T m meom T H og T L Pancks stråingsov: Bøgeengdefordeingen for stråingsintensiteten: j (λ,t). Wiens forskyvningsov: λ max T = 2898 μmk 6

Varmeledning, Eks. 1 stort reservoar stort reservoar. Strøm i serie. Varmetransport (Y&F 17.7+39.5, L&H&L 18.1+2+4, H&S 13) I = I 1 = I 2!

Varmeledning, Eks. 1 stort reservoar stort reservoar. Strøm i serie. Varmetransport (Y&F 17.7+39.5, L&H&L 18.1+2+4, H&S 13) I = I 1 = I 2! (Y&F 17.7+39.5, L&H&L 18.1+2+, H&S 13) 2. hovedsetning: Varme fra varmt ti kadt egeme (og fra varm ti kad de av et egeme) Uike typer transport: Innen et egeme: 1. Varmeedning, Fouriers ov 2. Konvekson

Detaljer

Varmetransport (Y&F , L&H&L ) 2. hovedsetning: Varme fra varmt til kaldt legeme (og fra varm til kald del av et legeme)

Varmetransport (Y&F , L&H&L ) 2. hovedsetning: Varme fra varmt til kaldt legeme (og fra varm til kald del av et legeme) Varmetransport (Y&F 17.7+39.5, L&H&L 18.1+2+4) 2. hovedsetning: Varme fra varmt til kaldt legeme (og fra varm til kald del av et legeme) Ulike typer transport: Innen et legeme: 1. Varmeledning, Fouriers

Detaljer

Termisk fysikk består av:

Termisk fysikk består av: Termisk fysikk består av: 1. Termodynamikk: (= varmens kraft ) Makroskopiske likevektslover ( slik vi ser det ) Temperatur. 1. og. hovedsetning. Kinetisk gassteori: Mekanikkens lover på mikrokosmos Uttrykk

Detaljer

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:

Detaljer

Kap Termisk fysikk (varmelære, termodynamikk)

Kap Termisk fysikk (varmelære, termodynamikk) TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Arbeid og energi (kap. 6+7) Bevegelsesmengde, kollisjoner (kap.

Detaljer

Chapter 2. The global energy balance

Chapter 2. The global energy balance Chapter 2 The global energy balance Jordas Energibalanse Verdensrommet er vakuum Energi kan bare utveksles som stråling Stråling: Elektromagnetisk stråling Inn: Solstråling Ut: Reflektert solstråling +

Detaljer

Arbeid og energi. Energibevaring.

Arbeid og energi. Energibevaring. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p

Detaljer

TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6

TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6 TFY4102 Fysikk Eksamen 16. desember 2017 Foreløpig utgave Formelside 1 av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes

Detaljer

T L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K

T L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N

Detaljer

Kretsprosesser. 2. hovedsetning

Kretsprosesser. 2. hovedsetning Kretsprosesser. 2. hovedsetning Reversible og irreversible prosesser (20.1) Adiabatisk prosess (19.8) Kretsprosesser: varmekraftmaskiner (20.2+3) kjølemaskiner (20.4) Carnotsyklusen (20.6) Eks: Ottosyklus

Detaljer

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt. p = mv = mṙ. Konstant akselerasjon: v = v 0 +at

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt. p = mv = mṙ. Konstant akselerasjon: v = v 0 +at TFY4106 Fysikk Eksamen 17. desember 2014 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas forøvrig å

Detaljer

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2 TFY4106 Fysikk Eksamen 9. juni 2016 (Foreløpig versjon pr 7. mai 2016.) FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes

Detaljer

Kretsprosesser. 2. hovedsetning

Kretsprosesser. 2. hovedsetning Kretsprosesser. 2. hovedsetning Reversible og irreversible prosesser (20.1) Adiabatisk prosess (19.8) Kretsprosesser: varmekraftmaskiner (20.2+3) Virkningsgrad kjølemaskiner (20.4) Effektfaktor Carnotsyklusen

Detaljer

Fysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign

Fysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign Instituttt for fysikk Eksamensoppgave i TFY4115 Fysikkk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 18. desember 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee

Detaljer

Oppgave 1: Blanda drops

Oppgave 1: Blanda drops Fysikkprøve-0402-f.nb Oppgave : Banda drops a) En avgrenset mengde oksygen-gass HO 2 L ar temperaturen T = 300 K, trykket p = 0 kpa og voum V =0,00 m 3. Beregn massen ti den avgrensede gassen. Vi bruker

Detaljer

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-13 Lars Kristian Henriksen UiO. februar 15 Oppgave 1 Vi betrakter bølgefunksjonen Ψ(x, t) Ae λ x e iωt hvor A, λ og ω er positive reelle konstanter. a) Finn normaliseringen

Detaljer

Eksamen FY1005/TFY4165 Termisk fysikk kl torsdag 6. juni 2013

Eksamen FY1005/TFY4165 Termisk fysikk kl torsdag 6. juni 2013 TFY4165/FY1005 6. juni 2013 Side 1 av 8 Eksamen FY1005/TFY4165 Termisk fysikk kl 15.00-19.00 torsdag 6. juni 2013 Ogave 1. Ti flervalgsogaver. (Poeng: 2 r ogave) a. T arme tilføres et rent stoff i en lukket

Detaljer

Reversible prosesser: Termisk likevekt under hele prosessen Langsomt og kontrollert. [H&S] Kap.11. (1. hovedsetning.) Kretsprosesser.

Reversible prosesser: Termisk likevekt under hele prosessen Langsomt og kontrollert. [H&S] Kap.11. (1. hovedsetning.) Kretsprosesser. ka [H&S] Ka.. (. hovedsetning.) Kretsrosesser. Forelest tidligere:. Energibevarelse:. hovedsetning Y&F 9.-4. rbeid og (,V)-diagram Y&F 9.2.5 Gassers C og C V Y&F 9.7 Foreleses nå:.2 Reversible rosesser

Detaljer

Norges teknisk-naturvitenskapelige universitet Institutt for fysikk

Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Sideav5 (inklusiv formelliste Norges teknisk-naturvitenskapelige universitet Institutt for fysikk EKSAMENSOPPGAE I SIF06 - TERMISK FYSIKK EKSAMENSOPPGAE I SIF06 - FYSIKK Eksamensdato: Lørdag 25. mai 2002

Detaljer

TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6

TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6 TFY4106 Fysikk Eksamen 18. mai 2017 Formelside 1 av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Løysingsframlegg TFY 4104 Fysikk Hausten 2009

Løysingsframlegg TFY 4104 Fysikk Hausten 2009 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4104 Fysikk Hausten 2009 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon: 73593131 Mandag 30

Detaljer

Kapittel 8. Varmestråling

Kapittel 8. Varmestråling Kapittel 8 Varmestråling I dette kapitlet vil det bli beskrevet hvordan energi transporteres fra et objekt til et annet via varmestråling. I figur 8.1 er det vist hvordan varmestråling fra en brann kan

Detaljer

a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for ideelle gasser. Hvordan behandles dette?

a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for ideelle gasser. Hvordan behandles dette? LØSNINGSFORSLAG EKSAMEN 20086 SMN6194 VARMELÆRE DATO: 17. Okt. 2008 TID: KL. 09.00-12.00 Oppgave 1 (50%) a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for

Detaljer

Oppsummering - Kap. 5 Termodynamikkens 2. Lov

Oppsummering - Kap. 5 Termodynamikkens 2. Lov EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.

Detaljer

Eksamen FY1005/TFY4165 Termisk fysikk kl mandag 12. august 2013

Eksamen FY1005/TFY4165 Termisk fysikk kl mandag 12. august 2013 TFY4165/FY1005 12. august 2013 Side 1 av 8 Eksamen FY1005/TFY4165 Termisk fysikk kl 09.00-13.00 mandag 12. august 2013 Oppgave 1. Ti flervalgsoppgaver. (Poeng: 2 pr oppgave) a. For van der Waals tilstandsligning,

Detaljer

Bygningsmaterialer (5/6):

Bygningsmaterialer (5/6): Bygningsmaterialer (5/6): * Varmetransport i byggematerialer, * Frysing av jord Stefan Jacobsen Høgskolen i Narvik Varmetransportformer Ledning Stråling Konveksjon + Varmeovergang i grenseflater mellom

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

Stivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM M V + I 0!

Stivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM M V + I 0! TFY40 Fysikk Eksamen 6. desember 07 Formelside av 7 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas

Detaljer

Eksamen TFY 4104 Fysikk Hausten 2009

Eksamen TFY 4104 Fysikk Hausten 2009 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY 404 Fysikk Hausten 2009 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Mandag 30. november

Detaljer

Eksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål

Eksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål FY4165 15. desember 2016 Side 1 av 7 Eksamen FY4165 ermisk fysikk kl 09.00-13.00 torsdag 15. desember 2016 Bokmål Ogave 1. (armeledning. Poeng: 10+10+10=30) Kontinuitetsligningen for energitetthet u og

Detaljer

a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren.

a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren. Oppgave 1 a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren. Hvorfor er temperaturfordelingen som den er mellom ca. 12 og ca. 50 km? Svar: Her finner vi ozonlaget. Ozon (O 3 ) absorberer

Detaljer

Løsningsforslag til eksamen i FYS1000, 16/8 2013

Løsningsforslag til eksamen i FYS1000, 16/8 2013 Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet

Detaljer

Løsningsforslag nr.1 - GEF2200

Løsningsforslag nr.1 - GEF2200 Løsningsforslag nr.1 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1: Bølgelengder og bølgetall a) Jo større bølgelengde, jo lavere bølgetall. b) ν = 1 λ Tabell 1: Oversikt over hvor skillene går mellom ulike

Detaljer

EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Mandag 11. august 2014 kl. 0900-1300 Oppgave 1. 25 flervalgsoppgaver. (Poeng:

Detaljer

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00 NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:

Detaljer

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett

Detaljer

TFY4106 Fysikk Løsningsforslag til Eksamen 12. august M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg

TFY4106 Fysikk Løsningsforslag til Eksamen 12. august M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg TFY4106 Fysikk Løsningsforslag til Eksamen 12. august 2016 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. E) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3

Detaljer

EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURITENSKAPELIGE UNIERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Mandag 11. august 2014 kl. 0900-1300 Ogave 1. 25 flervalgsogaver. (Poeng: 2

Detaljer

EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Torsdag 6 juni 013 kl 1500-1900 Oppgave 1 Ti flervalgsoppgaver Poeng: pr

Detaljer

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking DIFFUSJON I METALLER DIFFUSJON - bevegelse av atomer nødvendig i foreksempel - varmebehandling - størkning foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking alltid feil i metallgitteret

Detaljer

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial Kp23 26.1.215 Kp. 23 Eektsk potens Sk defnee p gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje spennng) Ekvpotensfte Potensgdent og eektsk fet. Eks. 1, fots.

Detaljer

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8. Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk

Detaljer

TFY4105 Fysikk for Bygg

TFY4105 Fysikk for Bygg Institutt for fysikk 2004 TFY4105 Fysikk for Bygg Løsningsforslag eksamen 13 mai 2004 Oppgave 1 Flervalgsspørsmål Spørsmål: a b c d e f g h i j k l Rett svar: D C B A C D E A A B X C Detaljer om spørsmålene:

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

EKSAMEN I FAG SIF4002 FYSIKK. Mandag 5. mai 2003 Tid: Sensur uke 23.

EKSAMEN I FAG SIF4002 FYSIKK. Mandag 5. mai 2003 Tid: Sensur uke 23. side 1 av 5 (bokmål) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Arnljot Elgsæter, 73940078 EKSAMEN I

Detaljer

Eksamen FY1005/TFY4165 Termisk fysikk kl mandag 2. juni 2014

Eksamen FY1005/TFY4165 Termisk fysikk kl mandag 2. juni 2014 TFY4165/FY1005 2. juni 2014 Side 1 av 9 Eksamen FY1005/TFY4165 Termisk fysikk kl 09.00-13.00 mandag 2. juni 2014 Bokmål Oppgave 1. Ti flervalgsoppgaver. (Poeng: 2.5 10=25) a. For van der Waals tilstandsligning,

Detaljer

Eksamensoppgave i TFY4115 FYSIKK

Eksamensoppgave i TFY4115 FYSIKK Institutt for fysikk Eksamensoppgave i TFY4115 FYSIKK for MTNANO, MTTK og MTELSYS Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen Tlf: 486 05 392 Eksamensdato: Tirsdag 13 desember 2016

Detaljer

Kap. 3 Arbeid og energi. Energibevaring.

Kap. 3 Arbeid og energi. Energibevaring. Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)

Detaljer

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 7. oktober 2008, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE

Detaljer

TFY4106 Fysikk Løsningsforslag til Eksamen 9. juni ρ = m/(4πr 3 /3) = 3 130/4π = , i enheten g/cm 3. D) 1.7

TFY4106 Fysikk Løsningsforslag til Eksamen 9. juni ρ = m/(4πr 3 /3) = 3 130/4π = , i enheten g/cm 3. D) 1.7 TFY4106 Fysikk Løsningsforslag til Eksamen 9. juni 2016 1) ρ = m/(4πr 3 /3) = 3 130/4π 2.625 3 = 1.716 1.7, i enheten g/cm 3. D) 1.7 2) Kula har oppnådd terminalhastighet når friksjonskraften akkurat balanserer

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

Hall effekt. 3. Mål sammenhørende verdier mellom magnetfeltet og Hall-spenningen for to ulike kontrollstrømmer (I = 25 og 50 ma).

Hall effekt. 3. Mål sammenhørende verdier mellom magnetfeltet og Hall-spenningen for to ulike kontrollstrømmer (I = 25 og 50 ma). FY1303 Eektrisitet og magnetisme nstitutt for fysikk, NTNU FY1303 Eektrisitet og magnetisme, høst 007 Laboratorieøvese 1 a effekt ensikt ensikten med øvesen er å gjøre seg kjent med a-effekten og måe denne

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen?

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen? UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 6. oktober 2009, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8) kap8.ppt 03.0.203 TFY445/FY00 ekanisk fysikk Størrelser og enheter (Kap ) Kinematikk i en, to og tre dimensjoner (Kap. 2+3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons

Detaljer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 01 017 Andre runde: 7. februar 017 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

Side 1/10. EKSAMEN I EMNE TFY4125 FYSIKK Fredag 10. juni 2011 Tid:

Side 1/10. EKSAMEN I EMNE TFY4125 FYSIKK Fredag 10. juni 2011 Tid: ide 1/1 BOKMÅL Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU TFY415 Fysikk, vår 11 Kandidatnr.. tudieretning... Faglig kontakt under eksamen: Navn: Dag W. Breiby Tlf.: 984 5413

Detaljer

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 9. desember 2016 Klokkeslett: kl. 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Karl Rottmann:

Detaljer

Kap. 24 Kapasitans og dielektrika. Van de Graaf generator. Kap 24. Van de Graaf-generator i Gamle fysikk, 1952

Kap. 24 Kapasitans og dielektrika. Van de Graaf generator. Kap 24. Van de Graaf-generator i Gamle fysikk, 1952 Kap. 4 Kapasitans og dielektrika Grunnleggende forståelse for HVA en kondensator er, HVORFOR den virker som den gjør, hvilke BEGRENSINGER den har og hvorfor et DIELEKTRIKUM er påkrevd i en kondensator.

Detaljer

Fysikkk. Andreas. Støvneng Tlf.: 45. 45 55 33 Eksamensdato: Rottmann, boksen. Dato. Sign

Fysikkk. Andreas. Støvneng Tlf.: 45. 45 55 33 Eksamensdato: Rottmann, boksen. Dato. Sign Instituttt for fysikk Eksamensoppgave i TFY4106 Fysikkk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 17. desember 2014 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee

Detaljer

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking

DIFFUSJON I METALLER. DIFFUSJON - bevegelse av atomer. - størkning. foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking DIFFUSJON I METALLER DIFFUSJON - bevegelse av atomer nødvendig i foreksempel - varmebehandling - størkning foregår hurtigere i gass og smelte p.g.a. mindre effektiv atompakking alltid feil i metallgitteret

Detaljer

Løsningsforslag: Oppgavesett kap. 4 (1 av 2) GEF2200

Løsningsforslag: Oppgavesett kap. 4 (1 av 2) GEF2200 Løsningsforslag: Oppgavesett kap. 4 (1 av 2) GEF2200 s.m.blichner@geo.uio.no Oppgave 1: Bølgelengder og bølgetall (Vi går IKKE gjennom disse på gruppetimen) a) Hva er sammenhengen mellom bølgelengde og

Detaljer

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på: Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

Tre klasser kollisjoner (eksempel: kast mot vegg)

Tre klasser kollisjoner (eksempel: kast mot vegg) Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)

Detaljer

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7) TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +

Detaljer

Permanentmagneter - av stål med konstant magnetisme. Elektromagneter- består av en spole som må tilkoples en spenning for å bli magnetiske.

Permanentmagneter - av stål med konstant magnetisme. Elektromagneter- består av en spole som må tilkoples en spenning for å bli magnetiske. 1 5.1 GEERELL MAGETSME - MAGETFELT Det skies meom to typer magnetisme: Permanentmagneter - av stå med konstant magnetisme. Eektromagneter- består av en spoe som må tikopes en spenning for å bi magnetiske.

Detaljer

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a.

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a. o o {rb} rprr på r år o prpp rpro r r rr rpro o r o or α r o or bor brp or b rr på ppr r r r r r rrr år på o oroooro o r or o br å r r pår r r orør p o b b år r å r o o o rprrr o p o rprrr o or op r r

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1100 Eksamensdag: 11. oktober Tid for eksamen: 15.00-18.00 Oppgavesettet er på sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

Innovative skjæreverktøy for profesjonelle

Innovative skjæreverktøy for profesjonelle Innovative skjæreverktøy for profesjonee V-fresing ACM 30 m/min Massivt harmeta Baansert Ny geometri. Avrunet tupp for mer presis bøying 90-120 - 135 optimat resutat Baanserte freser for Markeets beste

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Konteeksamen i AST1100, 8.januar 2009, 14.30 17.30 Oppgavesettet inkludert formelsamling er på 10 sider Tillatte hjelpemidler: medbrakt

Detaljer

Formel III over kan sammenliknes med Ohm`s lov for en elektrisk krets.

Formel III over kan sammenliknes med Ohm`s lov for en elektrisk krets. 1 5.4 MAGETSKE KRETSER HOPKSOS LOV iguren 5.4.1 kan betraktes som en eektrisk krets. Hvor vi benytter den magnetiske kidespenningen, reuktansen og den magnetiske fuksen og sammenikner dem med spenningen

Detaljer

Kondenserte fasers fysikk Modul 2

Kondenserte fasers fysikk Modul 2 FYS3410 Kondenserte fasers fysikk Modul Sindre Rannem Bilden 1. mai 016 Oppgave 1 - Endimensjonal krystall (Obligatorisk Se på vibrasjoner i en uendelig lang endimensjonell krystall med kun ett atom i

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME

Detaljer

EKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2

EKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematis-naturvitensapeige fautet Esamen i: GE22 Esamensdag: 23. mars 21 Tid for esamen: 15.-17. Oppgavesettet er på 2 sider Vedegg: Sondediagram Tiatte hjepemider: Kauator

Detaljer

Eksamensoppgave i LGU53005 Naturfag 2 (5-10) emne 2

Eksamensoppgave i LGU53005 Naturfag 2 (5-10) emne 2 Institutt for grunnskolelærerutdanning 5-10 og bachelor i tegnspråk og tolking Eksamensoppgave i LGU53005 Naturfag 2 (5-10) emne 2 Faglig kontakt under eksamen: Rodrigo de Miguel (93805362), Jan Tore Malmo

Detaljer

Eksamensoppgave i TFY4115 FYSIKK

Eksamensoppgave i TFY4115 FYSIKK Institutt for fysikk Eksamensoppgave i TFY45 FYSIKK for MTNANO, MTTK og MTELSYS Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen Tlf: 486 05 92 Eksamensdato: Lørdag 9 desember 205 Eksamenstid:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Eksamensoppgave i TFY4104 Fysikk

Eksamensoppgave i TFY4104 Fysikk Institutt for fysikk Eksamensoppgave i TFY4104 Fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 4. desember 2015 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillatte

Detaljer

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag: Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009 Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Våren 2014. Oppgave 1. Varmeskjold Løsningsforslag til øving 12... j j j j j T0 T T 2 T 3 T T 1 N 1 N Ved stasjonære forhold er varmestrømmen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSIEE I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys60 Eksamensdag: Fredag 6. desember 03 id for eksamen: 430 830 Oppgavesettet er på: 4 sider Vedlegg: ingen ilatte hjelpemidler Godkjente

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer