sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples

Størrelse: px
Begynne med side:

Download "sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples"

Transkript

1 0700 Foreløbig versjon! INF 0 mars 07 Fourier I -- En litt annen vinkling på stoffet i kapittel I dag: Sinus-funksjoner i D og D D diskret Fouriertransform (DFT) Introduksjon I/II Et gråtonebilde Typisk representasjon: Matrise av gråtoneintensiteter Fourier: En vektet sum av sinuser og cosinuser med ulik frekvens og orientering Mandag: Ekstraforelesning av Kristine holdes mandag 7 mars Litt mer om det matematiske fundamentet Et slik skifte av representasjon kalles ofte et «basisskifte» Neste uke: Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Vindusfunksjoner / 9 Introduksjon II/II / 9 Funksjonen sin(θ) Hvorfor skifte basis? sin(θ) svinger mellom og - når θ varierer mellom 0 og, og den svinger på samme måte når θ varierer mellom og osv (periodisk) Analyse av bilder Fjerne/dempe periodisk støy Kompresjon Analyse og design av lineære filtre (konvolusjonsteoremet) Egenskapsuttrekning (feks Tekstur) Rask implementasjon av (større) konvolusjonsfiltre Fjerning av periodisk støy, fig 6 i DIP Ut-bildet er resultatet av en konvolusjon, men det er vanskelig å designe filteret i bildedomenet / 9 «Diskret» sinus/cosinus i D / 9 Hva er forskjellen på sin(θ) og cos(θ)? sin( ui/n) starter på 0 og repeteres u ganger per N samples y(i) = A sin(πui/n + φ) N : antall sampler u : antall hele perioder φ : horisontal forskyvning (fase) A : Amplitude cos( ui/n) starter på og repeteres u ganger per N samples I dette eksemplet er A=, u=7, N=5 og =0 Bare startpunktet, dvs faseforskyvningen,, er forskjellig 5 / 9 6 / 9

2 Hva får vi om vi legger sammen sin og cos? Vertikal og horisontal komponent Asin(θ) + Acos(θ) = A sin(θ + Φ), der Introduksjon til sinus-funksjoner i D og Φ=atan(A,A) Vi ender altså opp med en sin-funksjon med samme frekvens, men endret amplitude og fase Vi kan også gå andre veien og si at enhver sinus-funksjon med gitt frekvens kan dannes ved å legge sammen en vektet sinog en vektet cos-funksjon med denne samme frekvensen A A Φ A Alternativ koding /representasjon av informasjonen (A, Φ, θ) er altså (A, A,θ) Sinusfunksjoner i bilder (D) A amplitude u vertikal frekvens v horisontal frekvens - faseforskyvning 7 / 9 A=50, u=0, v=0 8 / 9 Eksempler: Sum av D sinfunksjoner + = + = A=0, u=0, v=0 I eksemplene vises 0 som grått, -7 som sort, og 7 som hvitt A=50, u=0, v=0 A=00, u=0, v=5 A=00, u=5, v=5 Sum av to bilder med lik frekvens (og lik retning) gir nytt bilde med samme frekvens (og retning), jfr s 7 Merk: u og v er antall repetisjoner i bildet vertikalt og horisontalt 9 / 9 «Basis-bilder» 0 / 9 Alternativ basis Bildene Sort er 0, hvit er Ortogonal basis for alle x gråtonebilder med frekvensene u = 0,,,N- v = 0,,,N- Eksempel: = * + * + + 6* Alle digitale gråtonebilder av størrelse NxN kan representeres ved en vektet summasjon av disse NxN sinus- og cosinus-bildene (basisbilder/basisvektorer) Ved ikke-kvadratiske bilder: cos(π(ux/m+vy/n)) sin(-π(ux/m+vy/n)) / 9 / 9

3 Basisbilder - cosinus Basisbilder - sinus v v u u til v = N- til u = N- til v = N- til u = N- I illustrasjonen indikerer sort - og hvitt / 9 I illustrasjonen indikerer sort - og hvitt / 9 Symmetri i basisbildene Hvordan finne bidraget fra et gitt basisbilde? Vanlig basis med bare 0-ere og ett piksel lik cosinus sum ( x ) 55 (bakre del av bilen) u= 0 N-5 N- N- N- N- sinus sum ( x ) Bidraget finnes altså ved indreproduktet mellom bildet og basisbildet 5 / 9 u= 0 N-5 N- N- N- N- (antisymmetri i sinus-bildene) 6 / 9 Finne fase og amplitude Eksempel (symmetri) La R inneholde cosinus-bidragene og I inneholde sinus-bidragene Logaritmen til absoluttverdien til cosinus-bidragene Fasen til sinfunksjonen med frekvens u,v: Φ Amplituden til sinfunksjonen med frekvens u,v: Logaritmen til absoluttverdien til sinus-bidragene Husk fra s 7: (A, Φ, θ) <=> (A, A,θ) Første linjen i sinus-bidragene 7 / 9 8 / 9

4 Eksempel: Amplitude og fase (Log av) amplituden eller spekteret Forteller noe om hvilke frekvenser bildet inneholder (u,v) - fasen Visuelt ser fasebildet ut som støy, men fasen inneholder viktig informasjon Resultat som komplekst tall Letter håndtering ved å representere resultatet som et komplekst tall: cosinus-bidragene i realdelen og sinusbidragene i imaginærdelen La F beskrive bildet i den nye basisen F(u,v) = R(u,v) + ji(u,v), j Amplitude og fase kommer da ut som modulus og argument (lengde og vinkel i komplekse planet) 9 / 9 0 / 9 Egenskaper ved D DFT D diskret Fouriertransform (DFT) F(u,v) er periodisk: F(u,v) = F(u+N,v) = F(u,v+N) = F(u+N,v+N) Husk at ejθ = cos(θ) + j sin(θ), slik at vi ender opp sin/cos-basisen vi er vant med: Skal inverstranformen holde, må vi anta at bildet er periodisk: f(x,y) = f(x+n,y) = f(x,y+n) = f(x+n,y+n) Konjugert symmetri: Hvis f(x,y) er reell, er F(u,v) = conj( F(-u,-v) ) Altså er F(u,v) = F(-u,-v) Den inverse transformen: / 9 Egenskaper ved D DFT, forts F(0,0) er proporsjonal med middelverdien i bildet Om ikke annet er oppgitt, antar vi at N=M for enklere notasjon / 9 Framvisning av amplitudespekteret Siden F(u,v) er periodisk med periode N, er det vanlig å forskyve spekteret slik at origo (u=v=0) ligger midt i bildet Bytte kvadranter eller pre-multiplisere f(x,y) med (-)x+y Shift-teoremet: f(x-x 0,y-y0) F(u,v) e-j (ux0+vy0)/n D DFT er separabelt i to D DFT Absolutt nødvendig (sammen med FFT) for å beregningsmessig kunne transformere bilder av en viss størrelse / 9 f(x,y) f(x,y): bildedomenet 0008 F(u,v) F(u,v): frekvensdomenet F(u,v) kalles spekteret til f(x,y) (amplitudespekteret) ( Powerspekteret : F(u,v) ) / 9

5 Forts framvisning av spektere Eksempler Skalering av verdier: <- spekter Her: hvitt=0 Ofte stor dynamikk i F(u,v) (kan ha høye verdier) Vanlig å benytte logaritmisk skala g(u,v)=c* log( F(u,v) +), der C velges slik at man får gråtoner i mellom for eksempel 0 og 55 (8 bit) XXX 5 / 9 Eksempel skrå frekvens 6 / 9 Eksempel - diskontinuitet Ved å repetere bildet, ser vi tydelig kanter: 7 / 9 8 / 9 Eksempel diskontinuitet II Eksempel - vanlige objektformer 9 / 9 0 / 9

6 Eksempel vanlig bilde Eksempel - retningsdominant / 9 Eksempel - smal båndbredde / 9 Noen observasjoner Vanligvis størst bidrag/mest energi i spekteret for lave verdier av u,v Bidrag langs u- og v-aksen fordi bildet er implisitt periodisk og vi har diskontinuiteter langs kantene Linjestrukturer i gitt retning i bildedomenet har linjestruktur normalt på retningen i Fourierdomenet Lav oppløsning, lite detaljer Så å si all «energien» er i dette smale området/båndet (både vertikalt og horisontalt) / 9 / 9 Intuisjonsbygging rundt smal struktur i bildedomenet -> bred struktur i Fourier-domenet, og omvendt og noen observasjoner til Skarp kant: Tilsvarer sum av mange sinusfunksjoner Mange Fourier-koeffisienter er 0 Bredt bånd i Fourier-domenet Høyt utslag/indreprodukt på alle tre frekvensene Bilde Blurret kant: Fourierspekter Tilsvarer færre sinusoider Smalere bånd i Fourier-domenet Høyt utslag/indreprodukt kun på laveste frekvens Tommelfingerregler: Smal struktur i bildedomenet : Bred struktur i Fourierdomenet Bred struktur i bildedomenet: Smal struktur i Fourier-domenet Linjestruktur i retning i bildedomenet: Linjestruktur i retning ±90 (normalt på) i Fourier-domenet 5 / 9 6 / 9

7 Implementasjon av DFT Fourier-transform i Matlab/Octave Beregning av F(u,v) for én u,v: O(N) Beregning for hele bildet: N N F(u,v): O(N) Finnes en algoritme for rask beregning, D FFT (Fast Fouriertransform) Benytter at Fourier-transformen er separabel i to D transformer Bruker bilder (eller delbilder) med størrelse k (k er heltall) Har orden O(N log N) 7 / 9 Oppsummering Sinus-funksjoner frekvens/periode, amplitude og fase dekomponere Asin(θ+Φ) i sin- og cos-komponent D og D Diskret Fourier-transform bildet beskrevet med cos/sin-basisbilder kompleks representasjon cos- og sin-ledd som reell- og imaginær-komponent implisitt periodisitet utslag i diskontinuitet -> ekstra frekvenser fremvisning av spekteret F(u,v) tommelfingerregler 9 / 9 F = fft(f); f = ifft(f); % Gjør en D DFT-transform % og den inverse transformen F_r = real(f); F_i = imag(f); % Realdelen, altså cosinus-basis-bidragene % Imaginærdelen, altså sinus-basis-bidragene F_s = abs(f); % Fourier-spekteret F_p = angle(f); % Fasen F_r(u+,v+); % Gir cosinus-bidragene for frekvens u,v F_r(,); % Gir DC-komponenten fftshift og ifftshift: Flytter kvadranter slik at nullfrekvensen er i midten av bildet, samt omvendt imagesc( fftshift(log(f_s)) + ) ); «+»: Kjapp og gæli kompresjon av fargedynamikken, XXX mulig bytt til [0 max(log(f_s(:))] 8 / 9

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos. Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall

Detaljer

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( ) INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit

Detaljer

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens Introduksjon/motivasjon I INF2310 Digital bildebehandling FORELESNING 8 FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe I dag: Grunnlaget Grunnlaget og intuisjonen i Fourier-analyse

Detaljer

INF mars 2017 Diskret Fouriertransform del II

INF mars 2017 Diskret Fouriertransform del II INF230 29. mars 207 Diskret Fouriertransform del II Kjapp repetisjon Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Bruk av vinduer 207.03.29 INF230 / 40 Repetisjon Basis-bilder Sort er 0,

Detaljer

Basisbilder - cosinus v Bildene

Basisbilder - cosinus v Bildene Repetisjon Basis-bilder 737 Midlertidig versjon! INF 3 9 mars 7 Diskret Fouriertransform del II Ortogonal basis for alle 4x4 gråtonebilder Kjapp repetisjon Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet

Detaljer

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM I. Andreas Kleppe

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM I. Andreas Kleppe INF Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM I Andreas Kleppe I går: Det matematiske fundamentet I dag: Grunnlaget Grunnlaget og intuisjonen i Fourier-analyse D diskret Fourier-transform

Detaljer

Eksempel: Ideelt lavpassfilter

Eksempel: Ideelt lavpassfilter Filterdesign i frekvensdomenet Lavpassfiltre Romlig representasjon av ideelt lavpassfilter Slipper bare gjennom lave frekvenser (mindre enn en grense D 0 som kalles filterets cut-off-frekvens) I signalbehandling

Detaljer

Repetisjon: Standardbasis

Repetisjon: Standardbasis INF230 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II Ole Marius Hoel Rindal, foiler av Andreas Kleppe Kort repetisjon av forrige mandagsforelesning Konvolusjonsteoremet og bruk av dette: Design

Detaljer

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II. Andreas Kleppe

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II. Andreas Kleppe INF230 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II Andreas Kleppe Kort repetisjon av forrige mandagsforelesning Konvolusjonsteoremet og bruk av dette: Design av konvolusjonsfiltre med bestemte

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

Bildetransformer Lars Aurdal

Bildetransformer Lars Aurdal Bildetransformer Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Lars Aurdal. Forsvarets forskningsinstitutt (FFI), Kjeller. 5 ansatte. Ca. 3 forskere og ingeniører. Tverrfaglig institutt med vekt på arbeide

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF23 Digital bildebehandling Eksamensdag : Fredag 7. juni 29 Tid for eksamen : 9: 3: (4 timer) Løsningsskissen er på : 8 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Løsningsforslaget

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Mandag 1. juni 2015 Tid for eksamen: 14:30 18:30 Oppgavesettett er på: 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Filter-egenskaper INF Fritz Albregtsen

Filter-egenskaper INF Fritz Albregtsen Filter-egenskaper INF 60-04.03.2002 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 2: - Lineær filtrering - Gradient-detektorer - Laplace-operatorer Linearitet H [af (x, y) + bf 2 (x, y)] ah [f (x, y)]

Detaljer

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler. Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF230 Digital bildebehandling Eksamensdag : Onsdag 6. juni 202 Tid for eksamen : 09:00 3:00 Oppgavesettet er på : 6 sider Vedlegg

Detaljer

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004 Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : :3 8:3 Løsningsforslaget er på : 9

Detaljer

3UDNWLVN DQYHQGHOVH DY ')7

3UDNWLVN DQYHQGHOVH DY ')7 TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2

TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 07.03.2013 I dette oppgavesettet skal vi se på ulike måter fouriertransformasjonen anvendes i praksis. Fokus er på støyfjerning i signaler. I tillegg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Filtrering i bildedomenet. Middelverdifilter (lavpass) Lavpassfiltre. INF2310 Digital bildebehandling FORELESNING 15 REPETISJON

Filtrering i bildedomenet. Middelverdifilter (lavpass) Lavpassfiltre. INF2310 Digital bildebehandling FORELESNING 15 REPETISJON Filtrering i bildedomenet INF3 Digital bildebehandling FORELESNING 5 REPETISJON Andreas Kleppe Filtrering i bildedomenet D diskret Fourier-transform (D DFT) Kompresjon og koding Morfologiske operasjoner

Detaljer

Eksamen Løsningsforslag

Eksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Eksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Torsdag 1. juni 2017 Tidspunkt for eksamen:

Detaljer

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim FYS213 Svingninger og bølger, Obligatorisk oppgave C Nicolai Kristen Solheim FYS213 Svingninger og bølger Ukeoppgave, sett C Nicolai Kristen Solheim Ukeoppgave, sett C Oppgavetype 1 a) Læreboken beskriver

Detaljer

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data. Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering

Detaljer

Uke 10: Diskret Fourier Transform, II

Uke 10: Diskret Fourier Transform, II Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Løsningsforslaget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF230 Digital bildebehandling Forelesning 5 Repetisjon Andreas Kleppe Filtrering i bildedomenet 2D diskret Fourier-transform (2D DFT) Kompresjon og koding Morfologiske operasjoner på binære bilder F5

Detaljer

0.1 Morlet wavelets i FYS2130-notasjon (v )

0.1 Morlet wavelets i FYS2130-notasjon (v ) 0.1 Morlet wavelets i FYS2130-notasjon (v 28.04.11) I wavelet-formalismen opererer vi ofte med en moder-wavelet som trekkes ut ved hjelp av en skaleringsfaktor for å lage såkalt wavelet-døtre. Dette er

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019 Transformanalyse Jan Egil Kirkebø Universitetet i Oslo janki@ifi.uio.no 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer

Detaljer

INF Kap og i DIP

INF Kap og i DIP INF 30 7.0.009 Kap..4.4 og.6.5 i DIP Anne Solberg Geometriske operasjoner Affine transformer Interpolasjon Samregistrering av bilder Geometriske operasjoner Endrer på pikslenes posisjoner o steg:. Finn

Detaljer

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006 INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005 INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Forelesening INF / Spektre - Fourier analyse

Forelesening INF / Spektre - Fourier analyse Forelesening INF 24 27/ - 25 Spektre - Fourier analyse Spektre - Fourier analyse og syntese Tosidig spektrum Beat notes Amplitudemodulasjon Periodiske og ikke-periodiske signaler Fourier rekker - analyse

Detaljer

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen Dagens temaer Time 6: Analyse i frekvensdomenet Andreas Austeng@ifi.uio.no, INF3470 Institutt for informatikk, Universitetet i Oslo Oktober 2009 Fra forrige gang Frekvensrespons funksjonen Fourier rekker

Detaljer

Repetisjon: LTI-systemer

Repetisjon: LTI-systemer Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state

Detaljer

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling - iskret Fourier-Transform FT INF 3 igital bildebehandling FILTRERING I FREKVENS-OMÈNET II Konolusjons-teoremet Lapass- øypass- og Båndpass-filter esign a filtre i frekens-doménet Rask implementasjon a

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING

SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING SEGMENTERING IN 106, V-2001 Segmentering er en prosess som deler opp bildet i meningsfulle regioner. I det enkleste tilfelle har vi bare to typer regioner BILDE-SEGMENTERING DEL I Forgrunn Bakgrunn Problemet

Detaljer

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum SPEKTALANALYSATORER Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum Vi har ofte nytte av å kunne veksle mellom de to grafiske presentasjonsmåtene for et elektrisk signal, tidsfunksjon

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Ole Marius Hoel Rindal Gråtonetrasformasjoner Histogramtransformasjoner 2D diskret Fourier-transform (2D DFT Filtrering i Fourierdomenet Kompresjon og koding Segmentering

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 2/3

TMA Kræsjkurs i Matlab. Oppgavesett 2/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 2/3 28.02.2013 Oppgave 0: Bruk av fftshift og ifftshift Når du bruker fft i Matlab flyttes frekvensene over midten av spekteret, slik at får du ut frekvensdata

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 5, 2018 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 160 Digital bildebehandling Eksamensdag: Mandag 13. mai - mandag 27. mai 2002 Tid for eksamen: 13. mai 2002 kl 09:00 27. mai

Detaljer

Idag. Hvis bildet f(x,y) er reelt og symmetrisk, vil Fourier transformen bestå av reelle koeffisienter korresponderende til cosinus leddene.

Idag. Hvis bildet f(x,y) er reelt og symmetrisk, vil Fourier transformen bestå av reelle koeffisienter korresponderende til cosinus leddene. Slide Slide Idag Cosinus transform Cosinus transform Sinus transform Hvis bildet f(,y) er reelt og symmetrisk, vil Fourier transformen bestå av reelle koeffisienter korresponderende til cosinus leddene.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall 4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen Frekvensene i DFT Forelesning 3. mai 4 Pensum i boken: fra 3-5.3 til 3-8.4, samt 3-9. Delkapitlene 3-8.5, 3-8.6 og 3-8.7 er nyttig selvstudium. Oversikt Spektralanalyse av signaler med endelig lengde Spektralanalyse

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer

STE 6219 Digital signalbehandling Løsningsforslag

STE 6219 Digital signalbehandling Løsningsforslag HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP)

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP) 25. januar 2017 Ukens temaer (Kap 2.3-2.4 med drypp fra kap. 4. i DIP) Romlig oppløsning Sampling av bilder Kvantisering av pikselintensiteter 1 / 27 Sampling av bilder Naturen er kontinuerlig (0,0) j

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Uke 9: Diskret Fourier Transform, I

Uke 9: Diskret Fourier Transform, I Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling

Detaljer

z = a + jb Mål Komplekse tall: Sum og produkt Komplekse tall

z = a + jb Mål Komplekse tall: Sum og produkt Komplekse tall Mål IN3190/4190 Digital signalbehandling Andreas Austeng og Stine Hverven (INF3470/4470, H18). Repetisjon av komplekse tall og trigonometri Beherske komplekse tall. Beherske trigonometriske funksjoner.

Detaljer

Repetisjon: Spektrum for en sum av sinusoider

Repetisjon: Spektrum for en sum av sinusoider Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne

Detaljer

Oppgave 3c Konvolusjonsteoremet: f Λ g, F G og f g, F Λ G F rste del sier at konvolusjon i det romlige domenet (f Λ g) er det samme som pixelvis multi

Oppgave 3c Konvolusjonsteoremet: f Λ g, F G og f g, F Λ G F rste del sier at konvolusjon i det romlige domenet (f Λ g) er det samme som pixelvis multi Oppgave 3a 1 P N 1 N x=0 P N 1 y=0 f (x; y) e j2ß(ux+vy)=n Oppgave 3b 2D diskret konvolusjon for x =0to M for y =0to N h(x; y) =0 for m =0to M for n =0to N h(x; y)+ = f (m; n) Λ g(x m; y n) h(x; y) =h(x;

Detaljer

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjons-eksempel. INF2310 Digital bildebehandling

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjons-eksempel. INF2310 Digital bildebehandling Filtrering i bildedomenet INF2310 Digital bildebehandling FORELESNING 16 REPETISJON DEL I Andreas Kleppe Filtrering i bildedomenet 2D diskret Fourier-transform (2D DFT) Kompresjon og koding Morfologiske

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 230 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen 05.02.203 INF230 Temaer i dag Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder

Detaljer

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd.

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd. Foreleser: INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd Martin Giese Kontakt: martingi@ifi.uio.no, 22852737 Det blir en del stoff per forelesning Er det matematikk eller praktisk regning?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet

Detaljer

Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover.

Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lyd Hva er lyd? Sinuser, frekvenser, tidssignaler Hvordan representere lydsignaler matematisk? Litt praktisk informasjon Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lydeksemplene

Detaljer