Løsningsforslag: Oppgavesett kap. 4 (1 av 2) GEF2200

Størrelse: px
Begynne med side:

Download "Løsningsforslag: Oppgavesett kap. 4 (1 av 2) GEF2200"

Transkript

1 Løsningsforslag: Oppgavesett kap. 4 (1 av 2) GEF2200 s.m.blichner@geo.uio.no Oppgave 1: Bølgelengder og bølgetall (Vi går IKKE gjennom disse på gruppetimen) a) Hva er sammenhengen mellom bølgelengde og bølgetall? Disse er omvendt proporsjonale. ν = 1 λ Figur 1 viser emisjonsspektra fra to ulike legemer. Spekter A i Figur 1(a) viser emittert intensitet som funksjon av bølgelengde, λ, mens spekter B i Figur 1(b) viser emittert intensitet som funksjon av bølgetall, ν. b) Se på x-aksen i Figur 1(a). Må vi gå mot høyre eller til venstre for å finne mer energirik, kortbølget stråling? Bølgelengde langs x-aksen: jo MINDRE bølgelengde, jo mer energirik strålig. Vi må altså gå mot VENSTRE på x-aksen for å finne mer energirik stråling. c) Se på x-aksen i Figur 1(b). Må vi gå mot høyre eller til venstre for å finne mer energirik, kortbølget stråling? Bølgetall langs x-aksen: jo STØRRE bølgetall, jo mer energirik strålig. Vi må altså gå mot HØYRE på x-aksen for å finne mer energirik stråling. 1

2 (a) Spekter A (b) Spekter B Figure 1: Emisjonsspektra fra to ulike legemer e) Spekteret i Figur 1(a) illustrerer intensiteten som stråler ut fra solen, mens spekteret i Figur 1(b) illustrerer intensiteten som stråler ut fra jorden (Begge er noe forenklet). Det er vanlig å benytte bølgelengde oppgitt i µm langs x-aksen for solspekteret, og bølgetall oppgitt i cm 1 langs x-aksen for jordspekteret. Hvorfor tror du det er slik? (Hint: Se figur 4.6 i læreboken) Fra Figur 4.6 i læreboken ser vi at kurven flates ut når temperaturen til legemet som emitterer strålingen avtar. Selv om vi tar hensyn til jordens atmosfære vil jordens temperatur fortsatt ligge under 300 K, hvilket vil tilsvare en veldig flat og langstrakt kurve dersom vi hadde plottet den som funksjon av bølgelengde. Det hadde derfor vært vanskelig å se endringene i intensitet som funksjon av endret bølgelengde i en slik figur. Det å endre til bølgetall langs x-aksen har litt av den 2

3 samme effekten som når man gjør aksen logaritmisk. Dette ser man tydeligere i Figur 4.31 i læreboken. Her ser vi at aksen moses sammen for lengre bølgelengder, hvilket gjør det lettere for oss å illustrere endringene i intensiteten i en figur. d) Hvilke typer stråling emitterer henholdsvis solen og jorden mest av? Solen: emitterer mest VIS, men også mye UV og NIR. Ser at toppen er ved ca 0,5 µm, altså blått/grønt, synlig lys. Jorden: emitterer IR. Oppgave 2: Radians og irradians a) Hva er en romvinkel? Romvinkel = Arealet til projeksjonen av et legeme ned på en enhetskuleflate. Det totale arealet av en enhetskuleflate (altså et kuleskall med radius 1) er A = 4πr 2 = 4π1 2 = 4π. Ser vi på en hel sfære får vi altså romvinkelen 4π, mens en halv sfære (en hemisfære) tilsvarer 2π. Enheten er steradian (sr). Fra Figur 2 ser vi at to objekter med ulik størrelse og fasong kan gi samme romvinkel dersom de er i ulik avstand fra observatøren og enhetskuleskallet. Figure 2: Romvinkelen ω (grått område). Begge objektene gir den samme romvinkelen, til tross for ulik strrelse og fasong. 3

4 b) Definer følgende størrelser og oppgi tilhørende enheter: Monokromatisk intensitet, I λ, sier hvor mye strålingsenergi de i bølgelengdeintervallet dλ fra romvinkelen dω som passerer normalt på arealet dacosθ i løpet av tiden dt. Matematisk er dette gitt som I λ = Enheten blir Wm 2 µm 1 sr 1. d 4 E da cos θdtdλdω Intensitet (radians), I, får vi ved å integrere den monokromatiske intensiteten over det bølgelengdeintervallet vi er interesserte i. Enheten blir Wm 2 sr 1. I = λ2 λ 1 I λ dλ Monokromatisk flukstetthet, F λ, sier hvor mye strålingsenergi de i bølgelengdeintervallet dλ som passerer normalt på arealet da i løpet av tiden dt, men fra flere romvinkler. Dette blir det samme som å integrere opp de monokromatiske intensitetene for alle romvinklene vi vil se på. Matematisk får vi at Enheten blir Wm 2 µm 1. d3 E F λ = dadtdλ = I λ cos θdω ω Flukstetthet (irradians), I, får vi ved å integrere den monokromatiske flukstettheten over det bølgelengdeintervallet vi er interesserte i. Enheten blir Wm 2. F = 4 λ2 λ 1 F λ dλ

5 c) Se på Figur 4.3 i læreboken og vis at en liten endring i romvinkelen ω er gitt som dω = sin θdθdφ Endret romvinkel, dω, kan skyldes endret senitvinkel, dθ, eller endret azimutvinkel, dφ. Figur 3 illustrerer dette. dω kan tilnærmes som en firkant med sidene a og b, som finnes ved å bruke buelegndeformelen Dette gir oss at vinkel = buelengde radius dθ = b 1 Og at dφ = a x Løser disse mhp a og b og multipliserer for å finne dω. For å finne x bruker man at sin θ = x. Dermed får vi at 1 dω = a b = sin θdφ dθ dω = sin θdθdφ d) Oppgave 4.14 i boka Vi finner irradiansen ved å integrere monokromatisk irradians over alle bølgelengder. I dette tilfellet kan vi uttrykke integralet som en sum: F = F λ dλ λ = i F λ,i λ i = (1, 0 (0, 50 0, 35) + 0, 5 (0, 70 0, 50) + 0, 2 (1, 00 0, 70)) Wm 2 = 0, 31Wm 2 5

6 Figure 3: endring i romvinkelen ω som konsekvens av endret senitvinkel, θ, eller endret azimutvinkel, φ. e) Hva betyr isotropisk stråling? Isotropisk stråling betyr at intensiteten på strålingen ikke varierer med romvinkelen. Den er lik uansett hvilken retning vi ser på. f) En målestasjon som måler monokromatisk flukstetthet, F λ er plassert i et område med fjell på alle kanter slik at horisonten ikke ligger ved senitvinkelen 90, men ved 80 (se Figur 4). Dette gjør at himmelen ikke utgjør en romvinkel på 2π som vist i eksempel 4.1 i boken, men litt mindre. Stasjonen blir bestrålt med isotropisk, monokromatisk intensitet, I λ. Beregn den monokromatiske flukstettheten F λ som målestasjonen mottar. Figure 4: målestasjon som ligger omkranset av fjell på alle kanter. Vinkelen på 10 gir oss en horisont med senitvinkel på 80, altså 4π/9. Vi får derfor at 6

7 2π F λ = 0 = I λ 2π 4π/9 0 4π/9 0 I λ cos θ sin θdθdφ cos θ sin θdθ Substituerersli at integrasjonen bli enklere. u = cos θ du = sin θdθ. Grensene endres også: cos ( ) 4π 9 0, 174, cos 0 = 1 g) F λ = I λ 2π = I λ 2π 1 2 = 0, 97πI λ 0,174 1 udu ( (0, 174) ) ) Stråling sendes ut fra et legeme. Hvordan har intensiteten og flukstettheten endret seg når vi er i avstanden d unna legemet? Knytt the inverse square law inn i forklaringen. Med mindre strålen ikke har blitt svekket av f.eks. absorbsjon eller spredning vil intensiteten forbli den samme. Dette ser vi fra Figur 2. Selv om avstanden og kuleskallet vil øke desto lenger unne kilden vi kommer, vil også arealet romvinkelen utgjør på kuleskallet øke tilsvarende mye. Flukstettheten, derimot, sier hvor mye energi som transporteres gjennom kuleskallet per arealenhet. Siden kuleskallet øker med kvadratet av avstanden til kilden (A kule = 4πr 2 ), vil energi per areal følgelig avta med kvadratet av avstanden til kilden. Dette kaller vi the inverse square law, F d 2 Oppgave 3: Sortlegemestråling a) (fra eksamen 2007) Hva er et sortlegeme? Hvilke(t) av disse kan tilnærmes som sortlegeme(r): jorden 7

8 solen atmosfæren Et sortlegeme er et legeme som absorberer all stråling som treffer det. Ikke noe av strålingen vil reflekteres eller transmitteres. Ingen av disse legemene er perfekte sorte legemer, men både jorden og solen kan tilnærmes som det. Atmosfæren, deriomot, transmitterer nesten all kortbølget stråling som kommer fra solen, og vi kan følgelig ikke tilnærme atmosfæren som et sort legeme. b) Skriv opp følgende lover/funksjoner og fortell kort hva de beskriver og hvilke matematiske sammenhenger det er mellom dem: c) Plancks funksjon: Likning (4.10) i boken. Beregner den monokromatiske intensiteten (B λ er det samme som I λ, men for et sort legeme) som emitteres fra et sort legeme med temperaturen T. Plotter man denne mot bølgelengden λ får man emisjonsspekteret til det sorte legemet som vist i Figur 4.6 i boken. Wiens lov: Likning (4.11) i boken. Gir oss bølgelengden λ m som det emitteres mest I λ av. Dette vil være toppunktet på kurven i Figur 4.6 i boken. Finner denne ved å derivere Plancks funksjon mhp på λ, sette uttrykket lik null, for så å løse det mhp λ. Desto høyere temperatur, desto kortere er λ m. Stefan Boltzmanns lov: Likning (4.12) i boken. Gir oss flukstettheten emittert fra et sort legeme med temperaturen T. Denne får vi ved å integrere Planckfunksjonen over alle romvinkler (for å finne den monokromatiske fluktettheten) og over alle bølgelengder (for å finne den totale flukstettheten). Flukstettheten til solstrålingen som treffer toppen av jordens atmosfære er gitt ved solarkonstanten F s = 1368 Wm 2. Jordens radius er gitt ved R E = 6, m. 1. Hvor mye energi mottar jorden fra solen hvert sekund, dersom man ser bort ifra jordens albedo? 2. Hvor stor irradians må jorden emittere for at den skal være i strålingslikevekt dersom den mottar energien du beregnet under forrige punkt? (Her ser vi bort ifra jordens albedo) 3. Jordens sortlegemetemperatur er -18 C. Vis at den planetære albedoen er 0,3. 8

9 1) 2) 4. Hvordan kan det ha seg at gjennomsnittstemperaturen ved bakken er 15 C, når sortlegemetemperaturen bare er -18 C? E = A F da = F s A tverrsnitt jord = 1368Wm 2 π (6, m ) 2 = 1, W 3) F E 4πR 2 E = F s πr 2 E F E = F s 4 F E = 342 Wm 2 4) (1 A) F s πr 2 E = σt 4 4πR 2 E A = 1 4σT 4 A = 0, 3 Drivhuseffekten. Noe av den emitterte jordstrålingen absorberes og reemitteres av atmosfæren. 1 Oppgave 4 a) Definer begrepene monokomatisk... F s 9

10 Monokromatisk emissivitet: Hvor mye monokromatisk intensitet et legeme emitterer sett i forhold til hvor mye monokromatisk intensitet et sort legeme med samme temperatur ville ha emittert. ɛ λ = I λ(emittert) B λ (T ) Monokromatisk absorptivitet: Forholdet mellom hvor mye monokromatisk intensitet som blir absortbert av et legeme og hvor mye monokromatisk intensitet som kommer inn til legemet. α λ = I λ(absorbert) I λ (inn) Monokromatisk reflektivitet: Forholdet mellom hvor mye monokromatisk intensitet som blir reflektert av et legeme og hvor mye monokromatisk intensitet som kommer inn til legemet. R λ = I λ(reflektert) I λ (inn) Monokromatisk transmissivitet: Forholdet mellom hvor mye monokromatisk intensitet som blir transmittert gjennom et legeme og hvor mye monokromatisk intensitet som kommer inn til legemet. T λ = I λ(transmittert) I λ (inn) b) Oppgave 4.15 Siden flaten er ugjennomsiktig vil det ikke transmitteres stråling, og dermed vil alt som ikke blir absorbert bli reflektert. Reflektansene blir følgelig R λ = 1 for strålingen med λ < 0, 70 µm og R λ = 0 for strålingen med λ > 0, 70 µm. Dermed får vi at den reflekterte flukstettheten bare kommer fra bølgelengder med λ < 0, 70 µm. Den reflekterte flukstettheten blir F reflektert = 1 (1, 0 (0, 50 0, 35) + 0, 5 (0, 70 0, 50)) Wm 2 F reflektert = 0, 25 Wm 2 10

11 c) Et ikke-sort legeme (A) antas å stråle med samme emissivitet ved alle bølgelengder. Vi antar at dette legemet stråler med samme irradians/flukstetthet, F, som et sort legeme (B). Hvilket av de to legemene (A eller B) har den høyeste temperaturen? Begrunn svaret. Vi har at Siden irradiansene er like før vi at F A = ɛ A σt 4 A F B = σt 4 B F A = F B ɛ A σt 4 A = σt 4 B T A = T B 1 4 ɛa Vi har at ɛ A < 1 4 ɛ A < ɛa > 1, hvilket gir oss at T A > T B. d) På toppen av et ikke-reflekterende, absorberende atmosfærisk lag er innstrålingen I λ,1 = 5 Wm 2 µm 1 sr 1. I λ,2 = 3 Wm 2 µm 1 sr 1 slipper gjennom laget. Hva er transmissiviteten (T λ ) og absorptiviteten (α λ ) for dette laget? e) T λ = 3 Wm 2 µm 1 sr 1 5 Wm 2 = 0, 6 µm 1 sr 1 α λ = 1 0, 6 = 0, 4 Hva sier Kirchhoffs lov, og når gjelder den? Kirchhoffs lov sier at den monokromatiske emissiviteten er lik den monokromatiske absorptiviten, ɛ λ = α λ, dersom vi har et legeme i termodynamisk likevekt. Legg merke til at: 1. ɛ λ og α λ ikke trenger ikke å være de samme for alle bølgelengder, men for en gitt bølgelengde er de like. 11

12 2. Kirchhoffs lov gjelder ikke bare for sorte legemer. ɛ λ og α λ vil være 1 for sorte legemer og mellom 0 og 1 for grå legemer. 3. Selv om gasser i atmosfæren ikke trenger å være i termodynamisk likevekt (siden de kanskje emitterer mer enn de absorerer, eller motsatt ikke strålingslikevekt ikke termodynamisk likevekt) kan de tilnærmet være det dersom energioverføringene pga emisjon/absorbsjon er mye mindre enn energioverføringene pga kollisjoner. Da sier vi at de er i lokal termodynamisk likevekt (LTE), og vi kan bruke Kirchhoffs lov. Oppgave 5 a) Blått lys med bølgelengde λ = 0, 5 µm spres av luftmolekyler med radius 10 4 µm. 1. Hva slags type spredning er det snakk om? 2. Hvilke av figurene i Figur 4.12 i boken stemmer best overens med denne typen spredning? 3. Hvordan endres spredningseffektiviteten K λ med bølgelengden i dette spredningsregimet? 1. Beregner størrelsesparameteren x = 2πr λ = 2π10 4 µm 0, 5 µm = 1, Vi ser at x << 1, men den er ikke så liten at den blir neglisjerbar. Dette tilsvarer Rayleighspredning. 2. Se Figur 4.12a i boken. Her ser vi at med λ = 0, 5 µm og r = 10 4 µm vil det spres like mye fremover som bakover, men litt mindre på sidene. Dette skjer når blått lys treffer luftmolekyler. 3. For Rayleighspredning har vi at K λ λ 4, hvilket betyr at spredningeffektiviteten øker kraftig når bølgelengden avtar. Det betyr at blått lys spres mye mer enn rødt lys av luftmolekylene. 12

13 b) Forklar disse fenomenene: Blå himmel Rød solnedgang Blå himmel: Av det synlige lyset som solen sender ut vil luftmolekylenes spredningsekkeftivitet styres ut ifra K λ λ 4, hvilket betyr at det lilla lyset spres mest, mens det røde spres minst. Fra Figur?? ser vi da at en person som står på bakken vil motta lilla lys fra nesten alle luftmolekylene, mens han bare vil motta rødt lys fra luftmolekylene som ligger på linje med solen. Grunnen til at himmelen derimot ser blå ut, og ikke lilla kommer av at solen emitterer mye mer blått lys enn lilla lys. Rød solnedgang: Når solen nærmer seg horisonten skal lyset passere mye atmosfære før de treffer personen i Figur??. Siden det blå lyset spres til alle kanter av alle luftmolekylene på veien vil det nesten ikke være noe blått lys igjen når lyset kommer til personen. Det røde lyset, derimot, spres mer rett frem, og vil derfor rekke frem til personen. Oppgave 6 a) Hva er broadening, og hvorfor er dette interessant med tanke på klimaproblemet? Fra kvantefysikken vet vi at når molekyler/atomer skrifter energitilstand emitteres/absorberes energi tilsvarende energiforskjellen mellom energinivåene. Disse nivåene er kvantisierte, hvilket betyr at bølgelengden til den emitterte/absorberte energien også bare kan ha diskrete verdier. Plotter vi denne absorbsjonen/emisjonen som funksjon av bølgelengden vil vi bare få linjer ved bølgelengdene hvor vi har absorbsjon og verdien null ellers. Men dersom atomene/molekylene mottar eller avgir energi (pga kollisjoner) i det de absorberer/emitterer stråling, eller holder en viss hastighet relativt til kilden den mottar stråling fra, vil atomene/molekylene kunne kunne skrifte energitilstand selv om energien i strålingen egentlig ikke tilsvarer energiovergangen. Da vil plottet av absorpsjonslinjene ikke bare se ut som rette linjer, med de vil bre seg utover og få en klokkeform (se figur 4.21 i boken). Selv om det f.eks er så mye CO 2 i atmosfæren at den absorberer all energi som blir emittert fra jorden med λ = 15 µm (dvs at k λ=15µm = 1), vil det fortsatt ha noe å si om vi slipper ut mer CO 2. Dette fordi mer CO 2 også kan absorbere de bølgelengdene som ligger like ved 15 µm. 13

14 b) Hvilke typer broadening har vi, og hvor i atmosfæren dominerer de ulike typene? Doppler broadening: dominerer over 50 km (altså over stratosfæren). Mottakeren av strålingen beveger seg med en så stor hastighet i forhold til kilden at strålingen oppfattes som mer kortbølget (beveger seg mot kliden) eller mer langbølget (beveger seg fra kilden) enn det den egentlig er. (Blå kurve i Figur 4.21 i boken) Pressure broadening: dominerer under 20 km (altså i troposfæren). Mottakeren av strålingen kolliderer i det den mottar strålingsenergi. Dersom denne strålingsenergien er litt for lav eller litt for høy til å utføre en eksitasjon kan eksitasjonen likevel utføres dersom mottakeren avgir/får kollisjonsenergi som tilsvarer differansen mellom strålingsenergien og det som skal til for å utføre eksitasjonen. (Rød kurve i Figur 4.21 i boken) 14

Løsningsforslag nr.1 - GEF2200

Løsningsforslag nr.1 - GEF2200 Løsningsforslag nr.1 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1: Bølgelengder og bølgetall a) Jo større bølgelengde, jo lavere bølgetall. b) ν = 1 λ Tabell 1: Oversikt over hvor skillene går mellom ulike

Detaljer

Oppgavesett kap. 4 (1 av 2) GEF2200

Oppgavesett kap. 4 (1 av 2) GEF2200 Oppgavesett kap. 4 (1 av 2) GEF2200 s.m.blichner@geo.uio.no Oppgave 1: Bølgelengder og bølgetall (Vi går IKKE gjennom disse på gruppetimen) Hva er sammenhengen mellom bølgelengde og bølgetall? Figur 1

Detaljer

Løsningsforslag nr.2 - GEF2200

Løsningsforslag nr.2 - GEF2200 Løsningsforslag nr.2 - GEF2200 i.h.h.karset@geo.uio.no Oppgave a) Monokromatisk emissivitet: Hvor mye monokromatisk intensitet et legeme emitterer sett i forhold til hvor mye monokromatisk intensitet et

Detaljer

Oppgavesett nr.2 - GEF2200

Oppgavesett nr.2 - GEF2200 Oppgavesett nr.2 - GEF2200 i.h.h.karset@geo.uio.no 1 Oppgave 1 Definer begrepene monokomatisk... emissivitet absorptivitet reflektivitet transmissivitet Oppgave 4.15 Et ikke-sort legeme (A) antas å stråle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1100 Eksamensdag: 11. oktober Tid for eksamen: 15.00-18.00 Oppgavesettet er på sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Strålingsintensitet: Retningsbestemt Energifluks i form av stråling. Benevning: Wm -2 sr - 1 nm -1

Strålingsintensitet: Retningsbestemt Energifluks i form av stråling. Benevning: Wm -2 sr - 1 nm -1 Oppgave 1. a. Forklar hva vi mener med størrelsene monokromatisk strålingsintensitet (også kalt radians, på engelsk: Intensity) og monokromatisk flukstetthet (også kalt irradians, på engelsk: flux density).

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 4. Juni 2015 Tid for eksamen: 14.30-17.30 Oppgavesettet er på X sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram

Detaljer

Oppgavesett kap. 4 (2 av 2) GEF2200

Oppgavesett kap. 4 (2 av 2) GEF2200 Oppgavesett kap. 4 (2 av 2) GEF2200 s.m.blichner@geo.uio.no Oppgave 1 a) Læreboken bruker to ulike uttrykk for å beskrive hvordan den monokromatiske intensiteten til en stråle svekkes over strekningen

Detaljer

a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren.

a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren. Oppgave 1 a. Tegn en skisse over temperaturfordelingen med høyden i atmosfæren. Hvorfor er temperaturfordelingen som den er mellom ca. 12 og ca. 50 km? Svar: Her finner vi ozonlaget. Ozon (O 3 ) absorberer

Detaljer

Kapittel 8. Varmestråling

Kapittel 8. Varmestråling Kapittel 8 Varmestråling I dette kapitlet vil det bli beskrevet hvordan energi transporteres fra et objekt til et annet via varmestråling. I figur 8.1 er det vist hvordan varmestråling fra en brann kan

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Navn : _FASIT UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: GEF 1000 Klimasystemet Eksamensdag: Tirsdag 19. oktober 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

GEF2200 Atmosfærefysikk 2012

GEF2200 Atmosfærefysikk 2012 GEF2200 Atmosfærefysikk 2012 Løsningsforslag til oppgavesett 09 A.42.R Exam 2005 4 The atmosphere has an absorbtivity a ir for infrared radiation, and a sol for shortwave radiation. The solar irradiance

Detaljer

FYS1010-eksamen Løsningsforslag

FYS1010-eksamen Løsningsforslag FYS1010-eksamen 2017. Løsningsforslag Oppgave 1 a) En drivhusgass absorberer varmestråling (infrarødt) fra jorda. De viktigste drivhusgassene er: Vanndamp, CO 2 og metan (CH 4 ) Når mengden av en drivhusgass

Detaljer

LØSNINGSFORSLAG, KAPITTEL 3

LØSNINGSFORSLAG, KAPITTEL 3 LØSNINGSFORSLAG, KAPITTEL 3 REVIEW QUESTIONS: 1 Hvordan påvirker absorpsjon og spredning i atmosfæren hvor mye sollys som når ned til bakken? Når solstråling treffer et molekyl eller en partikkel skjer

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1 FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

Løsningsforslag til øving 9

Løsningsforslag til øving 9 NTNU Institutt for Fysikk Løsningsforslag til øving 9 FY0001 Brukerkurs i fysikk Oppgave 1 a) Etter første refleksjon blir vinklene (i forhold til positiv x-retning) henholdsvis 135 og 157, 5, og etter

Detaljer

Chapter 2. The global energy balance

Chapter 2. The global energy balance Chapter 2 The global energy balance Jordas Energibalanse Verdensrommet er vakuum Energi kan bare utveksles som stråling Stråling: Elektromagnetisk stråling Inn: Solstråling Ut: Reflektert solstråling +

Detaljer

Rim på bakken På høsten kan man noen ganger oppleve at det er rim i gresset, på tak eller bilvinduer om morgenen. Dette kan skje selv om temperaturen

Rim på bakken På høsten kan man noen ganger oppleve at det er rim i gresset, på tak eller bilvinduer om morgenen. Dette kan skje selv om temperaturen Rim på bakken På høsten kan man noen ganger oppleve at det er rim i gresset, på tak eller bilvinduer om morgenen. Dette kan skje selv om temperaturen i lufta aldri har vært under 0 C i løpet av natta.

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009 Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Quiz fra kapittel 2. The global energy balance. Høsten 2015 GEF1100 - Klimasystemet

Quiz fra kapittel 2. The global energy balance. Høsten 2015 GEF1100 - Klimasystemet The global energy balance Høsten 2015 2.1 Planetary emission temperature 2.2 The atmospheric absorption spectrum 2.3 The greenhouse effect Spørsmål #1 Hva stemmer IKKE om solarkonstanten? a) På jorda er

Detaljer

Regneoppgaver AST 1010, vår 2017

Regneoppgaver AST 1010, vår 2017 Regneoppgaver AST 1010, vår 2017 (Sist oppdatert: 09.03.2017) OBS: Ikke få panikk om du ikke får til oppgavene med en gang, eller om du står helt fast: I forelesningsnotatene 1 finner du regneeksempler.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

FYS1010 eksamen våren Løsningsforslag.

FYS1010 eksamen våren Løsningsforslag. FYS00 eksamen våren 203. Løsningsforslag. Oppgave a) Hensikten er å drepe mikrober, og unngå salmonellainfeksjon. Dessuten vil bestråling øke holdbarheten. Det er gammastråling som benyttes. Mavarene kan

Detaljer

Løsningsforslag til ukeoppgave 12

Løsningsforslag til ukeoppgave 12 Oppgaver FYS1001 Vår 018 1 Løsningsforslag til ukeoppgave 1 Oppgave 16.0 Loddet gjør 0 svingninger på 15 s. Frekvensen er da f = 1/T = 1,3 T = 15 s 0 = 0, 75 s Oppgave 16.05 a) Det tar et døgn for jorda

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS00 Eksamensdag: 5. juni 08 Tid for eksamen: 09.00-3.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (3 sider).

Detaljer

Regneoppgaver AST 1010, vår 2017

Regneoppgaver AST 1010, vår 2017 Regneoppgaver AST 1010, vår 2017 (Sist oppdatert: 29.03.2017) OBS: Ikke få panikk om du ikke får til oppgavene med en gang, eller om du står helt fast: I forelesningsnotatene 1 finner du regneeksempler.

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Lufttrykket over A vil være høyere enn lufttrykket over B for alle høyder, siden temperaturen i alle høyder over A er høyere enn hos B.

Lufttrykket over A vil være høyere enn lufttrykket over B for alle høyder, siden temperaturen i alle høyder over A er høyere enn hos B. Oppgave 1 a) Trykket i atmosfæren avtar eksponentialt med høyden. Trykket er størst ved bakken, og blir mindre jo høyere opp i atmosfæren vi kommer. Trykket endrer seg etter formelen p = p s e (-z/ H)

Detaljer

Oppgavesett nr.5 - GEF2200

Oppgavesett nr.5 - GEF2200 Oppgavesett nr.5 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 a) Den turbulente vertikalfluksen av følbar varme (Q H ) i grenselaget i atmosfæren foregår ofte ved turbulente virvler. Hvilke to hovedmekanismer

Detaljer

2/7/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: IAUs definisjon av en planet i solsystemet (2006)

2/7/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: IAUs definisjon av en planet i solsystemet (2006) AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus De viktigste punktene i dag: Hva er en planet? Plutos ferd fra planet til dvergplanet. Hvordan kan vi finne ut

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 28. Løsningsforslag til øving 12 Oppgave 1 a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Elektromagne;sk stråling De vik;gste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs atommodell

Detaljer

Løsningsforslag til eksamen i FYS1001, 15/6 2018

Løsningsforslag til eksamen i FYS1001, 15/6 2018 Løsningsforslag til eksamen i FYS1001, 15/6 2018 Oppgave 1 a) Bølgen beveger seg en strekning s = 200 km på tiden t = 15 min = 0,25 t. Farten blir v = s 200 km = = 8, 0 10 2 km/t t 0, 25t b) Først faller

Detaljer

Løsningsforslag eksamen i FYS1010, 2016

Løsningsforslag eksamen i FYS1010, 2016 Løsningsforslag eksamen i FYS00, 06 Oppgave a) Ved tiden t = 0 er aktiviteten A 0. Når det har gått en halveringstid, t /, er aktiviteten redusert til det halve, dvs. A = A 0. Da er A 0 = A 0 e λ t / =

Detaljer

Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 10 oktober 2007, Oppgavesettet er på 6 sider

Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 10 oktober 2007, Oppgavesettet er på 6 sider UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 10 oktober 2007, 14.30 17.30 Oppgavesettet er på 6 sider Konstanter og uttrykk som kan være nyttige: Lyshastigheten:

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Løsningsforslag til ukeoppgave 8

Løsningsforslag til ukeoppgave 8 Oppgaver FYS1001 Vår 2018 1 øsningsforslag til ukeoppgave 8 Oppgave 13.02 T ute = 25 C = 298, 15 K T bag = 0 C = 273, 15 K A = 1, 2 m 2 = 3, 0 cm λ = 0, 012 W/( K m) Varmestrømmen inn i kjølebagen er H

Detaljer

a. Hvordan endrer trykket seg med høyden i atmosfæren SVAR: Trykket avtar tilnærmet eksponentialt med høyden etter formelen:

a. Hvordan endrer trykket seg med høyden i atmosfæren SVAR: Trykket avtar tilnærmet eksponentialt med høyden etter formelen: Oppgave 1 a. Hvordan endrer trykket seg med høyden i atmosfæren Trykket avtar tilnærmet eksponentialt med høyden etter formelen: pz ( ) = p e s z/ H Der skalahøyden H er gitt ved H=RT/g b. Anta at bakketrykket

Detaljer

MAT 1001, høsten 2015 Oblig 2

MAT 1001, høsten 2015 Oblig 2 MAT 1001, høsten 2015 Oblig 2 Innleveringsfrist: Torsdag 5. november kl. 14:30 Det er lov til å samarbeide om løsning av oppgavene, men alle skal levere inn sin egen versjon. Husk å skrive på navn og kurskode

Detaljer

Løsningsforslag til ukeoppgave 15

Løsningsforslag til ukeoppgave 15 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 15 Oppgave 18.11 Se. s. 544 Oppgave 18.12 a) Klorofyll a absorberer fiolett og rødt lys: i figuren ser vi at absorpsjonstoppene er ved 425 nm

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

Retteinstrukser for midtveiseksamen i AST2000 høst 2018

Retteinstrukser for midtveiseksamen i AST2000 høst 2018 Retteinstrukser for midtveiseksamen i AST2000 høst 2018 Nedenfor følger veiledende retteinstrukser for midtveiseksamen i AST2000 høst 2018. Retteinstruksene skal ikke følges slavisk men poengfordelingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: Tirsdag 22. mai 2018 Tid for eksamen:1430-1730 Oppgavesettet er på 2 sider

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

Løsningsforslag til eksamen i FYS1000, 16/8 2013

Løsningsforslag til eksamen i FYS1000, 16/8 2013 Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 01 017 Andre runde: 7. februar 017 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

GEO1030: Løsningsforslag kap. 1 og 2

GEO1030: Løsningsforslag kap. 1 og 2 GEO1030: Løsningsforslag kap. 1 og 2 Sara M. Blichner September 3, 2017 Kapittel 1 Review questions 2 Prediksjoner i en vitenskapelig forstand kan være prediksjoner om framtiden, men mer presist så er

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Arctic Lidar Observatory for Middle Atmosphere Research - ALOMAR. v/ Barbara Lahnor, prosjektingeniør ALOMAR barbara@rocketrange.

Arctic Lidar Observatory for Middle Atmosphere Research - ALOMAR. v/ Barbara Lahnor, prosjektingeniør ALOMAR barbara@rocketrange. Arctic Lidar Observatory for Middle Atmosphere Research - ALOMAR v/ Barbara Lahnor, prosjektingeniør ALOMAR barbara@rocketrange.no Hvorfor studere den øvre atmosfæren? ALOMAR forskningsinfrastruktur til

Detaljer

Løsningsforslag til øving 3

Løsningsforslag til øving 3 Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Elektrisk potensial/potensiell energi

Elektrisk potensial/potensiell energi Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle

Detaljer

Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200

Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200 Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200 s.m.blichner@geo.uio.no Oppgave 1 a) Den turbulente vertikaluksen av følbar varme (Q H ) i grenselaget i atmosfæren foregår ofte ved turbulente virvler.

Detaljer

Løsningsforslag til eksamen i FYS1000, 12/6 2017

Løsningsforslag til eksamen i FYS1000, 12/6 2017 Løsningsforslag til eksamen i FYS000, 2/6 207 Oppgave a) Vi kaller energien til fotoner fra overgangen fra nivå 5 til nivå 2 for E og fra nivå 2 til nivå for E 2, og de tilsvarende bølgelengdene er λ og

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

Løsningsforslag nr.4 - GEF2200

Løsningsforslag nr.4 - GEF2200 Løsningsforslag nr.4 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 - Definisjoner og annet pugg s. 375-380 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor finner vi det? 1-2 km. fra bakken

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: Løsningsforslag. Oppgave 1

Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: Løsningsforslag. Oppgave 1 UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: 09.00 12.00 Løsningsforslag Oppgave 1 Robertson-Walker metrikken

Detaljer

Tillegg til læreboka Solstråling: Sol Ozon Helse. del av pensum i FYS1010

Tillegg til læreboka Solstråling: Sol Ozon Helse. del av pensum i FYS1010 Tillegg til læreboka Solstråling: Sol Ozon Helse del av pensum i FYS1010 Først vil vi gjøre oppmerksom på en trykkfeil i Solstråling: Sol Ozon Helse. På side 47 står følgende: Den andre reaksjonen i figuren

Detaljer

Løsning til øving 1 for FY1004, høsten 2007

Løsning til øving 1 for FY1004, høsten 2007 Løsning til øving 1 for FY1004, østen 2007 1 Oppgave 4 fra læreboka Modern Pysis, 3 utgave: a Bruk Stefan Boltzmanns lov kalt Stefans lov i boka til å regne ut total utstrålt effekt pr areal for en tråd

Detaljer

Løsningsforslag: oppgavesett kap. 9 (1 av 3) GEF2200

Løsningsforslag: oppgavesett kap. 9 (1 av 3) GEF2200 Løsningsforslag: oppgavesett kap. 9 ( av 3) GEF s.m.blichner@geo.uio.no Oppgave - Denisjoner og annet pugg s. 375-38 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor nner vi det? ˆ -

Detaljer

Løsningsforslag til konteeksamen i FYS1001, 17/8 2018

Løsningsforslag til konteeksamen i FYS1001, 17/8 2018 Løsningsforslag til konteeksamen i FYS1001, 17/8 2018 Oppgave 1 a) Lysfarten er 3,00 10 8 m/s. å et år tilbakelegger derfor lyset 3,00 10 8 m/s 365 døgn/år 24 timer/døgn 3600 sekunder/time = 9,46 10 15

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF 1100 Klimasystemet Eksamensdag: Torsdag 8. oktober 2015 Tid for eksamen: 15:00 18:00 Tillatte hjelpemidler: Kalkulator Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Fredag 7. april 2017 Tid for eksamen: 09:00 12:00 Oppgavesettet er på

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

Fiktive krefter

Fiktive krefter Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

Tillegg til læreboka Solstråling: Sol Ozon Helse. del av pensum i FYS1010

Tillegg til læreboka Solstråling: Sol Ozon Helse. del av pensum i FYS1010 Tillegg til læreboka Solstråling: Sol Ozon Helse del av pensum i FYS1010 Først vil vi gjøre oppmerksom på en trykkfeil i Solstråling: Sol Ozon Helse. På side 47 står følgende: Den andre reaksjonen i figuren

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 19. mars 2018 Tid for eksamen: 14.30-16.30 Oppgavesettet er på 3 sider Vedlegg: Sondediagram Tillatte

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018 Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.

Detaljer

Hvor stor er den kinetiske energien til molekylene i forrige oppgave?

Hvor stor er den kinetiske energien til molekylene i forrige oppgave? TFY4215 Innfring i kvantefysikk. Institutt for fysikk, NTNU. Test 1. Oppgave 1 Oppgavene 1-6 tar utgangspunkt i artikkelen "Quantum interference experiments with large molecules", av O. Nairz, M. Arndt

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er

Detaljer

Løsningsforslag FYS1010-eksamen våren 2014

Løsningsforslag FYS1010-eksamen våren 2014 Løsningsforslag FYS1010-eksamen våren 2014 Oppgave 1 a) N er antall radioaktive atomer med desintegrasjonskonstant, λ. dn er endringen i N i et lite tidsintervall dt. A er aktiviteten. dn dt dn N λ N λ

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2210 Eksamensdag: 9. oktober 2017 Tid for eksamen: 09:00-11:00 Oppgavesettet er på 2 sider Vedlegg: Ingen Tillatte hjelpemidler: Kalkulator Kontroller

Detaljer

DEL 1: Flervalgsoppgaver (Multiple Choice)

DEL 1: Flervalgsoppgaver (Multiple Choice) DEL 1: Flervalgsoppgaver (Multiple Choice) Oppgave 1 Hvilken av følgende variable vil generelt IKKE avta med høyden i troposfæren? a) potensiell temperatur b) tetthet c) trykk d) temperatur e) konsentrasjon

Detaljer

EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID:

EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID: 1 NTNU Institutt for fysikk Kontaktperson ved eksamen: Professor Berit Kjeldstad 735 91995 NORSK EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID: 09.00-14.00

Detaljer

FYS1120 Elektromagnetisme - Ukesoppgavesett 2

FYS1120 Elektromagnetisme - Ukesoppgavesett 2 FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2210 Eksamensdag: 12. desember 2013 Tid for eksamen: 14:30-17:30 Oppgavesettet er på 3 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10)

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet:

Detaljer

Prosjektoppgave i FYS-MEK 1110

Prosjektoppgave i FYS-MEK 1110 Prosjektoppgave i FYS-MEK 1110 03.05.2005 Kari Alterskjær Gruppe 1 Prosjektoppgave i FYS-MEK 1110 våren 2005 Hensikten med prosjektoppgaven er å studere Jordas bevegelse rundt sola og beregne bevegelsen

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Løsningsforslag til øving

Løsningsforslag til øving 1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Tirsdag r r

Tirsdag r r Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kandidatnr. UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midttermineksamen i: GEF1000 Eksamensdag: 8. oktober 2007 Tid for eksamen: 09:00-12:00 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Løsningsforslag til øving 8

Løsningsforslag til øving 8 FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 21. Løsningsforslag til øving 8 Oppgave 1 Helt generelt vil vi ha, for en elektromagnetisk bølge som forplanter seg i retning ˆk og som er polarisert

Detaljer