EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE"

Transkript

1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av Faglig kontakt under eksamen: Kjell Magne Mathisen, Sensuren faller senest 10. januar (så fremt ikke noe uforutsett inntreffer) EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE Torsdag 16. desember 004 Tid: kl Hjelpemidler: C Bestemt, enkel kalkulator tillatt. Irgens, F. : Formelsamling Mekanikk. Rottmann: Matematisk Formelsamling. MERK: ALLE SKAL FØRE BESVARELSEN PÅ OPPGAVEARKENE!

2 Eksamen i emne TKT 4100 Fasthetslære, Side av 10 Oppgave 1 (vekt ca 35 %) M T L/ L/ r m ε 45 o ε t ε 45 Figur 1: Tnnvegget rør med strekklapprosett Figur 1 viser et sirkulærslindrisk tnnvegget rør med lengde L 800 mm, konstant veggtkkelse t 0 mm og middelradius r m 390 mm. Røret er fast innspent i venstre nede og belastes fra spenningsfri tilstand med et bøemoment M og et torsjonsmoment T i høre ende. Røret er laget av et homogent isotropt lineært elastisk materiale med elastisitetsmodul E 50 GPa, tverrkontraksjonstall ν 0, 3 og fltegrense f 300 MPa. Midt på røret er det limt på en strekklapprosett som registrerer tre lengdetøninger ε, ε 45 og ε. a) Vis at skjærtøningen γ kan uttrkkes ved de tre lengdetøningene som følger. γ ε 45 ε ε

3 Eksamen i emne TKT 4100 Fasthetslære, Side 3 av 10 b) Beregn koordinatspenningene σ, σ og τ i partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i Figur 1 når det for en gitt belastning M og T måles tøninger ε , ε , ε c) Tegn Mohr-diagrammet i figur for spenningstilstanden i partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. Ikke pensum TKT41 τ 10 MPa σ Figur : Rutenett for Mohr-diagram til bruk i spørsmål c), d) og e). d) Lokaliser og marker polen i Mohr-diagrammet i figur for partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. Ikke pensum TKT41

4 Eksamen i emne TKT 4100 Fasthetslære, Side 4 av 10 e) Finn hovedspenningene og angi de tilhørende hovedspenningsretningene i Mohr-diagrammet i figur for partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. TKT41: Bentt formler for hovedspenninger og hovedspenningsretninger f) Bestem sikkerhetsfaktoren n T mot fltning etter Tresca-kriteriet og sikkerhetsfaktoren n M mot fltning etter Mises-kriteriet for partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. g) Bestem bøemomentet M og torsjonsmoment T som resulterer i de målte tøningene i b).

5 Eksamen i emne TKT 4100 Fasthetslære, Side 5 av 10 Oppgave (vekt ca 5 %) Figur 3: THQ-profil. Mål i mm. Figur 3 viser et såkalt THQ-profil ( hatte-profil ). Slike tverrsnitt forekommer ofte i betongelementbgg, hvor elementene kan legges direkte på de utstikkende underflensene. a) Vis at tverrsnittets flatesenter (og nøtralaksen) er lokalisert 130 mm over nedre kant av underflensen. (Eksakt verdi er mm, men bentt 130 mm i de videre beregningene.) b) Regn ut tverrsnittets. arealmoment I om -aksen. c) Tverrsnittet er påkjent av et bøemoment (om -aksen) M 300 knm. Finn den maksimale bøespenningen σ maks. Hvor i tverrsnittet opptrer σ maks?

6 Eksamen i emne TKT 4100 Fasthetslære, Side 6 av 10 d) Tverrsnittet er dessuten påkjent av en skjærkraft (i -retning) V 100 kn. Finn den akseparallelle skjærkraften som hver av sveisene må overføre. e) Finn den maksimale skjærspenningen τ maks på grunn av skjærkraften V 100 kn. Hvor i tverrsnittet opptrer τ maks?

7 Eksamen i emne TKT 4100 Fasthetslære, Side 7 av 10 Oppgave 3 (vekt ca 0 %) B a a C F D A a Figur 4: Statisk ubestemt ramme. Rammen ABCD i figur 4 er én gang statisk ubestemt. Den er fast innspent i punkt A og har forskvelig leddlager i punkt B. En vertikal last F virker i punkt D. Alle rammedeler har bøestivhet EI. a) Beregn og tegn momentdiagram og skjærkraftdiagram (med virkningssmbol) for rammen.

8 Eksamen i emne TKT 4100 Fasthetslære, Side 8 av 10 b) Finn horisontalforskvningen av punkt C.

9 Eksamen i emne TKT 4100 Fasthetslære, Side 9 av 10 Oppgave 4 (vekt ca 10 %) + T L Figur 5: Bjelke med uniform temperaturøkning T. Bjelken i figur 5 er laget av et rektangulært hulprofil med følgende tverrsnittsdata: A mm, I mm 4 og I mm 4. Avstanden mellom oppleggene er L 6 m. Legg merke til at begge oppleggene er uforskvelige. Bjelken er produsert av stål, som har elastisitetsmodul E N/mm og termisk lengdeutvidelseskoeffisient α K -1. Bjelken utsettes for en uniform temperaturøkning T over hele tverrsnittet og hele lengden L. Bestem den maksimale temperaturøkningen T bjelken kan utsettes for uten at knekning inntreffer. Anta at tverrsnittet var spenningsfritt før temperaturøkningen. Se bort fra egenvekt.

10 Eksamen i emne TKT 4100 Fasthetslære, Side 10 av 10 Oppgave 5 (vekt ca 10 %) Svar kort og konsist på følgende teorispørsmål. Lag gjerne en skisse for å illustrere svaret. a) Superposisjonsprinsippet, som sier at total respons i et sammensatt lasttilfelle kan beregnes ved å summere responsen fra hver av del-lastene, er basert på to forutsetninger. Hvilke? b) Hva er tverrkontraksjon? c) Hva er en strekklapp?

11 Eksamen i emne TKT 4100 Fasthetslære, Side av 10 Oppgave 1 (vekt ca 35 %) M T L/ L/ r m ε 45 o ε t ε 45 Figur 1: Tnnvegget rør med strekklapprosett Figur 1 viser et sirkulærslindrisk tnnvegget rør med lengde L 800 mm, konstant veggtkkelse t 0 mm og middelradius r m 390 mm. Røret er fast innspent i venstre nede og belastes fra spenningsfri tilstand med et bøemoment M og et torsjonsmoment T i høre ende. Røret er laget av et homogent isotropt lineært elastisk materiale med elastisitetsmodul E 50 GPa, tverrkontraksjonstall ν 0, 3 og fltegrense f 300 MPa. Midt på røret er det limt på en strekklapprosett som registrerer tre lengdetøninger ε, ε 45 og ε. a) Vis at skjærtøningen γ kan uttrkkes ved de tre lengdetøningene som følger. γ ε 45 ε ε Tar utgangspunkt i uttrkkene for tøninger i en flate ifølge formelsamling s. : ε + ε ε ε ε 45 ε ( ϕ 45 ) + γ ε ε ε Q.E.D. 45 γ cos ϕ + ε + ε sin ϕ γ +

12 Eksamen i emne TKT 4100 Fasthetslære, Side 3 av 10 b) Beregn koordinatspenningene σ, σ og τ i partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i Figur 1 når det for en gitt belastning M og T måles tøninger ε , ε , ε Hooke s lov for isotropt lineært elastisk materiale ifølge formelsamling s. 5: 6 6 γ ε ε ε E σ 1 ν E σ 1 ν τ E 1 ( ) [ ε + νε ] [ 600 0,3 180] [ ε + νε ] [ 180 0,3 600] γ ,3 1 0, ( + ν ) ( 1+ 0,3) MPa MPa 0 MPa c) Tegn Mohr-diagrammet i figur for spenningstilstanden i partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. (0,100) τ 10 MPa σ σ σ 1 ϕ Pol ϕ 1 (150,-100) Figur : Rutenett for Mohr-diagram til bruk i spørsmål c), d) og e). d) Lokaliser og marker polen i Mohr-diagrammet i figur for partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1.

13 Eksamen i emne TKT 4100 Fasthetslære, Side 4 av 10 e) Finn hovedspenningene og angi de tilhørende hovedspenningsretningene i Mohr-diagrammet i figur for partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. Avlest fra Mohr-diagrammet : σ 1 00 MPa, σ Hovedspenninger σ 1 og σ ifølge formelsamling s. 19: 50 MPa σ + σ σ σ σ1, ± τ ± σ MPa og σ MPa 1 f) Bestem sikkerhetsfaktoren n T mot fltning etter Tresca-kriteriet og sikkerhetsfaktoren n M mot fltning etter Mises-kriteriet for partikkelen som befinner seg like under rosetten på overflaten av det tnnveggete røret i figur 1. Tresca-kriteriet for fltning samt maksimal skjærspenning ifølge formelsamling s. 19: τ ma ( σ ma σ min ) ( σ1 σ ) [ 00 ( 50) ] 15 MPa f f 300 Tresca - kriteriet : τ ma nt 1,0 τ 15 Mises-kriteriet for fltning samt jevnføringsspenning ifølge formelsamling s. 1: Jevnføringsspenning : σ Mises - kriteriet j : σ f j n M f σ j ma 300 9,1 σ + σ σ σ + 3τ 1, ,1 MPa g) Bestem bøemomentet M og torsjonsmoment T som resulterer i de målte tøningene i b). Polart arealmoment og skjærspenning τ ifølge formelsamling s. 7, 65/7: I τ p πr T I p 3 m t π 390 r m T I r 3 p m 0 7, τ 7, mm ,911 MNm Annet arealmoment og bøespenning σ ifølge formelsamling s. 8, 65: I σ 3 m πr t π 390 M I r m M 3 0 3,77 10 I r m 9 mm 3,77 10 σ ,433 MNm

14 Eksamen i emne TKT 4100 Fasthetslære, Side 5 av 10 Oppgave (vekt ca 5 %) Figur 3: THQ-profil. Mål i mm. Figur 3 viser et såkalt THQ-profil ( hatte-profil ). Slike tverrsnitt forekommer ofte i betongelementbgg, hvor elementene kan legges direkte på de utstikkende underflensene. a) Vis at tverrsnittets flatesenter (og nøtralaksen) er lokalisert 130 mm over nedre kant av underflensen. (Eksakt verdi er mm, men bentt 130 mm i de videre beregningene.) Fra underkant av underflens: C A i A i Underflens Steg Overflens mm 130 mm C b) Regn ut tverrsnittets. arealmoment I om -aksen. Bentter Steiners teorem I ( Ii + Ai i ), og inkluderer alle bidrag: I Underflens mm Steg Overflens (Neglisjering av små bidrag fra flenser pga t << b (dvs ledd nr 1 og 5) samt evt. Steinerbidraget fra steget (dvs ledd nr 4) reduserer I med ca 0.16%.)

15 Eksamen i emne TKT 4100 Fasthetslære, Side 6 av 10 c) Tverrsnittet er påkjent av et bøemoment (om -aksen) M 300 knm. Finn den maksimale bøespenningen σ maks. Hvor i tverrsnittet opptrer σ maks? Bøespenningsformelen, se formelsamling side 8: σ maks (trkk) σ maks 6 M maks MPa 6 I Siden avstanden fra -aksen er 130 mm til tterkant av både over- og underflensen, opptrer σ maks 310 MPa både i overkant av overflens og underkant av underflens. σ maks (strekk) 130 d) Tverrsnittet er dessuten påkjent av en skjærkraft (i -retning) V 100 kn. Finn den akseparallelle skjærkraften som hver av sveisene må overføre. 1. arealmoment av underflens ( utenforliggende areal): S' da A mm underflens underflens A ' Akseparallell skjærkraft, se formelsamling side 8: V K S' K 184 N/mm 6 I (Faktoren skldes at to sveiser overfører spenninger mellom underflensen og resten av tverrsnittet.) e) Finn den maksimale skjærspenningen τ maks på grunn av skjærkraften V 100 kn. Hvor i tverrsnittet opptrer τ maks? Maksimal skjærspenning opptrer i nøtralaksen ( 0). 1. arealmoment av tverrsnitt under nøtralaksen: 3 S ' ( ) Underflens, se d ) Ett steg, nedre del τ maks mm 3 3 Skjærspenning, se formelsamling side 9: V τ S ' MPa 6 It ( ) Kommentar: Hvis S beregnes fra arealet over NA, fås S mm 3 og τ 43.0 MPa. Avviket skldes tilnærmelsen i spørsmål a), hvor C mm ble satt til 130 mm i stedet.

16

17

18

19 Eksamen i emne TKT 4100 Fasthetslære, Side 10 av 10 Oppgave 5 (vekt ca 10 %) Svar kort og konsist på følgende teorispørsmål. Lag gjerne en skisse for å illustrere svaret. a) Superposisjonsprinsippet, som sier at total respons i et sammensatt lasttilfelle kan beregnes ved å summere responsen fra hver av del-lastene, er basert på to forutsetninger. Hvilke? Superposisjonsprinsippet forutsetter lineær (1. ordens) teori: (1) Små deformasjoner, slik at all likevekt kan relateres til udeformert geometri () Lineært elastisk materialoppførsel, dvs Hookes lov er gldig b) Hva er tverrkontraksjon? Tverrkontraksjon vil si at et legeme endrer dimensjon også i retningene normalt på kraftretningen ved belastning. Eksempel: Når vi strekker en stav, vil den forlenge seg, men den blir også tnnere. Tverrkontraksjonen kvantifiseres med tverrkontraksjonstallet ν, som er forholdet mellom tverrtøning og aksialtøning: ν ε t /ε N N Tverrkontraksjon Forlengelse c) Hva er en strekklapp? En strekklapp måler tøninger. Den består av elektrisk ledende foldninger (tråd) som er lagt inni et tnt plastskikt. Strekklappen limes på den overflaten hvor tøningen skal måles. Når strekklappen tøes, endres den elektriske motstanden i foldningene (trådene), og denne motstandsendringen kan måles og omregnes til tøning. Det finnes flere tper strekklapper: Noen måler tøninger kun i én retning, mens andre (strekklapprosetter) måler tøninger i flere retninger, jfr. strekklappen i Oppgave 1. (Løsningsforslaget på dette spørsmålet (5c) er noe mer detaljert enn hva som ble forventet i en eksamensbesvarelse.)

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 13.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Arild H. Clausen, 73 59 76 32 Sensuren

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 5 Faglig kontakt under eksamen: Bokmål Kjell Holthe, 951 12 477 / 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2 Fredag 3. desember

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: NORSK Arild H. Clausen, 73 59 76 32 Kjell Holthe, 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,

Detaljer

11 Elastisk materiallov

11 Elastisk materiallov lastisk materiallov Innhold: lastisk materialoppførsel Isotrope og anisotrope materialer Generalisert Hookes lov Initialtøninger Hookes lov i plan spenning og plan tøning Volumtøning og kompresjonsmodul

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 Førsteamanuensis Jan. arseth 73 59 35 68 EKSMEN I EMNE TKT4116 MEKNIKK 1 Onsdag 23. mai 2007 Kl 09.00 13.00 Hjelpemidler (kode ): Irgens:

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis Arne Aalberg 73 59 46 24 Førsteamanuensis Aase Gavina Reyes 73 59 45 24

Detaljer

3 Tøyningsenergi. TKT4124 Mekanikk 3, høst Tøyningsenergi

3 Tøyningsenergi. TKT4124 Mekanikk 3, høst Tøyningsenergi 3 Tøningsenergi Innhold: Arbeid ved gradvis pålastning Tøningsenergitetthet og tøningsenergi Tøningsenergi som funksjon av lastvirkning,, T og V Skjærdeformasjoner Tøningsenergi som funksjon av aksialforskvning

Detaljer

Eksamensoppgave i TKT 4124 Mekanikk 3

Eksamensoppgave i TKT 4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT 44 Mekanikk Faglig kontakt under eksamen: Aase Rees Tlf.: 7 5(9 45 4) / 95 75 65 Eksamensdato: 6. desember Eksamenstid (fra-til): 9 - Hjelpemiddelkode/Tillatte

Detaljer

Ekstra formler som ikke finnes i Haugan

Ekstra formler som ikke finnes i Haugan Oppgavetekstene kan inneholde unødvendige opplysninger. Ekstra formler som ikke finnes i Haugan σ n = B n = sikkerhetsfaktor, σ B = bruddspenning (fasthet), σ till = tillatt spenning σ till Kombinert normalkraft

Detaljer

Ekstraordinær EKSAMEN. MEKANIKK Fagkode: ILI 1439

Ekstraordinær EKSAMEN. MEKANIKK Fagkode: ILI 1439 HØGSKOLEN NRVK Teknologisk vdeling Studieretning: llmenn Maskin Studieretning: llmenn Bgg / Miljøteknikk Ekstraordinær EKSMEN MEKNKK Fagkode: L 439 Tid: 07.08.0, kl. 0900-400 Tillatte hjelpemidler: B:

Detaljer

EKSAMEN. MEKANIKK Fagkode: ILI 1439

EKSAMEN. MEKANIKK Fagkode: ILI 1439 HØGSKOLEN I NRVIK Institutt for gg- drifts- og konstruksjonsteknikk Studieretning: llmenn Maskin Studieretning: llmenn gg EKSMEN I MEKNIKK Fagkode: ILI 1439 Tid: 6.6., kl. 9-14 Tillatte hjelpemidler: :

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Faglig kontakt under eksamen: Jan Bjarte Aarseth 73 59 35 68 Aase Reyes 915 75 625 EKSAMEN I EMNE TKT4116 MEKANIKK 1 Fredag 3. juni 2011 Kl 09.00 13.00 Hjelpemidler (kode C): Irgens: Formelsamling mekanikk.

Detaljer

Spenninger i bjelker

Spenninger i bjelker N Teknologisk avd. R 1.0.1 Side 1 av 6 Rev Spenninger i bjelker rgens kap 18.1. ibbeler Sec. 1.1-1. En bjelke er et avlangt stkke materiale som utsettes for bøebelastning. Ren bøning bjelke b N 0 0 0 0

Detaljer

E K S A M E N. MEKANIKK Fagkode: ILI 1439

E K S A M E N. MEKANIKK Fagkode: ILI 1439 HØGSKOLEN NRVK nstitutt for gg- drifts- og konstruksjonsteknikk Studieretning: ndustriteknikk (llmenn Maskin) Studieretning: llmenn gg E K S M E N MEKNKK Fagkode: L 439 Tid: 6.6.3, kl. 9-4 Tillatte hjelpemidler:

Detaljer

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl L BD = 3 m side 1 av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Kontakt under eksamen Arne Aalberg (735) 94624, 976 42898 Tekst: Norsk EKSAMEN TKT 4122 MEKANIKK

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NTURVITENSKPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 EKSMEN I EMNE TKT4116 MEKNIKK 1 Mandag 2. juni 2008

Detaljer

Oppgavehefte i MEK2500 - Faststoffmekanikk

Oppgavehefte i MEK2500 - Faststoffmekanikk Oppgavehefte i MEK2500 - Faststoffmekanikk av Henrik Mathias Eiding og Harald Osnes ugust 20 2 Oppgave 1 En kraft har - og y-komponentene F og F y. vstanden fra et gitt punkt til et punkt på kraftens angrepslinje

Detaljer

EKSAMEN. MEKANIKK Fagkode: ILI

EKSAMEN. MEKANIKK Fagkode: ILI HØGSKOLEN I NRVIK Teknologisk vdeling Studieretning: llmenn Maskin Studieretning: llmenn Bgg / Miljøteknikk EKSMEN I MEKNIKK Fagkode: ILI 439 000 Tid: 07.06.0, kl. 0900-400 Tillatte hjelpemidler: B: Godkjent

Detaljer

EKSAMEN I EMNE TKT4124 MEKANIKK 3

EKSAMEN I EMNE TKT4124 MEKANIKK 3 Faglig kontakt under eksamen: Aase Rees 7 59 5 / 915 75 65 BOKMÅL EKSAMEN I EMNE TKT1 MEKANIKK Onsdag 7. desember 11 Kl. 9. 1. Hjelpemidler: Bestemt, enkel kalkulator 9 vedlagte formelark Ingen medbrakte

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGS TKNISK- NTURVITNSKPLIG UNIVRSITT Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: rne alberg 976 42 898 / 73 59 46 24 Jan jarte arseth 73 59 35 68 KSMN I MN TKT4116 MKNIKK 1 Onsdag

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 14. desember 2015 Eksamenstid (fra-til): 09.00 13.00 Hjelpemiddelkode/

Detaljer

9 Spenninger og likevekt

9 Spenninger og likevekt 9 Spenninger og likevekt Innhold: Volumkrefter og flatekrefter Traksjonsvektoren Spenningsmatrisen Retningscosinuser Cauchs ligning Hovedspenninger og hovedspenningsretninger Spenningsinvarianter Hdrostatisk

Detaljer

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng HiN TE 73 8. juni 0 Side av 8 HØGSKOLEN NRVK Teknologisk avdeling Studieretning: ndustriteknikk Studieretning: llmenn ygg Studieretning: Prosessteknologi E K S M E N MEKNKK Fagkode: TE 73 5 studiepoeng

Detaljer

Hovedpunkter fra pensum Versjon 12/1-11

Hovedpunkter fra pensum Versjon 12/1-11 Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori.05.05 YS-MEK 0.05.05 man uke 0 3 forelesning: 8 5 elastisitetsteori gruppe: gravitasjon+likevekt innlev. oblig 0 forelesning: spes. relativitet gruppe: spes. relativitet

Detaljer

EKSAMEN I EMNE TKT4124 MEKANIKK 3

EKSAMEN I EMNE TKT4124 MEKANIKK 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: NORSK Arild H. Clausen, 73 59 76 32 EKSAMEN I EMNE TKT4124 MEKANIKK 3 Torsdag

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 9.05.06 YS-MEK 0 9.05.06 man tir uke 0 3 6 3 forelesning: 30 forelesning: 6 Pinse 7 4 3 7 7. mai spes. relativitet gruppe 5: gravitasjon+likevekt repetisjon gruppe

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator Pedersen et al. Teknisk formelsamling med tabeller.

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator Pedersen et al. Teknisk formelsamling med tabeller. EKSAMENSOPPGAVE Eksamen i: TEK-1011, Anvendt mekanikk Dato: Tirsdag 19.5.2015 Tid: Kl. 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator Pedersen et al. Teknisk formelsamling med tabeller.

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 5. desember 2014 Eksamenstid (fra-til): 9.00 13.00 Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Oppgave 1 Figuren viser en 3,5m lang bom som benyttes for å løfte en gjenstand med tyngden 100kN. Gjenstanden henger i et blokkarrangement

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 08.05.017 YS-MEK 1110 08.05.017 1 uke 19 0 1 3 8 15 9 5 man forelesning: elastisitetsteori forelesning: spes. relativitet Eksamensverksted Pinse 9 16 3 30 6 tir ons

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 07.05.04 YS-MEK 0 07.05.04 man tir ons tor fre uke 9 0 3 5 9 6 forelesning: likevekt innlev. oblig 9 innlev. oblig 0 6 3 0 7 3 gruppe: gravitasjon+likevekt 7 4 8 4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

10 Tøyninger og kinematisk kompatibilitet

10 Tøyninger og kinematisk kompatibilitet 10 Tøninger og kinematisk kompatibilitet Innhold: Deformasjon kontra stivlegemebevegelse Normaltøning Skjærtøning Kinematikkligningene Plan tøningstilstand Kompatibilitetsbetingelsen Litteratur: Cook &

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

I Emnekode: NB! Alle utregninger og beregninger skal framgå av besvarelsen, dvs vises skritt for skritt.

I Emnekode: NB! Alle utregninger og beregninger skal framgå av besvarelsen, dvs vises skritt for skritt. høgskolen i oslo! Emne: Emnekode: MEKANKK LO 200 B : Gruppe(r): Dato: BA BB og BC. mai -05 Eksamensoppgaven Antall sider (inkl. Antall oppgaver: består av: forsiden): 4 5 Tillatte hjelpemidler: Tekniske

Detaljer

13 Klassisk tynnplateteori

13 Klassisk tynnplateteori 13 Klassisk tnnplateteori Innhold: Forskjellige plateteorier Enveis- og toveisplater omenter og skjærkrefter i tnne plater Krumninger Platens likevektsligning og differensialligning Essensielle og naturlige

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside.

Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside. 6.4.3 Eksempel 3 Spenningsanalyse av dobbeltbunn i tankskip (eksamen 07) Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside.

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

MEK4540/9540 Høsten 2008 Løsningsforslag

MEK4540/9540 Høsten 2008 Løsningsforslag MK454/954 Høsten 8 øsningsforslag Oppgave 1 a) Kan velge mellom følgende produksjonsmetoder: Spray-opplegg Håndopplegg Vakuum-bagging (i kombinasjon med håndopplegg eller andre metoder) Prepreg Vakuum-injisering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

HiN Eksamen IST 1484 18.12.03 Side 4

HiN Eksamen IST 1484 18.12.03 Side 4 HiN Eksamen IST 1484 18.1.3 Side 4 Materialer og mekanikk. Teller 5% av eksamen Poengangivelsen viser kun vektingen mellom de fire oppgavene. Innenfor hver oppgave er det læringsmålene som avgjør vektingen.

Detaljer

OPPGAVESETTET BESTÅR AV TO (2) OPPGAVER PÅ FIRE (4) SIDER (utenom forsiden) pluss Formelsamling på 7 sider.

OPPGAVESETTET BESTÅR AV TO (2) OPPGAVER PÅ FIRE (4) SIDER (utenom forsiden) pluss Formelsamling på 7 sider. DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I EMNET: MSK210 MASKINKONSTRUKSJON DATO: 16. mai, 2017 VARIGHET: 4 timer TILLATTE HJELPEMIDDEL: FØLGENDE SPESIFISERTE MIDLER ER TILLATT 1. Godkjent kalkulator

Detaljer

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: ) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember

Detaljer

Eksempel-samvirke. Spenningsberegning av bunnkonstruksjon i tankskip

Eksempel-samvirke. Spenningsberegning av bunnkonstruksjon i tankskip Eksempel-samvirke Spenningsberegning av bunnkonstruksjon i tankskip Tankskipkonstruksjon Beregn jevnføringsspenninger ved A og B for plate og stiver (A) Spant (stiver) A Toppflens 00 y mm 4 mm 0,7 m B

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7 Innhold Forord Symboler og forkortelser v og vi xv 1. INNLEDNING 1 1.1 Hva er fasthetslære? 1 1.2 Motivasjon 5 1.3 Konvensjoner - koordinater og fortegn 7 1.4 Små forskyvninger og lineær teori 11 1.5 Omfang

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

TKT4124 Mekanikk 3, høst Plastisk momentkapasitet og flyteledd

TKT4124 Mekanikk 3, høst Plastisk momentkapasitet og flyteledd 2 Plastisk momentkapasitet og flyteledd Innhold: Elastisk kontra perfekt plastisk materiale Plastifisering av tverrsnitt utsatt for bøyning Plastisitetsmoment Plastisk motstandsmoment Flyteledd Kollaps

Detaljer

EKSAMEN I EMNE TFY4125 FYSIKK

EKSAMEN I EMNE TFY4125 FYSIKK Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Studentnummer: Studieretning: Bokmål, Side 1 av 1 Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00 Side 1 av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Kåre Olaussen Telefon: 9 36 52 Eksamen i fag 74327 RELATIVISTISK KVANTEMEKANIKK Fredag

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen.

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen. I DIMENSJONERING I -~ ~ høgskolen i oslo Emne: Il ~Gruppe(r) 3BK Eksamensoppgaven Antall sider (inkl. består av: forsiden): _L Tillatte hjelpemidler Alle skriftlige kilder. Enkel ikkeprogrammerbar Emnekode:

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 NORGES TEKNISK-NATURVITENSKAPGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 5 Faglig konak under eksamen: Kjell Holhe, 951 12 477 / 73 59 35 53 NYNORSK Jan B. Aarseh, 73 59 35 68 EKSAMEN I

Detaljer

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN Løsningsforslag EKSAMEN EMNENAVN: Styrkeberegning EMNENUMMER: TEK1 EKSAMENSDATO: 8. juni 17 TID: timer: KL 9. - KL 1. EMNEANSVARLIG: Henning Johansen ANTALL SIDER UTLEVERT: TILLATTE HJELPEMIDLER: Lærebok

Detaljer

KONTINUASJONSEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet Side 1 av 6 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

HIN Industriteknikk RA 17.11.03 Side 1 av 13. Struktur og innkapsling

HIN Industriteknikk RA 17.11.03 Side 1 av 13. Struktur og innkapsling Side 1 av 13 Struktur og innkapsling Et romfartø med instrumentering skal tåle akselerasjonen i oppsktingen, vibrasjonene fra motoren, bevegelsen ved ufoldingen, åpning osv. Dessuten skal instrumenter

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne

Detaljer

Løsningsforslag til Eksamen i maskindeler og materialteknologi i Tromsø mars Øivind Husø

Løsningsforslag til Eksamen i maskindeler og materialteknologi i Tromsø mars Øivind Husø Løsningsforslag til Eksamen i maskindeler og materialteknologi i Tromsø mars 2016 Øivind Husø Oppgave 1 1. Et karbonstål som inneholder 0,4 % C blir varmet opp til 1000 C og deretter avkjølt langsomt til

Detaljer

Oppgave for Haram Videregående Skole

Oppgave for Haram Videregående Skole Oppgave for Haram Videregående Skole I denne oppgaven er det gitt noen problemstillinger knyttet til et skip benyttet til ankerhåndtering og noen av verktøyene, hekkrull og tauepinne, som benyttes om bord

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte

Detaljer

Fagnr:LO 580M. Fag: Mekanikk. Per Kr. Paulsen. Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, inkl. forside. Tillatte hjelpemidler

Fagnr:LO 580M. Fag: Mekanikk. Per Kr. Paulsen. Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, inkl. forside. Tillatte hjelpemidler Fag: Mekanikk Fagnr:LO 580M Faglig veileder: Per Kr. Paulsen Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, fra - til: 0900-1400 2001 Eksamensoppgaven består av Antall sider: 5 inkl. forside

Detaljer

Det teknisk- naturvitenskapelige fakultet

Det teknisk- naturvitenskapelige fakultet Det teknisk- naturvitenskapelige fakultet SUBJECT: BIB 120 KONSTRUKSJONSMEKANIKK 1 DATE: September 5, 2012 TIME: AID: 15:00 19:00 (4 hours) Authorized calculator, Dictionary (English-Norwegian) and drawing

Detaljer

5.1.2 Dimensjonering av knutepunkter

5.1.2 Dimensjonering av knutepunkter 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) 500 0 500 1000 5 10 15 20 25 30 35 40 45 50 x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x

Detaljer

Det teknisk- naturvitenskapelige fakultet

Det teknisk- naturvitenskapelige fakultet Det teknisk- naturvitenskapelige fakultet EMNE: BIB 120 KONSTRUKSJONSMEKANIKK 1 DATO: 6. Mai, 2011 VARIGHET: 4 TIMER HJELPEMIDLER: Bestemt, enkel kalkulator tillatt. Ingen trykte eller håndskrevne hjelpemidler

Detaljer

Styrkeberegning grunnlag

Styrkeberegning grunnlag grunnlag Henning Johansen side: 0 INNHOLD INNLEDNING 3 BEREGNING AV SPENNINGER GENERELT 4 3 FORHOLDET MELLOM KONSTRUKTIV UTFORMING, SPENNINGER OG FASTHET 5 4 SPENNINGSANALYSE 7 4. Enakset spenningstilstand

Detaljer

UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER

UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER konstruksjons Levetid, N = antall lastvekslinger Eksempel: Roterende aksel med svinghjul Akselen roterer med 250 o/min, 8 timer/dag, 300 dager i året. Hvis akselen

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag

LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag LØSNINGSFORSLAG i stikkordsform Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Materialteknologi Målform: Bokmål Dato: Tid: 3 timer / kl. 9.00 12.00 Antall sider (inkl. forside): 5

Detaljer

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71 32 C2 BJELKER 2.1.3 Dimensjonering for skjærkraft For å sikre bestandigheten bør spenningen f yd i armeringen ved ut - sparinger begrenses i henhold til tabell C 6.5. Små utsparinger Når utsparingen Ø

Detaljer

Styrkeberegning: grunnlag

Styrkeberegning: grunnlag Kompendium / Høgskolen i Gjøvik, 0 nr. Styrkeberegning: grunnlag Henning Johansen Gjøvik 0 ISSN: 503 3708 grunnlag Henning Johansen side: 0 INNHOLD INNLEDNING 3 BEREGNING AV SPENNINGER GENERELT 4 3 FORHOLDET

Detaljer

EKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29.

EKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29. Side 1 av 4 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF406 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Størrelsen av sikkerhetsfaktoren Praktiske løsninger

Størrelsen av sikkerhetsfaktoren Praktiske løsninger 44 C2 BJELKER Størrelsen av sikkerhetsfaktoren Nødvendig sikkerhetsfaktor kan ikke regnes ut, men må baseres på erfaring. Det er arbeidskrevende å bestemme strekkspenningene i bjelkens overflens for biaksial

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer