Varehandels statistikken. Ny estimeringsmetode alternativ metode. og noen generelle kommentarer. av Hans Olav Egede Larssen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Varehandels statistikken. Ny estimeringsmetode alternativ metode. og noen generelle kommentarer. av Hans Olav Egede Larssen."

Transkript

1 IO 651 Oslo, 16. november 1965 Vareandels statistikken Ny estimeringsmetode alternativ metode og noen generelle kommentarer av Hans Olav Egede Larssen Innold 1. En brøkestimat-variant av "korrigerte gjennomsnitts metode" Begrunnelse 1.. Bruttovariansen 1.3. Sammenligning mellom de to varianter av "korrigerte gjennomsnitts metode". Tabeller. Skjeveter som adderes opp ved summering over alle omsetningsgrupper. Ikke for offentliggjøring. Dette notat er et arbeidsdokument og kan siteres eller refereres bare etter spesiell tillatelse i vert. enkelt tilfelle. Synspunkter og konklusjoner kan ikke uten videre tas som uttrykk for Statistisk Sentralbyrås oppfatning.

2 Dette notat bor leses i direkte tilknytning til arbeidsnotat av vor nærmere beskrivelse av situasjonen er gitt. Notatet faller i deler. Under I. undersøkes en brokestimat-variant av "korrigerte gjennomsnitts metode". Under. kommer en viktig kommentar vedrørende skjeveter som kan oppstå ved summering over alle omsetningsgrupper, og særlig i forbindelse med "ukorrigerte gjennomsnitts metode". 1. En brokestimat-variant av "korrigerte gjennomsnitts metode" Begrunnelse Aensikten er som før å finne best mulige estimater for vert aktuelt kjennetegn på undersøkelsestidspunkt. Ved"korrigerte gjennomsnitts metoden ble brukt estimatoren A A B = *y=k. y dvs.: Utvalgsgjennomsnitt innen omsetningsgruppe for ovedgruppe ble multiplisert med enkorreksjonsfaktor" for ver undergruppe (innen omsetningsgruppe). Denne faktor var foroldet mellom anslått forventning av totalomsetning innen omsetningsgruppe for undergruppe og tilsvarende størrelse for ovedgruppe - vor forventning er i relasjon til "bakenforliggende" fordeling for totalomsetning. Men estimatoren kan også skrives A B = og kan da oppfattes på en litt annen m&be: Undergruppe-forventning for totalomsetning multipliseres med (et overslag over) foroldet mellom gjennomsnitt for det annet kjennetegn og gjennomsnittlig totalomsetning innen ovedgruppen, altså et anslag over 4. Men denne størrelse kan også estimeres ved forold mellom bare utvalgsgjennomsnitt,. Og er x-er og y-er tilstrekkelig sterkt positivt 1E korrelert, vil det - etter den vanlige teori for brokformede estimatorer - være rimelig å vente at dette er et bedre estimat for n enn. Som estimator for B foreslås derfor: \ '\ B C. 1E praksis vil det ftest være slik at registeropplysninger og tall fra tellingen refererer til forskjellige tidspunkter. Men dette innebærer at x ikke kan finnes (vis Aet da ikke direkte er spurt etter omsetning på siste revisjonstidspunkt for registeret).

3 3 Derimot kjennes utvalgsgjennomsnitt for omsetning på tellingstidspunkt. Dette betegnes med Folgende betegnelser brukes: "Bakenforliggendej; populasjon Gjennomsnitt for totalomsetning på kjennetegn som skal revisjons- tellings- undersøkes på tel - tidspunkt tidspunkt lingstidspunkt Faktisk, endelig, populasjoni IT Utvalg Varianser cr- w Tim Tilsvarende betegnelser blir brukt innen vert stratum, altså n oav. y.t 3E. estimatoren B blir som skal undersokes nærmere: nå -i erstattet med z. Derved fås en estimator 71 = (Her sees det bort fra at E, bestemmes ut fra registeret ved anslaget 1.. Bruttovariansen Som mål for avvikelse fra B skal bruttovariansen finnes. Forst bestemmes forventet kvadrert avvik fra B for et gitt stratum, (undergruppe nr., innen omsetningsgruppe nr g, vor gen er utelatt). E -- E _i ) E - (-0 )1} E ) E( '-iz )(7- T) ) ( )11 "i* ".'* ) (De øvrige ledd forsvinner elt eller tilnærmet under forventningstegnet fordi E B = rj og E ) Nä gjøres tilnærmelsen og da blir videre:

4 rvar -e. L C C 0 V Gi c ) LLov ) _ _) E B ) it - 7- coy c7, -) 4. (.1 ) var z ) )) ) -e var B ) ll T ) w T - e.8. T (A) + 'a e -6. ) 1 oq ) betegner korrelasjon mellom undersokt kjennetegn og totalomsetning på tellingstidspunktet, enoldsvis totalt (innen omsetningsgruppe nr. g) og for stratum nr.. T, w, er varianser innen stratum nr.. og andre tilsvarende betegnelser. Da flies, med lignende tilnærmelser som for /IN i ledd av orden N E Som i tidligere notat forutsettes er at alle strata er like store. Det totale antall eneter, N I er fordelt på L strata a N I eneter. Tilsvarende gjelder for antall utvalgseneter, n og nl, som tenkes trukket under proporsjonal allokering. Forventet avvikelse tatt over alle strata skal så finnes: E = E E Y, _ T3- ) Som i det tidligere notat innføres T = E T b (T T 4- ) T 1 b 1 E., e n 1 :'I w T -. E 0) T (,) (4.) w - T w N 1 +T - b () * *- () 4E) 4)

5 1.3. Sammenligning mellom de to varianter av "korrigerte gjennomsnitts metode". Tabeller. A For= fl = o y var T w 1 + ) n. N,n). a_ T b -T-1 G-b T b \(, Betingelsen for at brokestimatet B la skal være bedre enn B kan skrives: E - E 1 0 og dette gir: - T 1 ( IL b W.41 n n.(- co ) -1. (-. LL T (+. O)) ) A n -4 1 't ( * * 4 W T W C W 4-.9) < o.4, M T w , A VT O.) NA antas at foroldet mellom "gjennomsnittlig" varians innen stratum og total varians er av samme størrelsesorden for undersøkt kjennetegn som for omsetning på undersøkelsestidspunkt. Dvs.: Etter innføring av :L:, fl, fes da, idet N -1 -,--.. a = utvalgsbroken, felles for alle strata, 0---., (1 - C p + 0 ) + ---i-ü ( - C +0 ' 0 ).0. -e. - a ( 1 1 \,)E,. + a + n C k \.-T) w 0 Her kan bestemmes vilke restriksjoner uliketen legger på verdisett av (,) og 0. del følgende betraktes det tilfelle at foroldet mellom covarianc' innen stratum og total covarians er lik det tilsvarende forold for variansene, altså: W T W W W T

6 Dette gir W T 0 W T ww = dvs., t i altså at "gjennomsnittlig" korrelasjon innen stratum er lik total korrelasjon. Det er ikke urimelig at dette kan gjelde med tilnærmelse for strata som alle ar felles grense oppad og nedad etter størrelsen av en variabel, totalomsetning. Uliketen vil da gi at (1-1)., E, C + e..1) a Anta nå at endringene mellom registerrevisjon og tellingstidspunkt er relativt smg, altså at ;79&1. Da blir leddene som inneolder - 1 og - 1 små i forold til andre ledd og kan derfor sløyfes. Derimot blir -4 4? - 1). multiplisert med n og vil derfor lett spille inn all den stund n må forutsettes g være relativt stor, I det undersøkte, konkrete, _ tilfelle er også av størrelsesorden 10 og oppover. Leddet n. mg derfor beolder, og man far: a- '13 (s n f ) cr- b a or- o- Man kan skrive: e - o- o- 0- b er i det konkrete tilfelle av størrelsesorden ca. 0,06, og rz tilnærmet e- a - o- 7 'b av orden 0,01. Dvs.: ---- er av størrelsesorden 0,0006. Det er derfor e cyforsvarlig g se 'bort fra -, ---- selv om den skulle kunne øke betydelig. Derfor ' -48 kan i det foreliggende tilfelle settes 1 + n

7 T w Er nå også -7 nar lik 1-a, og man får av orden (1-0,01) - 0,99, blir 1 svart C w 7j- Tilfellet C = = 1 fl betraktes nå spesielt. Det skulle ikke vare noe dårlig grunnlag for en vurdering, og resultater for C 1 vil kunne fåes ved enkel multiplikasjon. De følgende tabeller er derfor beregnet under forutsetning av at C - 1. (1) Tabell 1 A gir - med utgangspunkt i en-- - verdi tilsvarende-- i C engros, omsetningsgruppe - tallene for 1 ( i + n ) som funksjon av total utvalgsstørrelse n og som funksjon av 100. absoluttverdi av endring fra revisjonstidspunkt til tellingstidspunkt i prosent av verdi på tellingstidspunkt. tabell 1 B og 1 C er gitt.e) 1 + w for de samme n og 100 0,05 og 0,0. Tallene angir størrelser som - -,& og for to utvalgsbrøker, a, enoldsvis ) - korrelasjon mellom totalomsetning på tellingstidspunkt og undersøkt kjennetegn - mg overstige for at B = C x skal vare bedre enn =. -- Y (brokestimat) (korrigerte gjennomsnitt, opprinnelige versjon). Tabell 1 A kan oppfattes tilsvarende for tilfellet a 0. For praktiske formål er det nyttig g a " D minimum" som funksjon av antall strata, L, og totalt antall eneter pr stratum som etter forutsetningene er konstant N]I tabell 1 B og 1 C er det derfor innført verdisett av L og N 1 som sammen med a 0,05 eller a 0,0 gir den i ver orisontalrad oppgitte verdi av n.

8 8 Tabell 1 A-C Størrelse som korrelasjonen mellom undersøkt kjennetegn og omsetning på, tellingstidspunkt må overstige for at brokestimatet B være bedre enn den tidligere versjon av korrigerte gjennomsnitt" - estimat,b 11. Antall strata = L Totalt antall eneter pr. stratum = N 1 Taboll 1 A. Utvalgsbrok a = 0 E I ' n 0, ,5 5,0 10 0,500 0,50 0,509 0,533 0,601 0, ,501 0,504 0,517 0,566 0,703 0, ,50 0,510 0,541 0,666 jtõö6 1, ,503 0,51 0,583 0,631,1,513, ,507 0,54 0,666 j 1,-161, 554, j 0,517 0,603 0,914,153 5,565 10, ,533 0,706 11,38 3,805 10,65 1,166 Tabell 1 B. Utvalgsbrok a - 0,05, dvs. 5 prosent utvalg L=10 L= I N n J. 0,0 1N1 3, 5,0 0 0, ,57 0,59 0,536 0,6330, ,58 0,59 0,530 0,534 0,544 0,561 0,531 0,544 0,537 0,570 0,549 0,614 0,571 0,701 0, ,743 0, ,96 0, ,875

9 Tabell 1 C. Utvalgsbrok a = 0,0, dvs. 0 prosent utvalg L=10 L= N I N, n 0, ',5 1,0 _ 10 0,65 0,68 0,636 0,666 0,751 0, ,66 0,630 0,646 0,708 0,879 I 1, ,68 0,638 0,676 0, ,69 0,651 0,79 j 1, , ,679 0, ,645 0,754 1, ,666 0,883 Resultatene gjelder under de presiserte forutsetninger. Men de burde også kunne gi en pekepinn under de forold som er i praksis. Det ligger derfor near å trekke omtrent disse konklusjoner: Hvis endringene totalomsetning) fra siste regi-terrevis on til tellingstids)unkt er svært små f.eks. 0, rosenter brokestimatet g trekke såsant ikke er mindre enn 0,55 o 0,65 for enoldsvis a = 0, ,0. Mcd - 0,05 er brokestimatet of.så konkurransedyk t ig for noe storre verdier av endrings rosenten inntil ca. 1 rosent Lite antall strata oker også brukbareten av metoden. Hvis endringene er noe storre og f.eks. oppe i 5 10 prosent bo r foretrekkes den tidlicfze vet_ljon av,,korrigerte gjennomsnitts metode", og med klassifisering av enetene etter registeropplysni nger.. Skjeveter som adderes opp ved summering over alle omsetningsgrupper Utgangspunktet for vurdering av de forskjellige estimeringsmetoder ar ittil vært egenskapene ved estimater for gjennomsnitt_a innenaltielllgruppe for ver næringsgruppe (undergruppe). Vurderingen ar bygget på vordan metodene ville virke stort sett når alle undergrupper ar vært betraktet under ett. Den metode ar vært ansett som best som ga minste Vennomsnittlige (kvadrerte) avvikelser fra u sann" verdi i næringsgruppe innen omsetningsgruppe. Nå er man imidlertid interessert i totaler for ele næringsgrupper (undergrupper). Man multipliserer da gjennomsnitt innen omsetningsgruppe for vedkommende næring med antall bedrifter - entet fra registeret - og summerer

10 10 over a116 omsetningsgrupper. Vil da de resultater som er utledet for en omsetningsgruppe fremdeles være gyldige, eller kan det tenkes at summeringen bringer endringer i foroldet mellom estimeringsmetodene Hvis alle estimatene var forventningsrette, ville ingen problemer oppstå. Men i virkeligeten er både "ukorrigerte" og begge versjoner av "korrigerte gjennomsnitt" estimater vanligvis er belastet med skjevet. Bare metoden med rent - nå stratumveiet.ennomsnitt gir forventningsrette estimater (forutsatt at antall bedrifter entet fra registeret er identisk med det antall de beregnede gjennomsnitt er basert på). Ukorrigerte gjennomsnitt er belastet med skjevet. Forventning av estimat i undergruppe er popula-jonsgjennomsnitt i ovedgruppe for vedkommende omsetningsgruppe. Nå er det forutsatt at totalomsetning ar logaritmisk-normal fordeling. Anta lignende fordeling for kjennetegn som skal undersøkes.. Forutsett spesielt at den logaritmisk-normale fordeling innen undergruppe og den innen ovedgruppe ar samme spredningsparameter e. Hvis da medianen i fordeling innen ayedgruppe er f.eks. storre enn i den aktuelle undergruppe, vil man i alle omsetningsgrupper få at forventning i ovedgruppe er litt storre enn forventning i undergruppe. Brukes så utvalgsgjennomsnitt innen ovedgruppe som estimat for populasjonsgjennomsnitt i undergruppe, vil man innen alle omsetningsgrupper lope stor risiko for (i dette tilfelle) overestimering. Ved addisjon over alle omsetningsgrupper, vil skjeveter som sterkt tenderer i samme retning lett fore til betydelig skjevet på summer. Problemet synes sterkt redusert ved bruk av korrigerte gjennomsnitt. "korreksjonen" av ovedgruppegjennomsnittet (T) med totalomsetning innen undergruppe dividert med totalomsetning innen ovedgruppe, som anslås ved eller bør rimeligvis motvirke systematiske skjeveter. Skjeveten 7 innen omsetningsgruppe er 0 med bruk av "korreksj rbfaktoren" vis B A = 1/1 B B - -, som også kan skrives AA A IT C na... i..-. Nærmere analyse må utstå, Men den konklusjon må i vert fall kunne trekkes at når man ønsker estimat for ennomsnitt eller totaler o stått ved summering over alle, or:risetnin s ru er te ner tabell IA - 10 i et for lyst bilde av va som kan ventes metode, notat av 11-6 nådd ved ukorri erte ennomsnitts

Varehandelsstatistikken. Vurdering av ny estimeringsmetode Hans Olav Egede Larssen. Innhold

Varehandelsstatistikken. Vurdering av ny estimeringsmetode Hans Olav Egede Larssen. Innhold IO 64/4 Oslo,. juni 964 Varehandelsstatistikken Vurdering av ny estimeringsmetode 963 v Hans Olav Egede Larssen Innhold. Innledning. Problemstillingen 3. Estimatet Ti; de ukorrigerte gjennomsnitts metode

Detaljer

2003/28 Notater Anna-Karin Mevik. Notater. Usikkerhet i konjunkturbarometeret. Seksjon for statistiske metoder og standarder Emnegruppe: 08.

2003/28 Notater Anna-Karin Mevik. Notater. Usikkerhet i konjunkturbarometeret. Seksjon for statistiske metoder og standarder Emnegruppe: 08. 003/8 Notater 003 Anna-Karin Mevik Notater Usikkeret i konjunkturbarometeret Seksjon for statistiske metoder og standarder Emnegruppe: 08.90 Innold 1. Innledning... 3. Populasjon... 3.1. Stratifisering

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7 Vedlegg 1 - Regresjonsanalyser 1 Innledning og formål (1) Konkurransetilsynet har i forbindelse med Vedtak 2015-24, (heretter "Vedtaket") utført kvantitative analyser på data fra kundeundersøkelsen. I

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

Kvartalsvis ordrestatistikk for industrien

Kvartalsvis ordrestatistikk for industrien Notater Documents 24/2012 Anna-Karin Mevik og Robert Skotvold Kvartalsvis ordrestatistikk for industrien Dokumentasjon av estimatoren Notater 24/2012 Anna-Karin Mevik og Robert Skotvold Kvartalsvis ordrestatistikk

Detaljer

Mat503: Regneøving 3 - løsningsforslag

Mat503: Regneøving 3 - løsningsforslag Mat503: Regneøving 3 - løsningsforslag Oppgave a) Oppgaven sier at Fredrik stoler på erfaringen sin med positive ele tall. Fredrik ar sannsynligvis sett at dersom an ar et elt tall k >, vil den oppgitte

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål:

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål: Frafall fra videregende skole (VGS) er et stort problem. Bare ca 70% av elevene som begynner p VGS fullfører og bestr i løpet av 5 r. For noen elever er skolen s lite attraktiv at de velger slutte før

Detaljer

ET FORSØK PA EN ENKEL, TEORETISK VURDERING AV DE ESTIMERINGSMETODER SOM BRUKES I FORBINDELSE MED DE POLITISKE MENINGSMÅLINGER. lb Thomsen INNHOLD

ET FORSØK PA EN ENKEL, TEORETISK VURDERING AV DE ESTIMERINGSMETODER SOM BRUKES I FORBINDELSE MED DE POLITISKE MENINGSMÅLINGER. lb Thomsen INNHOLD I0 77/30 26. august 1977 ET FOSØK PA EN ENKEL, TEOETISK VUDEING AV DE ESTIMEINGSMETODE SOM BUKES I FOBINDELSE Av MED DE POLITISKE MENINGSMÅLINGE. lb Thomsen INNHOLD Side 1. Innledning... 2 2. Noen definisjoner

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS

Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. I de fleste tilfeller

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

IO 74/ november 1974

IO 74/ november 1974 IO 74/49 6. november 1974 ESTIMERING V TOTLER MED EN T0-TRINNS UTVLGSPLN DER DE PRIMÆRE UTVLGSOMRÅDER TREKKES MED ULIK SNNSYNLIGHET I FØRSTE TRINN av Petter Laake Side 1. Generelt om Byråets nye utvalgsplan

Detaljer

Statistikk. Forkurs 2017

Statistikk. Forkurs 2017 Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00 EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Innledning. med folketallet. En primær utvalgsenhet består av en kommune eller i noen tilfeller av to eller flere mindre kommuner. Tettsteder med over

Innledning. med folketallet. En primær utvalgsenhet består av en kommune eller i noen tilfeller av to eller flere mindre kommuner. Tettsteder med over Innledning Dette notatet er det første i en serie hvor en Onsker å studere forskjellige sider ved den nye utvalgsplanen. Her skal vi se på variansene til noen viktige sysselsettingstall, og sammenlikne

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

PRINSIPPER OG METODER FOR STATISTISK SENTRALBYRÅS UTVALGSUNDERSØKELSER

PRINSIPPER OG METODER FOR STATISTISK SENTRALBYRÅS UTVALGSUNDERSØKELSER PRINSIPPER OG METODER FOR STATISTISK SENTRALBYRÅS UTVALGSUNDERSØKELSER SAMFUNNSOKONOMISKE STUDIER NR. 33 PRINSIPPER OG METODER FOR STATISTISK SENTRALBYRÅS UTVALG SUNDERSOKELSER SAMPLING METHODS APPLIED

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Fredag 28. oktober 2016 Tid for eksamen: 14.00 16.00 Oppgavesettet er på

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

Frivillig respons utvalg

Frivillig respons utvalg Design av utvalg Andel college-studenter som er konservative? Andel ungdom som ser tv-reklame om ny sportssykkel? Gjennomsnittelig inntekt i en populasjon? Ønsker informasjon om stor populasjon Tid, kostnad:

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig

Detaljer

Etterspørsel etter barnehageplasser ved endringer av foreldrebetalingen

Etterspørsel etter barnehageplasser ved endringer av foreldrebetalingen Etterspørsel etter barnehageplasser ved endringer av foreldrebetalingen 2 Forord TNS-Gallup har på oppdrag fra Kunnskapsdepartementet gjennomført en kartlegging av etterspørselen etter barnehageplasser

Detaljer

Kraftelektronikk (Elkraft 2 høst), øvingssett 1, høst 2005

Kraftelektronikk (Elkraft 2 høst), øvingssett 1, høst 2005 Kraftelektronikk (Elkraft 2 øst), øvingssett, øst 2005 OleMorten Midtgård HiA 2005 Ingen innlevering. Det gis veiledning tirsdag 23. og tirsdag 30. august. Utvalgte oppgaver blir gjennomgått tirsdag 6.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Repeterbarhetskrav vs antall Trails

Repeterbarhetskrav vs antall Trails Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er andre artikkel i en serie av fire om tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien

Detaljer

NHOs spredningstabeller

NHOs spredningstabeller NHOs spredningstabeller Sivilingeniører Ingeniører Siviløkonomer per 1. oktober 2010 Innholdsfortegnelse Side Tabell 1 Lønnsnivå og lønnsendring etter utdanning 2 Tabell 2 Månedsfortjeneste etter - aldersgrupper

Detaljer

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Eksamensoppgave i SØK Økonometri I

Eksamensoppgave i SØK Økonometri I Institutt for samfunnsøkonomi Eksamensoppgave i SØK3001 - Økonometri I Faglig kontakt under eksamen: Bjarne Strøm Tlf.: 73 59 19 33 Eksamensdato: 7. juni 2016 Eksamenstid: 5 timer (09.00-14.00) Sensurdato:

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) HG April 010 Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) Innledende merknad. De fleste oppgavene denne uka er øvelser i bruk av den viktige regel 5.0, som er sentral i dette kurset,

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Numerisk derivasjon Vi skal se at der er ere måte å regne ut deriverte på i tillegg til de derivasjonsreglene vi kjenner fra før Men ikke alle måtene

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20). Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X

Detaljer

Repeated Measures Anova.

Repeated Measures Anova. Repeated Measures Anova. Vi bruker oppgave-5 som eksempel. I en evalueringsstudie av en terapeutisk intervensjon valgte man et pre-post med kontrollgruppe design. Alle personer ble undersøkt tre ganger

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Forelesning 4 STK3100

Forelesning 4 STK3100 ! * 2 2 2 Bevis : Anta Forelesning 4 STK3 september 27 S O Samuelsen Plan for annen forelesning: Likelihood-egenskaper 2 Konsistens for ML 3 Tilnærmet fordeling for ML 4 Likelihoodbaserte tester 5 Multivariat

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2 TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 12, blokk II Denne øvingen består av oppgaver om enkel lineær regresjon. De handler

Detaljer