Morfologi i Gråskala-Bilder

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Morfologi i Gråskala-Bilder"

Transkript

1 Morfologi i Gråskala-Bilder Lars Vidar Magnusson April 3, 2017 Delkapittel 9.6 Gray-Scale Morphology

2 Generelt Gråskala morfologiske operasjoner har mye til felles med binære morfologiske operasjoner. Vi har som før sett med x og y koordinater. Vi har digitale funksjoner f og b som representerer henholdsvis bildet og det strukturerende elementet.

3 Strukturende Elementer (SE) Vi har to typer strukturende elementer (SE) i gråskala morfologi. Nonflat (Kurvet) Flat Vi benytter stort sett bare flate SEr i praksis

4 Strukturende Elementer (SE) Som i binære SEr må vi definere senter/origo skikkelig. Når ingenting annet sies er det snakk om et symmtrisk SE. Vi kan utføre refleksjon av et SE.. ˆb(x, y) = b( x, y)

5 Erosion (Erosjon) Under er et eksempel på erosjon av et gråskala-bilde med et flatt sirkulært SE med radius på 2 piksler.

6 Erosion (Erosjon) Erosion (erosjon) av gråskala-bilder f med et flatt SE b er definert som følger.. [f b](x, y) = min (s,t) b {f (x + s, y + t)} Vi velger den laveste intensiteten av alle elementene i f som overlapper et element i b Erosjon vil derfor.. gjøre mørke områder større og lyse områder mindre gjøre bildet mørkere

7 Et Enkelt Eksempel Her er et enkelt eksempel på erosjon med et flatt SE

8 Et Enkelt Eksempel Resultatet fra operasjonen blir =

9 Dilation (Utvidning) Under er et eksempel på utvidning av et gråskala-bilde med et flatt sirkulært SE med radius på 2 piksler.

10 Dilation (Utvidning) Dilation (utvidning) av gråskala-bilder f med et flatt SE b er definert som følger. [f b](x, y) = max (s,t) b {f (x s, y t)} Vi velger den høyeste intensiteten av alle elementene i f som overlapper et element i ˆb Utvidning vil derfor.. gjøre lyse områder større og mørke områder mindre gjøre bildet lysere

11 Et Enkelt Eksempel Her er et enkelt eksempel på utvidning med et flatt SE

12 Et Enkelt Eksempel Resultatet fra operasjonen blir =

13 Erosjon og Utvidning med Kurvet SE Erosjon av et gråskala-bilde f med et kurvet SE b N er definert som... [f b N ](x, y) = min (s,t) b {f (x + s, y + t) b N (s, t)} Utvidning av et gråskala-bilde f med et kurvet SE b N er definert som... [f b N ](x, y) = max (s,t) b {f (x s, y t) + b N (s, t)} Merk Kurvede SEr brukes sjeldent siden resultatet kan være vanskelig å tolke (ikke begrenset til verdier i f )

14 Koblingen Mellom Erosjon og Utvidning Som med binær morfologi er det en kobling mellom erosjon og utvidning. og (f b) c (x, y) = (f c ˆb)(x, y) (f b) c (x, y) = (f c ˆb)(x, y) hvor f c = f (x, y). Vi forenkler typisk notasjonen til... (f b) c = (f c ˆb) og (f b) c = (f c ˆb)

15 Opening (Åpning) Under er et eksempel på åning av et gråskala-bilde med et flatt sirkulært SE med radius på 3 piksler.

16 Opening (Åpning) Opening (åpning) av et bilde f med et SE b er definert som følger. f b = (f b) b Som tidligere så er åpning bare en erosjon, fulgt av en utvidelse. Kan visualiseres som å flytte rundt SE rundt samt å presse opp mot undersiden av intensitsprofilen.

17 Et Enkelt Eksempel Her er et enkelt eksempel på åpning med et flatt SE

18 Et Enkelt Eksempel Resultatet fra operasjonen blir =

19 Closing (Lukking) Under er et eksempel på lukking av et gråskala-bilde med et flatt sirkulært SE med radius på 3 piksler.

20 Closing (Lukking) Closing (lukking) av et bilde f med et SE b er definert som følger. f b = (f b) b Som tidligere så er lukking bare en utvidelse, fulgt av en erosjon. Kan visualiseres som å flytte rundt SE rundt samt å presse ned mot oversiden av intensitsprofilen.

21 Et Enkelt Eksempel Her er et enkelt eksempel på lukking med et flatt SE

22 Et Enkelt Eksempel Resultatet fra operasjonen blir =

23 Koblingen Mellom Åpning og Lukking Som tidligere så er det en kobling mellom åpning og lukking. og tilsvarende... (f b) c = f c ˆb (f b) c = f c ˆb Siden f c = f (x, y) kan vi også skrive.. og tilsvarende... (f b) = f ˆb (f b) = f ˆb

24 Morfologisk Utjevning Under er resultatet av å utføre morfologisk utjevning på et gråskala-bilde med støy.

25 Morfologisk Utjevning Åpning fjerner lyse detaljer mindre enn SE og lukking fjerner mørke detaljer mindre enn SE De kan derfor kombineres til å oppnå morfologisk ujevning. (f b) b Hva som fjernes kontrolleres av SE

26 Et Reelt Eksempel Under har vi et bilde av Cygnus Loop supernova tatt i X-ray båndet. La oss prøve å fjerne støyet ved hjelp morfologisk utjevning

27 Et Reelt Eksempel Under er resultatet av å åpne, så lukke, med et flatt SE med radius på 1 (2) piksler

28 Et Reelt Eksempel Under er resultatet av å åpne, så lukke, med et flatt SE med radius på 2 (3) piksler

29 Et Reelt Eksempel Under er resultatet av å åpne, så lukke, med et flatt SE med radius på 4 (5) piksler

30 Morfologisk Gradient Her er et eksempel på hva som kan gjøres med morfologisk gradient operasjonen.

31 Morfologisk Gradient Vi kan bruke morfologiske operasjoner på gråskala-bilder for å finne en gradient. g = (f b) (f b) Operasjonen vil fremheve kanter i.e. endringer, mens homogene områder forsvinner Ligner på derivasjonen som brukes for å finne gradienten ved normal spatial filtrering

32 Et Reelt Eksempel Her er et bilde fra en CT undersøkelse

33 Et Reelt Eksempel Her er et resultatet av å utvide det gitte bildet med et kvadratisk 3 3 SE

34 Morfologisk Gradient Her er den endelige morfologiske gradienten (samt orginalen for sammenligning)

Morfologi i Binære Bilder II

Morfologi i Binære Bilder II Morfologi i Binære Bilder II Lars Vidar Magnusson March 28, 2017 Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation Opening (Åpning) Opening er en morfologisk operasjon

Detaljer

Morfologi i Binære Bilder

Morfologi i Binære Bilder Morfologi i Binære Bilder Lars Vidar Magnusson March 20, 2017 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Bakgrunn Morfologiske operasjoner på binære bilder beskrives med mengdeteori.

Detaljer

Morfologi i Gråskala-Bilder II

Morfologi i Gråskala-Bilder II Morfologi i Gråskala-Bilder II Lars Vidar Magnusson April 4, 2017 Delkapittel 9.6 Gray-Scale Morphology Top-Hat (Topphatt) Transformasjon Et eksempel på bruk av top-hat transformasjonen Top-Hat (Topphatt)

Detaljer

Morfologi i Binære Bilder III

Morfologi i Binære Bilder III Morfologi i Binære Bilder III Lars Vidar Magnusson March 28, 2017 Delkapittel 9.5 Some Basic Morphological Algorithms Boundary Extraction (Grenseuthenting) Vi kan hente ut grensen til et sett (boundary)

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder

Detaljer

Motivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk.

Motivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk. INF 230 Morfologi Morfologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. ammensatte operasjoner 4. Eksempler på anvendelser flettet inn GW, Kapittel

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder. 1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser

Detaljer

Grunnleggende Matematiske Operasjoner

Grunnleggende Matematiske Operasjoner Grunnleggende Matematiske Operasjoner Lars Vidar Magnusson January 16, 2017 Delkapittel 2.6 Array vs Matrise Operasjoner Det er vanlig med både array- og matrise-operasjoner på bilder. Array-multiplikasjon

Detaljer

Spatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters

Spatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Spatial Filtere Lars Vidar Magnusson February 6, 207 Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Hvordan Lage Spatial Filtere Det er å lage et filter er nokså enkelt;

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

Intensitetstransformasjoner og Spatial Filtrering

Intensitetstransformasjoner og Spatial Filtrering Intensitetstransformasjoner og Spatial Filtrering Lars Vidar Magnusson January 23, 2017 Delkapittel 3.1 Background Delkapittel 3.2 Some Basic Intensity Tranformation Functions Spatial Domain Som vi allerede

Detaljer

Filtrering i Frekvensdomenet II

Filtrering i Frekvensdomenet II Filtrering i Frekvensdomenet II Lars Vidar Magnusson March 7, 2017 Delkapittel 4.8 Image Smoothing Using Frequency Domain Filters Delkapittel 4.9 Image Sharpening Using Frequency Domain Filters Low-Pass

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

Introduksjon. Morfologiske operasjoner på binære bilder. Litt mengdeteori. Eksempel: Lenke sammen objekter INF

Introduksjon. Morfologiske operasjoner på binære bilder. Litt mengdeteori. Eksempel: Lenke sammen objekter INF INF230 5.05.202 Morfologiske operasjoner på binære bilder Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser er flettet inn DIP: 9.-9.4, 9.5.,

Detaljer

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling Digital bildebehandling Forelesning 3 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

Motivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk.

Motivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk. INF 230 Morologi Morologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. Sammensatte operasjoner 4. Eksempler på anvendelser lettet inn GW, Kapittel 9.-9.4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

Matematisk Morfologi Lars Aurdal

Matematisk Morfologi Lars Aurdal Matematisk Morfologi Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Motivasjon. Plan Grunnleggende setteori. Grunnleggende operasjoner. Dilasjon. Erosjon. Sammensatte operasjoner Åpning Lukning Algoritmer.

Detaljer

EKSAMEN. Bildebehandling og mønstergjenkjenning

EKSAMEN. Bildebehandling og mønstergjenkjenning EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet

Detaljer

Punkt, Linje og Kantdeteksjon

Punkt, Linje og Kantdeteksjon Punkt, Linje og Kantdeteksjon Lars Vidar Magnusson April 18, 2017 Delkapittel 10.2 Point, Line and Edge Detection Bakgrunn Punkt- og kantdeteksjon er basert på teorien om skjærping (forelesning 7 og 8).

Detaljer

Grunnleggende om Digitale Bilder (ITD33515)

Grunnleggende om Digitale Bilder (ITD33515) Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og

Detaljer

Mer om Histogramprosessering og Convolution/Correlation

Mer om Histogramprosessering og Convolution/Correlation Mer om Histogramprosessering og Convolution/Correlation Lars Vidar Magnusson January 30, 2017 Delkapittel 3.3 Histogram Processing Delkapittel 3.4 Fundementals of Spatial Filtering Lokal Histogramprosessering

Detaljer

Deteksjon av ringformede fotgrøfter i høyoppløselige satellittbilder av jordbruksområder

Deteksjon av ringformede fotgrøfter i høyoppløselige satellittbilder av jordbruksområder Deteksjon av ringformede fotgrøfter i høyoppløselige satellittbilder av jordbruksområder Øivind Due Trier (NR), Anke Loska (Riksantikvaren), Siri Øyen Larsen (NR) og Rune Solberg (NR) Samarbeidspartnere:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling Introduksjon Digital bildebehandling Forelesning 4 Morologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler

Detaljer

Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter

Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter. Oversikt, kursdag 3 Copyright Lars Aurdal, NTNU/NR

Detaljer

Prøve- EKSAMEN med løsningsforslag

Prøve- EKSAMEN med løsningsforslag Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg

Detaljer

Matematisk morfologi IV

Matematisk morfologi IV Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.

Detaljer

Morfologiske operasjoner. Motivasjon

Morfologiske operasjoner. Motivasjon INF 230 Digital bildebehandling orelesning nr 2-9.04.2005 Morologiske operasjoner Litteratur : Eord, Kap. Temaer : Neste gang : Basis-begreper Fundamentale operasjoner på binære bilder ammensatte operasjoner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Matematisk morfologi V

Matematisk morfologi V Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 5 Segmentering: Watershedtransformen. Copyright Lars Aurdal, NTNU/NR

Detaljer

Matematisk morfologi II

Matematisk morfologi II Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 2 Elementære operasjoner: Erosjon. Dilasjon. Sammensatte operasjoner:

Detaljer

Oversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral

Oversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Segmentering: Watershedtransformen. Oversikt, kursdag 5 Copyright Lars Aurdal, NTNU/NR Copyright Lars Aurdal, NTNU/NR

Detaljer

Oversikt, kursdag 2. Matematisk morfologi II. Morfologiske operatorer, erosjon og dilasjon. Morfologiske operatorer, erosjon og dilasjon

Oversikt, kursdag 2. Matematisk morfologi II. Morfologiske operatorer, erosjon og dilasjon. Morfologiske operatorer, erosjon og dilasjon Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Elementære operasjoner: Erosjon. Dilasjon. Oversikt, kursdag 2 Sammensatte operasjoner: Åpning. Lukning. Flosshatt-transformasjoner.

Detaljer

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling Introduksjon Digital bildebehandling Forelesning 3 Morologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler

Detaljer

Matematisk morfologi III

Matematisk morfologi III Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 3 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Filtrering i Frekvensdomenet III

Filtrering i Frekvensdomenet III Filtrering i Frekvensdomenet III Lars Vidar Magnusson March 13, 2017 Delkapittel 4.9.5 Unsharp Masking, Highboost Filtering, and High-Frequency-Emphasis Filtering Delkapittel 4.10 Unsharp Masking og Highboost

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder 3/8/29 Digitale bilder med spesielt fokus på medisinske bilder Karsten Eilertsen Radiumhospitalet Neste to forelesninger Torsdag 29/: Enkel innføring i digitale bilder Eksempler på noen enkle metoder for

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

Oversikt, kursdag 4. Matematisk morfologi IV. Geodesi-transformasjoner: Dilasjon. Geodesi-transformasjoner

Oversikt, kursdag 4. Matematisk morfologi IV. Geodesi-transformasjoner: Dilasjon. Geodesi-transformasjoner Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember Geodesi-transformasjoner: Oversikt, kursdag Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.. Åpning/lukning

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen:

Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen: . 2 65 Løsning E.1 Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen: Dette er den søkte formen. " Løsning E.2 %'& Legg en -akse i # s retning, dvs. # () -,&

Detaljer

MA1103. Partiellderivert, derivert og linearisering

MA1103. Partiellderivert, derivert og linearisering MA1103 4/2 2013 Partiellderivert, derivert og linearisering Partiellderivert i en koordinatretning: Tenk på alle de andre variablene som konstanter. f : A R n R m, a = (a 1,..., a n ) A f 1 f x 1 (a)...

Detaljer

Kantsegmentering NTNU

Kantsegmentering NTNU Kantsegmentering Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 24 Oversikt, kantsegmentering Litt praktisk informasjon. Motivasjon. Hva er en kant i et bilde? Hva er segmentering? Hva er kantsegmentering?

Detaljer

Histogramprosessering

Histogramprosessering Histogramprosessering Lars Vidar Magnusson January 24, 217 Delkapittel 3.3 Histogram Processing Histogram i Bildeanalyse Et histogram av et digitalt bilde med intensitet i intervallet [, L) er en diskret

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG Side 1 av 8 KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Parametriske kurver a) En eksplisitt eller implisitt funksjon i tre variable

Detaljer

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Lars Vidar Magnusson 21.2.2014 Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Rød-Svarte trær (red-black trees) er en variasjon binære søketrær som

Detaljer

Mars Robotene (5. 7. trinn)

Mars Robotene (5. 7. trinn) Mars Robotene (5. 7. trinn) Lærerveiledning Informasjon om skoleprogrammet Gjennom dette skoleprogrammet skal elevene oppleve og trene seg på et teknologi og design prosjekt, samt få erfaring med datainnsamling.

Detaljer

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder Grådige Algoritmer Lars Vidar Magnusson 12.3.2014 Kapittel 16 Grådige algoritmer Aktivitetvelgingsproblemet Huffmankoder Ideen bak Grådige Algoritmer Ideen bak grådige algoritmer er å løse optimaliseringsproblem

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

Midtveiseksamen. INF Digital Bildebehandling

Midtveiseksamen. INF Digital Bildebehandling INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:

Detaljer

Minimum Spenntrær - Kruskal & Prim

Minimum Spenntrær - Kruskal & Prim Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet

Detaljer

Funksjoner. Astrid Bondø Svein Hallvard Torkildsen. Namsos, 29.03.12

Funksjoner. Astrid Bondø Svein Hallvard Torkildsen. Namsos, 29.03.12 Funksjoner Astrid Bondø Svein Hallvard Torkildsen Namsos, 29.03.12 Lokket Se på hvordan lokket er laget. Lag et lokk av A4-papir etter samme prinsipp. Mulig å lage flere fasonger? Lav Høy Studer volumene.

Detaljer

Design. Manual. Mynte Medier. Svein Erik Rusten

Design. Manual. Mynte Medier. Svein Erik Rusten Design Manual Svein Erik Rusten 2. Innhold Logo Mynte medier logoen Logo Farger typografi 3 6 8 Logoen er bygged opp av de to forbokstavene i med spesialtegnede M er inne i en boks, med bedriftens navn

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal

Detaljer

Analyse av Algoritmer

Analyse av Algoritmer Analyse av Algoritmer Lars Vidar Magnusson 10.1.2014 Asymptotisk notasjon (kapittel 3) Kompleksitetsklasser Uløselige problem Asymptotisk Notasjon Asymptotisk analyse innebærer å finne en algoritmes kjøretid

Detaljer

Oversikt, matematisk morfologi. Matematisk morfologi. Oversikt, matematisk morfologi. Oversikt, matematisk morfologi. Praktisk informasjon

Oversikt, matematisk morfologi. Matematisk morfologi. Oversikt, matematisk morfologi. Oversikt, matematisk morfologi. Praktisk informasjon Matematisk morfologi Lars urdal Norsk regnesentral aurdal@nr.no 9. august 2005 Litt praktisk informasjon.. Historie. Matematisk grunnlag. Fundamentale operatorer: Dilasjon. Erosjon. 1 Sammensatte operatorer:

Detaljer

INF1400 Kap 1. Digital representasjon og digitale porter

INF1400 Kap 1. Digital representasjon og digitale porter INF4 Kap Digital representasjon og digitale porter Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell

Detaljer

Trianguleringer i planet.

Trianguleringer i planet. Trianguleringer i planet. Preliminaries Notasjon og teminologi Graf-egenskaper med trianguleringer i planet Enkle trianguleringsalgoritmer 1 Punkter og domener. Vi starter med et sett punkter i planet

Detaljer

Matematisk morfologi NTNU

Matematisk morfologi NTNU Matematisk morfologi Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 2004 Oversikt, matematisk morfologi Litt praktisk informasjon. Motivasjon. Historie. Matematisk grunnlag. Fundamentale operatorer:

Detaljer

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim Minimum Spenntrær Lars Vidar Magnusson 2.4.2014 Kapittel 23 Minimum spenntrær Kruskal Prim Minimum Spenntrær Et spenntre er et tre som spenner over alle nodene i en graf G = (V, E). Et minimum spenntre

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Forelesning 4. Binær adder m.m.

Forelesning 4. Binær adder m.m. Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både

Detaljer

MAT Grublegruppen Uke 37

MAT Grublegruppen Uke 37 MAT00 - Grublegruppen Uke 37 Jørgen O. Lye Bemerkning: Mye av stoffet i dette notatet er å finne i Kalkulus, kapittel. Dette kapittelet er leselig etter man vet hva følger er, men er ikke pensum før i

Detaljer

Kul geometri - volum og overflate av kulen

Kul geometri - volum og overflate av kulen Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

INF februar 2017 Ukens temaer (Kap og i DIP)

INF februar 2017 Ukens temaer (Kap og i DIP) 1. februar 2017 Ukens temaer (Kap 2.4.4 og 2.6.5 i DIP) Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder 1 / 30 Geometriske operasjoner Endrer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og

Detaljer

Løsningsforslag til øving

Løsningsforslag til øving 1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

Lagring og transport av trepellets

Lagring og transport av trepellets Lagring og transport av trepellets Trepellets distribueres i hovedsak på tre følgende hovedmåter: Småsekk i størrelsesområdet 10-30 kg. Storsekk i størrelsesområdet fra 400 kg til 1200 kg. Ved større forbruk

Detaljer

Karakterisering av CT rekonstruksjonsfiltre ved måling av halvverdibreddeog

Karakterisering av CT rekonstruksjonsfiltre ved måling av halvverdibreddeog Karakterisering av CT rekonstruksjonsfiltre ved måling av halvverdibreddeog støy Wibeke Nordhøy, Arne Skretting og Kristine Eldevik Diagnostisk fysikkmøte på Gardermoen, 2.11.09 Oppløsningsevne i CT bilder

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

TextureTool med SOSI-parser

TextureTool med SOSI-parser TextureTool med SOSI-parser Verktøy for teksturmapping og automatisk generering av 3D-modeller Hovedprosjekt 11E Erlend A. Lorentzen Jørn G. Nyegaard-Larsen 3DSU 2008/2009 Høgskolen i Sør-Trøndelag Avdeling

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

Kort norsk manual Hvordan komme i gang:

Kort norsk manual Hvordan komme i gang: Kort norsk manual Hvordan komme i gang: Det første du må gjøre er å laste inn et skip i programmet. Det gjør du ved å velge Open under File -menyen. Fra underkatalogen Ships Database velger du et skip,

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter

Detaljer

Innholdsfortegnelse. 1. Innledning 1.1. Forord 1.2. Problemstilling. 2. Om kamera 2.1. Blender 2.2. Lukker 2.3. ISO

Innholdsfortegnelse. 1. Innledning 1.1. Forord 1.2. Problemstilling. 2. Om kamera 2.1. Blender 2.2. Lukker 2.3. ISO Innholdsfortegnelse 1. Innledning 1.1. Forord 1.2. Problemstilling 2. Om kamera 2.1. Blender 2.2. Lukker 2.3. ISO 3. Digital fotografering I bevegelse 3.1. Motivbevegelse med stativ 3.2. Kamerabevegelse

Detaljer

Fourier-Transformasjoner II

Fourier-Transformasjoner II Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4

Detaljer

Produkt bygget opp av et sett av strenger og et dekke forbundet til strengene ved hjelp av en festeanordning

Produkt bygget opp av et sett av strenger og et dekke forbundet til strengene ved hjelp av en festeanordning 1 Produkt bygget opp av et sett av strenger og et dekke forbundet til strengene ved hjelp av en festeanordning 0001 Oppfinnelsen omhandler et produkt bestående av et sett med tråder, holdt sammen av minst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder

Detaljer

Tittel: Fleksibelt rørformet element med tettende tapelag

Tittel: Fleksibelt rørformet element med tettende tapelag Tittel: Fleksibelt rørformet element med tettende tapelag Fagfelt Oppfinnelsen angår generelt fleksible rør og især en ny utforming for et fleksibelt rør med et tett båndlag. 5 Bakgrunn Fleksible rør er

Detaljer