Basisbilder - cosinus v Bildene

Størrelse: px
Begynne med side:

Download "Basisbilder - cosinus v Bildene"

Transkript

1 Repetisjon Basis-bilder 737 Midlertidig versjon! INF 3 9 mars 7 Diskret Fouriertransform del II Ortogonal basis for alle 4x4 gråtonebilder Kjapp repetisjon Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Bruk av vinduer Eksempel: INF3 739 Sort er, hvit er / * + 3* + + 6* INF3 739 En alternativ basis Basisbilder - cosinus v Bildene u med frekvensene til v N- u,,,n- v,,,n- Alle digitale gråtonebilder av størrelse NxN kan representeres ved en vektet summasjon av disse NxN sinus- og cosinus-bildene (basisbilder/basisvektorer) Denne basisen er også ortogonal, sett bort i fra duplikat-komponentene grunnet symmetriene og antisymmetriene til cos og sin (noe vi kommer til om litt) sin(-π(ux/m+vy/n)) INF3 739 til u N- Ved ikke-kvadratiske bilder: cos(π(ux/m+vy/n)) 3 /39 Basisbilder - sinus 739 INF3 I illustrasjonen indikerer sort - og hvitt 4 /39 D diskret Fouriertransform (DFT) v u til v N- til u N- 739 INF3 Husk at ejθ cos(θ) + j sin(θ), slik at vi ender opp sin/cos-basisen vi er vant med: Den inverse transformen: I illustrasjonen indikerer sort - og hvitt 5 / INF3 6 /39

2 Litt repetisjon om DFT Konvolusjonsteoremet Fouriertransformen F(u,v) er periodisk: F(u,v)F(u+kN,v+kN), k heltall Bildet f(x,y) implisitt periodisk: f(x,y)f(x+kn,y+kn) Konvolusjon i bildedomenet Punktvis multiplikasjon i frekvensdomenet Amplitudespekteret er gitt ved F(u,v) Konjugert symmetri: Hvis f(x,y) er reell, er F(u,v)*F(-u,-v) og altså F(u,v) F(-u,-v) Ofte forskyver spekteret med N/ for å få origo (uv) midt i bildet Det motsatte gjelder også: Punktvis multiplikasjon i bildedomenet Konvolusjon i frekvensdomenet D DFT er separabelt i to D DFT Egentlig snakk om en «sirkelkonvolusjon» Shift-teoremet: f(x-x,y-y) F(u,v) e-j (ux+vy)/n /39 INF3 739 Diskrete tilfellet: Elementvis produkt av de komplekse matrisene F og H 8 /39 INF3 Eksempel: Middelverdifilteret Anvendelser Analyse av konvolusjonsfiltre Fourier-transformen til et filter h gir oss innblikk i frekvensresponsen til filteret /5 Filterdesign Kan designe filter i både frekvensdomenet og bildedomenet Begge kan implementeres som konvolusjon i bildedomenet, eller som multiplikasjon i frekvensdomenet F og H må ha samme størrelse: Nullutvide [Det nullutvidede bildet har egentlig størrelse 5x5 Aksene viser feil] nullutvide (I)DFT * (I)DFT Implementasjon Store filtre kan implementeres raskere i frekvensdomenet 739 (I)DFT 9 /39 INF3 Konvolusjonsteoremet: Tommelfingerforklaring Sirkelkonvolvere Bilde A 739 INF3 /39 Konvolusjonsteoremet mer formelt (D) Bilde B Sirkelkonvolusjon Sirkelkonvolvere alle kombinasjoner og så summere etc MEN: Ved ulik (u,v) får vi Ved like (u,v) endres kun amplitude og fase etc Å (sirkel)konvolvere et bilde med en av basisbildene gir som resultat det samme basisbildet dog med mulig endret amplitude og fase 739 INF3 /39 (Kopi fra dsprelatedcom) 739 INF3 /39

3 Filterdesign i Fourier-domenet Generelt Design i romlige domenet og filtrering i frekvensdomenet Har en filterkjerne og vil implementere filtreringen i frekvensdomenet: Vi ønsker reelle konvolusjonskjerner > (konjugert) symmetrisk i Fourierdomenet Beregn DFT (fft) av bildet Beregn DFT (fft) av filterkjernen (med evt nullutvidelse) 3 Multipliser de to transformerte matrisene elementvis 4 Transformer resultatet tilbake til bildedomenet vha invers DFT (IDFT, ifft) Ofte er alle verdiene til filteret mellom og ; fjerner og bevarer den aktuelle frekvensen Hvis DC i filteret er så bevares bildets middelverdi Vi viste forrige uke at DC er summen av gråtoneverdiene Hvis DC i filteret er så vil DC i ut-bildet bli lik DC i innbildet, altså vil summen av gråtoneverdiene bevares Husk at filteret og bildet må ha samme størrelse (nullutvide filterkjernen) Husk at vi snakker sirkelkonvolusjon (må nullutvide mer [også bildet] om vi ønsker alternative randhåntering) /39 INF3 Filterdesign i frekvensdomenet Lavpassfiltre /39 INF3 Romlig representasjon av ideelt lavpassfilter Slipper bare gjennom lave frekvenser (mindre enn en grense D som kalles filterets cut-off-frekvens) IDFT D oppgis ofte som et tall mellom og ; da menes en cut-off DN/ Enkelt (også kalt ideelt) lavpassfilter: (Ordet ideelt kommer fra om H(u,v) var enten eller for alle mulige frekvenser u og v, ikke kun,,n- Dette er et urealiserbart filter, da filterkjernestørrelsen da vil gå mot uendelig) /39 INF3 Eksempler - ideell lavpass Vi får en «ringing»-effekt i bildet 739 INF3 D INF3 i og j er array-indeksene til H og er relatert til frekvensene ved et skift: u i M /+ v j N / + Hvorfor floor(m/+)? for i :M for j :N if sqrt( ((i-floor(m/+))/(m/))^ + ((j-floor(n/+))/(n/))^ ) < D H(i,j) ; end end end D 3 Se på bildene i god nok oppløsning (du skal se stripe/ringing-effekter i de to til høyre) /39 MATLAB-eksempel: Ideelt lavpassfilter f double(imread('')); [M,N] size(f); H zeros(m,n); D ; Original (trunkert sinc-funksjon) Og husk tommelfingerregel om utstrekning i fourier- og bildedomenet 7 /39 F fftshift( fft(f) ); g real( ifft( ifftshift( F*H ) ) ); imshow(g, []); 739 Hvis M er odde: DC skal være pikselen midt i filteret Da vil filterposisjonene representere frekvensintervallet [-floor(m/), floor(m/)] Arrayindeksene vil derfor angi frekvensene hvis vi skifter med floor(m/) (nullindeksert array) eller floor(m/+) ceil(m/) (en-indeksert array) Hvis M er like: Senterpunktet i filteret er nå midt mellom piksler, men DC skal ligge i en piksel Generelt kan vi velge om DC skal være den M/-te eller (M/+)-te posisjonen i filteret Det er sistnevnte som er vanlig og som brukes i FFTSHIFT og IFFTSHIFT Med dette valget vil filterposisjonene representere frekvensintervallet [-M/, M/-] For én-indeksering skal vi da skifte med M/+ floor(m/+) Analog forklaring for floor(n/+) INF3 8 /39

4 Butterworth lavpassfilter Vindusfunksjoner brukes til å redusere ringing-effekten Butterworth lavpassfilter av orden n: H (u, v ) n D (u, v) / D Her vil D beskrive punktet der H(u,v) har falt til halvparten av sin maksimumsverdi Lav filterorden (n liten): H(u,v) faller langsomt: Lite ringing Høy filterorden (n stor): H(u,v) faller raskt: Mer ringing Andre filtre kan også brukes, feks Gaussisk, Bartlett, Blackman, Hamming, Hanning /39 INF3 739 Eksempler Butterworth-lavpass /39 INF3 Gaussisk lavpassfilter Gaussisk lavpassfilter med spredning D er definert som: H (u, v)e D (u, v) D altså en D normalfordeling (uten konstantfaktoren) med DC som forventning og D som standardavvik (i alle retninger, ingen kovarians) D H(,) er og H er strengt avtagende i alle retninger ut fra DC n4 n Standardavviket angir avstanden fra DC til punktet der H er,6 n6 D IDFT-en av et Gaussisk lavpassfilter er også Gaussisk Får ingen ringing i bildedomenet! 739 INF3 / /39 INF3 Høypassfiltrering Gaussisk lavpassfilter Et høypassfilter kan defineres ut fra et lavpassfilter: H HP (u, v) H LP (u, v) Ideelt høypassfilter: H (u, v) { if D (u, v) D if D (u, v) > D Butterworth høypassfilter: H (u, v) +[ D / D (u, v )]n Gaussisk høypassfilter: Husk tommelfingerregelen: Smal/bred struktur i bildet Bred/smal struktur i Fourierspekteret 739 INF3 3 /39 H (u, v ) e 739 INF3 D (u,v ) D 4 /39

5 Båndpass- og båndstoppfiltere Notch-filtre Båndpassfilter: Slipper gjennom kun energien i et bestemt frekvensbånd <Dlow, Dhigh> (eller <D-, D + >) Slipper igjennom (notch-passfiltre) eller stopper (notchstoppfiltre) energien i mindre predefinerte området i Fourier-spekteret Båndstoppfilter: Fjerner energi i et bestemt frekvensbånd <Dlow,Dhigh> Butterworth båndstoppfilter: Båndstopp Også disse kan bruke de samme overgangene: Ideelt, Butterworth, Gaussisk (eller én av mange andre typer) Båndpass + Kan være svært nyttige Butterworth båndpassfilter: - Ofte trengs interaktivitet for å definere de aktuelle områdene H p (u, v) H s (u, v) /39 INF3 739 /9 /5 Fig 464 i DIP INF3 7 /39 6 /39 Analyse av filtre Frekvensresponsen til noen vanlige filtre Eksempel: Notch-stoppfilter 739 INF3 / INF3 8 /39 Høypassfiltre x * 739 INF3 9 / INF3 3 /39

6 Prewitt-filteret Når er filtrering raskest i frekvensdomenet? Anta bildet har størrelse N N, filterkjernen n n Filtrering i bildedomenet krever N n multiplikasjoner og tilsvarende addisjoner Filtrering i frekvensdomenet: - x * FFT av bildet og filterkjernen: * O(N log N) Multiplikasjon i frekvensdomenet: N multiplikasjoner Inverstransform av resultatet : O(N log N) Filtrering i frekvensdomenet raskere når filteret er stort ( n >> log N ) 3 /39 INF3 739 «Korrelasjonsteoremet» INF3 3 /39 Bruk av vindusfunksjoner Må se på bildet som periodisk > Det oppstår diskontinuiteter i kantene av bildet > «kunstige» bidrag på aksene i spekteret f ( x, y ) h( x, y) F (u, v)* H (u, v) Korrelasjon i bildedomenet Multiplikasjon (med F*(u,v)) i frekvensdomenet Med F(u,v)* menes den kompleks-konjugerte til F(u,v) Det motsatte gjelder også: f ( x, y )* h( x, y ) F (u, v) H (u, v) For å begrense slike høyfrekvente bidrag kan man bruke en vindusfunksjon og vekte dataene før DFT beregnes Vindusfunksjonene modifiserer pikselverdiene slik at de går mot null i enden av sekvensene Lag fw(x,y)f(x,y)w(x,y) Ta DFT av fw(x,y) Bildet kan være en liten del av et større bilde, jfr egenskapsuttrekning Brukes feks til templatmatching Bortsett fra komplekskonjugeringen, *, er dette helt likt konvolusjonsteoremet! 739 INF3 33 / Eksempler på vindusfunksjoner window function apodization tapering Hamming-vindu h hamming(n); w h*h ; fw w * f; Tukey-vindu h tukeywin(n); w h*h ; fw w * f; INF3 34 /39 Effekten av vinduer Hvis vi bruker vindusfunksjon til å redusere effekten av bildekantene i spekteret gjør vi fw(x,y)f(x,y)w(x,y) før FFT Dette gjør at bidragene langs aksene i Fourier-spekteret reduseres, men vi påvirker også andre frekvenser i bildet Effekten av en multiplikasjon i bildedomenet er en konvolusjon i frekvensdomenet (konvolusjonsteoremet) Multiplikasjon med en bred klokkefunksjon i bildedomenet er ekvivalent med en konvolusjon av en smal klokkefunksjon i frekvensdomenet Bruk av vindusfunksjon gir en blurring av spekteret Jfr konvolusjonsteoremet 739 INF3 35 / INF3 36 /39

7 Vindusfunksjoner Eksempel, bruk av vindusfunksjon x D IDFT D IDFT Det finnes mange typer vindusfunksjoner Ofte defineres de i D og utvides til D ved matrisemultiplikasjon D samplet vindusfunksjon h (kolonnevektor) gir D-en ved hht Forrige eksempel benyttet Tukey-vinduet, som i D er definert som: D IDFT Parameteren α kontrollerer skarpheten til overgangen; gir et rektangulært vindu, gir et glatt vindu kalt Hann vindu 739 INF3 37 /39 Oppsummering Konvolusjonsteoremet: Konvolusjon i bildedomenet er ekvivalent med elementvis multiplikasjon i frekvensdomenet, og omvendt Anvendelser Design av filtre i frekvensdomenet Lavpass, høypass, båndpass, båndstopp, notch «Myke» overganger -> redusere ringing Analyse av konvolusjonsfiltre Rask implementasjon av større konvolusjonsfiltre Vindusfunksjoner 739 INF3 39 /39 Vindusfunksjoner kan også brukes i Fourier-domenet, da til å definere overgangene i et filter Butterworth og Gaussisk er vindusfunksjoner Alle vindusfunksjoner kan brukes i begge domener 739 INF3 38 /39

INF mars 2017 Diskret Fouriertransform del II

INF mars 2017 Diskret Fouriertransform del II INF230 29. mars 207 Diskret Fouriertransform del II Kjapp repetisjon Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Bruk av vinduer 207.03.29 INF230 / 40 Repetisjon Basis-bilder Sort er 0,

Detaljer

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( ) INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit

Detaljer

Eksempel: Ideelt lavpassfilter

Eksempel: Ideelt lavpassfilter Filterdesign i frekvensdomenet Lavpassfiltre Romlig representasjon av ideelt lavpassfilter Slipper bare gjennom lave frekvenser (mindre enn en grense D 0 som kalles filterets cut-off-frekvens) I signalbehandling

Detaljer

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II. Andreas Kleppe

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II. Andreas Kleppe INF230 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II Andreas Kleppe Kort repetisjon av forrige mandagsforelesning Konvolusjonsteoremet og bruk av dette: Design av konvolusjonsfiltre med bestemte

Detaljer

Repetisjon: Standardbasis

Repetisjon: Standardbasis INF230 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II Ole Marius Hoel Rindal, foiler av Andreas Kleppe Kort repetisjon av forrige mandagsforelesning Konvolusjonsteoremet og bruk av dette: Design

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av

Detaljer

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples 0700 Foreløbig versjon! INF 0 mars 07 Fourier I -- En litt annen vinkling på stoffet i kapittel I dag: Sinus-funksjoner i D og D D diskret Fouriertransform (DFT) Introduksjon I/II Et gråtonebilde Typisk

Detaljer

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos. Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

Prøve- EKSAMEN med løsningsforslag

Prøve- EKSAMEN med løsningsforslag Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Løsningsforslaget

Detaljer

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling - iskret Fourier-Transform FT INF 3 igital bildebehandling FILTRERING I FREKVENS-OMÈNET II Konolusjons-teoremet Lapass- øypass- og Båndpass-filter esign a filtre i frekens-doménet Rask implementasjon a

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er

Detaljer

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens Introduksjon/motivasjon I INF2310 Digital bildebehandling FORELESNING 8 FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe I dag: Grunnlaget Grunnlaget og intuisjonen i Fourier-analyse

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM I. Andreas Kleppe

INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM I. Andreas Kleppe INF Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM I Andreas Kleppe I går: Det matematiske fundamentet I dag: Grunnlaget Grunnlaget og intuisjonen i Fourier-analyse D diskret Fourier-transform

Detaljer

Eksamen Løsningsforslag

Eksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Eksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Torsdag 1. juni 2017 Tidspunkt for eksamen:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF230 Digital bildebehandling Forelesning 5 Repetisjon Andreas Kleppe Filtrering i bildedomenet 2D diskret Fourier-transform (2D DFT) Kompresjon og koding Morfologiske operasjoner på binære bilder F5

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

Filter-egenskaper INF Fritz Albregtsen

Filter-egenskaper INF Fritz Albregtsen Filter-egenskaper INF 60-04.03.2002 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 2: - Lineær filtrering - Gradient-detektorer - Laplace-operatorer Linearitet H [af (x, y) + bf 2 (x, y)] ah [f (x, y)]

Detaljer

Filtrering i bildedomenet. Middelverdifilter (lavpass) Lavpassfiltre. INF2310 Digital bildebehandling FORELESNING 15 REPETISJON

Filtrering i bildedomenet. Middelverdifilter (lavpass) Lavpassfiltre. INF2310 Digital bildebehandling FORELESNING 15 REPETISJON Filtrering i bildedomenet INF3 Digital bildebehandling FORELESNING 5 REPETISJON Andreas Kleppe Filtrering i bildedomenet D diskret Fourier-transform (D DFT) Kompresjon og koding Morfologiske operasjoner

Detaljer

3UDNWLVN DQYHQGHOVH DY ')7

3UDNWLVN DQYHQGHOVH DY ')7 TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF230 Digital bildebehandling Eksamensdag : Onsdag 6. juni 202 Tid for eksamen : 09:00 3:00 Oppgavesettet er på : 6 sider Vedlegg

Detaljer

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data. Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering

Detaljer

Uke 10: Diskret Fourier Transform, II

Uke 10: Diskret Fourier Transform, II Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Mandag 1. juni 2015 Tid for eksamen: 14:30 18:30 Oppgavesettett er på: 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

Filtrering i Frekvensdomenet III

Filtrering i Frekvensdomenet III Filtrering i Frekvensdomenet III Lars Vidar Magnusson March 13, 2017 Delkapittel 4.9.5 Unsharp Masking, Highboost Filtering, and High-Frequency-Emphasis Filtering Delkapittel 4.10 Unsharp Masking og Highboost

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/47 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/47 Tema

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

STE6146 Signalbehandling .RQWLQXHUOLJH ILOWUH

STE6146 Signalbehandling .RQWLQXHUOLJH ILOWUH TE6146 ignalbehandling.rqwlqxhuoljh ILOWUH,QWURGXNVMRQ Ved enkelte metoder for design av digitale filtre, baserer en seg på tilgjengeligheten av metoder for design av analoge (kontinuerlige) filtre. Må

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjons-eksempel. INF2310 Digital bildebehandling

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjons-eksempel. INF2310 Digital bildebehandling Filtrering i bildedomenet INF2310 Digital bildebehandling FORELESNING 16 REPETISJON DEL I Andreas Kleppe Filtrering i bildedomenet 2D diskret Fourier-transform (2D DFT) Kompresjon og koding Morfologiske

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004 Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet 1 Tidsdomenet, eller n-domenet:

Detaljer

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/1 Dagens temaer 3/1 Tema 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Løsningsforslaget

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019 Transformanalyse Jan Egil Kirkebø Universitetet i Oslo janki@ifi.uio.no 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer

Detaljer

Frevensanalyse av signaler (del 2) og filtrering av bilder

Frevensanalyse av signaler (del 2) og filtrering av bilder Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 3 Frevensanalyse av signaler (del 2) og filtrering av bilder Sarpsborg 28.01.2005

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

Bildetransformer Lars Aurdal

Bildetransformer Lars Aurdal Bildetransformer Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Lars Aurdal. Forsvarets forskningsinstitutt (FFI), Kjeller. 5 ansatte. Ca. 3 forskere og ingeniører. Tverrfaglig institutt med vekt på arbeide

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

Filtrering i Frekvensdomenet II

Filtrering i Frekvensdomenet II Filtrering i Frekvensdomenet II Lars Vidar Magnusson March 7, 2017 Delkapittel 4.8 Image Smoothing Using Frequency Domain Filters Delkapittel 4.9 Image Sharpening Using Frequency Domain Filters Low-Pass

Detaljer

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen Dagens temaer Time 6: Analyse i frekvensdomenet Andreas Austeng@ifi.uio.no, INF3470 Institutt for informatikk, Universitetet i Oslo Oktober 2009 Fra forrige gang Frekvensrespons funksjonen Fourier rekker

Detaljer

TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2

TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 07.03.2013 I dette oppgavesettet skal vi se på ulike måter fouriertransformasjonen anvendes i praksis. Fokus er på støyfjerning i signaler. I tillegg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Obligatorisk oppgave 2 INF2310 Våren 2018

Obligatorisk oppgave 2 INF2310 Våren 2018 Obligatorisk oppgave 2 INF2310 Våren 2018 Dette oppgavesettet er på 7 sider, og består av 2 bildebehandlingsoppgaver. Besvarelsen av denne og neste obligatoriske oppgave må være godkjent for at du skal

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF3 Digital bildebehandling Forelesning 8 Repetisjon: Filtrering i bildedomenet Andreas Kleppe Filtrering og konvolusjon Lavpassfiltrering og kant-bevaring Høypassfiltrering: Bildeforbedring og kantdeteksjon

Detaljer

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling - iskret Forier-Transform FT INF 3 igital bildebehandling FILTRERING I FREKVENS-OMÈNET II Konolsjons-teoremet Lapass- øypass- og Båndpass-filter esign a filtre i frekens-doménet Rask implementasjon a konolsjons-filtre

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF23 Digital bildebehandling Eksamensdag : Fredag 7. juni 29 Tid for eksamen : 9: 3: (4 timer) Løsningsskissen er på : 8 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : :3 8:3 Løsningsforslaget er på : 9

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF230 Digital bildebehandling Forelesning 6 Filtrering i bildedomenet I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W: 2.6.2, 3., 3.4-3.5, deler

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling Filtrering INF30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W:.6., 3., 3.4-3.5,

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF2310 Digital bildebehandling Ole Marius Hoel Rindal Gråtonetrasformasjoner Histogramtransformasjoner 2D diskret Fourier-transform (2D DFT Filtrering i Fourierdomenet Kompresjon og koding Segmentering

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Repetisjon: LTI-systemer

Repetisjon: LTI-systemer Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 1. desember 013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 15 sider. Vedlegg:

Detaljer

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Obligatorisk oppgave 2 INF2310, vår 2017 Dette oppgavesettet er på 9 sider, og består av 2 bildebehandlingsoppgaver. Besvarelsen av denne og forrige obligatoriske

Detaljer

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum SPEKTALANALYSATORER Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum Vi har ofte nytte av å kunne veksle mellom de to grafiske presentasjonsmåtene for et elektrisk signal, tidsfunksjon

Detaljer

Filtrering. Konvolusjon. Konvolusjon. INF2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I

Filtrering. Konvolusjon. Konvolusjon. INF2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Filtrering INF30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Andreas Kleppe Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W:.6., 3., 3.4-3.5,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim FYS213 Svingninger og bølger, Obligatorisk oppgave C Nicolai Kristen Solheim FYS213 Svingninger og bølger Ukeoppgave, sett C Nicolai Kristen Solheim Ukeoppgave, sett C Oppgavetype 1 a) Læreboken beskriver

Detaljer

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen Frekvensene i DFT Forelesning 3. mai 4 Pensum i boken: fra 3-5.3 til 3-8.4, samt 3-9. Delkapitlene 3-8.5, 3-8.6 og 3-8.7 er nyttig selvstudium. Oversikt Spektralanalyse av signaler med endelig lengde Spektralanalyse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 2310 Digital bildebehandling Eksamensdag: Tirsdag 18. mai - tirsdag 1. juni 2004 Tid for eksamen: 18. mai 2004 kl 09:00 1.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Oppgave 3c Konvolusjonsteoremet: f Λ g, F G og f g, F Λ G F rste del sier at konvolusjon i det romlige domenet (f Λ g) er det samme som pixelvis multi

Oppgave 3c Konvolusjonsteoremet: f Λ g, F G og f g, F Λ G F rste del sier at konvolusjon i det romlige domenet (f Λ g) er det samme som pixelvis multi Oppgave 3a 1 P N 1 N x=0 P N 1 y=0 f (x; y) e j2ß(ux+vy)=n Oppgave 3b 2D diskret konvolusjon for x =0to M for y =0to N h(x; y) =0 for m =0to M for n =0to N h(x; y)+ = f (m; n) Λ g(x m; y n) h(x; y) =h(x;

Detaljer

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler. Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 5, 2018 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s) 303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...

Detaljer

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006 INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 160 Digital bildebehandling Eksamensdag: Mandag 13. mai - mandag 27. mai 2002 Tid for eksamen: 13. mai 2002 kl 09:00 27. mai

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/41 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

STE 6219 Digital signalbehandling Løsningsforslag

STE 6219 Digital signalbehandling Løsningsforslag HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005 INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer