Mathematical Knowledge for and in Teaching

Størrelse: px
Begynne med side:

Download "Mathematical Knowledge for and in Teaching"

Transkript

1 Mathematical Knowledge for and in Teaching Lærer-respons på uplanlagte elevinnspill i matematikkundervisningen Et eksempel fra 3.trinn Mål Finne eksempler på hvordan matematikklærerens profesjonskompetanse kommer til uttrykk i klasserommet Finne eksempler som synliggjør matematikkkunnskap som er relevant i lærerutdanningen Bli fortrolig med verktøy for refleksjon til bruk i studenters praksisopplæring Utvikle egen profesjonskompetanse 1

2 Teoribakgrunn: Som analyseverktøy tar vi utgangspunkt i Rowland mfl: The Knowledge Quartet Et rammeverk for analyse av hvordan læreres kompetanse i matematikk kommer til uttrykk gjennom deres undervisning Ball mfl: Mathematical Knowledge for Teaching Specialized Content Knowledge Knowledge about proof in the classroom Rowland m fl The Knowledge Quartet Kategorier Foundation: faglige kunnskaper, holdninger Transformation: valg av analogier, representasjoner, eksempler.. Connection: sammenheng, sammenbinding Contingency: forholde seg til uplanlagte elevinnspill, avvik fra egen agenda 2

3 Matematical Knowledge for Teaching Common content knowledge Horizon content knowledge Specialized content knowledge Knowledge of content and students Knowledge of content and teaching Knowledge of content and curriculum (Ball et al, 2008) Lærer skriver 36 på tavla og sier: -kan dere fortelle meg de egenskapene tallet 36 har? Hva vet vi om tallet 36? Etter noen elevinnspill knyttet til tierplass, enerplass og siffersum kommer følgende sekvens: Henriette: Hva vet du om tallet, Mia? Mia: Det er et oddetall. 3

4 Fra transkripsjonen: 1. Henriette: Er det et oddetall 2. Mia: Nei, et partall 3. Henriette: Hva var det med oddetallene? 4. Mia: Er det ikke et oddetall da? 5. Henriette: Da får vi gå tilbake. Hva er et oddetall da? 6. Sabrina: Eh, eh. når man ikke kan dele på 2. 7.Henriette: Oddetall. Ok. Ikke dele på to. (Skriver på tavla ): Oddetall: ikke dele på to 8. Henriette: Skal vi se. Vi kan prøve. Hvis jeg tegner opp: en, to, tre, fire, fem,en, to, tre, fire, fem fem - ti - Her har jeg tegnet opp 36 streker 9. Henriette: Så har vi en person A, det er A ( skriver A) og så person B ( skriver B) -så skal vi begynne å dele ut da. Hvor mye er det de kan få hver da?... Hvor mye er det i hvert fall vi vet at de kan få da? 10. Cato: En kan få 15 4

5 11. Henriette: OK. Da setter jeg A på de her. Og hvis dette skal bli likt må jo den andre få 15 og da? 12. Mira Ja -(bekreftende mumling fra flere ) 13. Henriette: Er det B sine? (peker) 14. Mira: Mmm. (bekreftende mumling fra flere ) 15. Henriette: Men vi har igjen noen streker enda?. Dvsat 30 er et partall da! (bekreftende mumling og nikking) 16. Henriette: Men vi har igjen disse også? -Nils? 17. Nils: Hmm da må begge to få tre hver? 18. Henriette: Skal vi se om det går? Hvis vi skriver A på de så skriver vi B på de. Dvsat de da fikk først fikk de 15 hver, så fikk de 3 hver, til sammen fikk de Henriette: Mia, er da 36 er partall eller et oddetall? 20. Mia: Partall 21. Henriette: Et partall 5

6 Contingency Henriette: Er det et oddetall? Mia: Nei, et partall. Henriette: Hva var det med oddetallene? Mia: Er det ikke et oddetall da? 6

7 Connection og Transformation Henriette: Da får vi gå tilbake. Hva er et oddetall da? Sabrina: Eh, eh - når man ikke kan dele på 2 Henriette: Oddetall. Ok. Ikke dele på to. Skriver på tavla : Oddetall: ikke dele på to Transformation Henriette: Skal vi se. Vi kan prøve. Hvis jeg tegner opp en, to, tre, fire, fem en, to, tre, fire, fem.. -fem -ti - Her har jeg tegnet opp 36 streker 7

8 Specialized Content Knowledge: Kjennskap til ulike representasjonsformer Specialized Content Knowledge kunnskap om ulike representasjonsformer Nivå av abstraksjon Vite hvilke representasjonsformer som egner seg for et partall med ett odde antall tiere når målet er å dele på ti 8

9 Representerer 30 ikke som tiere, men som femmere som gir et partallantall femmere -delelig på to Tegner femmergruppene under hverandre -lett å telle tiere Gruppering av femmere som gjør at det er lett å dele på to Enerne er ikke gruppert -kan dele uten å veksle først Knowledge of content and teaching Knowledge of content and students På spørsmål om bruk av penger: Da måtte jeg brukt femmere og en-kroner Hva med ti-kroner?: Nei, da må vi begynne med veksling det var ikke det som var poenget her. Nå var det viktig at det kan deles på to Hvorfor tellestreker: Penger betyr å innføre kontekst butikk og handling -det bare forstyrrer. Tellestreker kan stå for hva som helst 9

10 Foundation Kunnskap om oppdeling av 36: 36 = = 6 x = 3 x (2 x 5) + 6 Kunnskap om å bevise: Påstand - premiss - konklusjon En tro på at elevene kan være med på dette resonnementet Kunnskap om bevis i klasserommet Kunnskap om situasjoner som egner seg for bevis Argumentasjonen tar utgangspunkt i etablerte utsagn/definisjoner som er allment akseptert i klasserommet : Oddetall kan ikke deles på to Gjør bruk av resonnement og argumentasjon som er gyldig og som er kjent for elevene: 36 er et oddetall følgelig kan det ikke deles på to Kommuniseres med en uttrykksform som er egnet og som er forståelig for elevene: Tellestreker Bruk av kontekst (Person A og B) ( Stylianides & Ball 2008) 10

11 KQ oppleves som et godt verktøy både for analyse av og refleksjon over egen og andres undervisning Ball gir et mer utenfra blikk og har mer fokus på hva slags matematikk som er relevant i lærerutdanningen. De utfyller hverandre. Refleksjon over egen praksis Turner og Rowlands fire kategorier av lærerkompetanse har hjulpet oss til å identifisere hvilke kompetanser en matematikklærer bør ha, men har også fått oss til å se at vi langt på vei er innom de fleste fasene i planleggingen, gjennomføringen og vurderingen av vår undervisning. Anne & Anne, lærere i videreutdanning 11

12 Refleksjon over egen praksis Noen ganger har jeg sittet igjen med følelse hva har elevene lært i dag egentlig? Men gjennom denne refleksjonen har jeg mulighet til å til rette legge neste økt på en annen måte. Henriette, lærer I videreutdanning Referanser: Ball,D.L.,Bass,H. ( 2004): Knowing Mathematics for Teaching. I: Strässer,R., Brandell,G.,Grevholm,B. og Hellenius,O. (red.): Educating for the future. Proceed of an International Symposium on Mathematics Teacher Education, s Göteborg: Royal Swedish Academy of Sciences. Göteborg University Ball,D.L., Thames,M.H. of Phelps,G. (2008) Content Knowledge for Teaching. What makes It Special? Journal of Teacher Education Vol.59, 5: Rowland,T.,Huckstep,P. og Thwaites,A. ( 2005) Elementary teachers mathematics subject knowledge: the knowledge quartet and the case of Naomi, Journal of Mathematics Teacher Education 8: Rowland,T.,Huckstep,P. og Thwaites,A. (2006) The Knowledge Quartet:Consirering Chloe. I: Bosch,M. (red): Proceedings of the FourthCongress of the European Society for Research in Math.Ed. s , Barcelona Stylianides,A.J. og Ball,D.L ( 2008) Understanding and describing mathematical knowledge for teaching: knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher Education11: Turner, F., & Rowland, T. (2008). The Knowledge Quartet: A Means of Developing and Deepening Mathematical Knowledge in Teaching? 12

13 13

«36 er et oddetall» Aspekter ved undervisningskunnskap i matematikk på barnetrinnet

«36 er et oddetall» Aspekter ved undervisningskunnskap i matematikk på barnetrinnet «36 er et oddetall» Aspekter ved undervisningskunnskap i matematikk på barnetrinnet Ida Heiberg Solem og Ellen Konstanse Hovik Denne artikkelen drøfter aspekter ved undervisningskunnskap i matematikk.

Detaljer

Matematikklæreres kunnskaper for en meningsfull matematikkundervisning. Kirsti Rø (UiA) Miguel Ribeiro (tidligere NTNU)

Matematikklæreres kunnskaper for en meningsfull matematikkundervisning. Kirsti Rø (UiA) Miguel Ribeiro (tidligere NTNU) Matematikklæreres kunnskaper for en meningsfull matematikkundervisning Kirsti Rø (UiA) Miguel Ribeiro (tidligere NTNU) Bakgrunn Miguel (tidligere IMF v/ntnu) Bakgrunn fra VGS i Portugal Doktorgrad i matematikkdidaktikk

Detaljer

Matematikklærerkompetanse

Matematikklærerkompetanse Matematikklærerkompetanse Anita Valenta, Nasjonalt senter for matematikk i opplæringen Mai, 2015 Hva er det spesielle en matematikklærer bør kunne, men som en matematiker ikke trenger å kunne og en lærer

Detaljer

FoU i Praksis 2012. Samandrag av artiklane frå konferanse om praksisretta FoU i lærerutdanning. Trondheim, 23. og 24. april 2012

FoU i Praksis 2012. Samandrag av artiklane frå konferanse om praksisretta FoU i lærerutdanning. Trondheim, 23. og 24. april 2012 FoU i Praksis 2012 Samandrag av artiklane frå konferanse om praksisretta FoU i lærerutdanning Trondheim, 23. og 24. april 2012 Redigert av Ingar Pareliussen, Bente Bolme Moen, Anne Beate Reinertsen og

Detaljer

Hva skal til for at lærere utvikler sin kompetanse i møte mellom barnehage og skole?

Hva skal til for at lærere utvikler sin kompetanse i møte mellom barnehage og skole? Hva skal til for at lærere utvikler sin kompetanse i møte mellom barnehage og skole? Reidar Mosvold Universitetet i Stavanger uis.no Oversikt Kunnskap og kompetanse Undervisningskunnskap i matematikk Trender

Detaljer

Utvikling av kreativ og robust matematikklærerkompetanse

Utvikling av kreativ og robust matematikklærerkompetanse Utvikling av kreativ og robust matematikklærerkompetanse Ole Enge og Anita Valenta, Høgskolen i Sør-Trøndelag, avdeling for lærer- og tolkeutdanning NOFA2, Middelfart 13-15.mai Utfordringen Vi har studenter

Detaljer

Nasjonale retningslinjer for karaktersetting i matematikk i GLUutdanningene. Andreas Christiansen Ole Enge Beate Lode

Nasjonale retningslinjer for karaktersetting i matematikk i GLUutdanningene. Andreas Christiansen Ole Enge Beate Lode Nasjonale retningslinjer for karaktersetting i matematikk i GLUutdanningene Andreas Christiansen Ole Enge Beate Lode Retningslinjer for karaktersetting Vi prøver å finne svar på to utfordringer: - Hva

Detaljer

Mestre Ambisiøs Matematikkundervisning - Prosjektbeskrivelse

Mestre Ambisiøs Matematikkundervisning - Prosjektbeskrivelse Mestre Ambisiøs Matematikkundervisning - Prosjektbeskrivelse Prosjektet "Mestre ambisiøs matematikkundervisning" (MAM) fokuserer på elevenes tenking i matematikk og klasseromspraksiser som støtter og utvikler

Detaljer

Vurdering for læring kjennetegn på måloppnåelse:

Vurdering for læring kjennetegn på måloppnåelse: Vurdering for læring kjennetegn på måloppnåelse: Geir Martinussen og Helga Kufaas Tellefsen Høgskolen i Oslo Et felles løft for bedre vurderingspraksis er et prosjekt som ble igangsatt av Utdanningsdirektoratet

Detaljer

Bruk av video i praksisopplæring i matematikk

Bruk av video i praksisopplæring i matematikk Bruk av video i praksisopplæring i matematikk Siri-Malén Høynes, Torunn Klemp, Vivi Nilssen Nordisk lærerutdanningskonferanse 2016 Trondheim, 10.-13.mai Kunnskap for en bedre verden LaUDiM intervensjonsprosjekt

Detaljer

Brøkundervisning på barnetrinnet - aspekter av en lærers matematikkunnskap

Brøkundervisning på barnetrinnet - aspekter av en lærers matematikkunnskap Bodil Kleve Førsteamanuensis, Avdeling for lærerutdanning og internasjonale studier, Høgskolen i Oslo Brøkundervisning på barnetrinnet - aspekter av en lærers matematikkunnskap Sammendrag Dette er en kasusstudie

Detaljer

Vurdering som en del av undervisning og læring i matematikk

Vurdering som en del av undervisning og læring i matematikk Vurdering som en del av undervisning og læring i matematikk Geir Martinussen og Helga Kufaas Tellefsen Høgskolen i Oslo Et felles løft for bedre vurderingspraksis ble igangsatt av Utdanningsdirektoratet

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett B

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett B Matematikk 2 1-7 Hjemmeeksamen i gruppe, Høst 2012 Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl. 9.00 Sett B Oppgaven tar utgangspunkt i den vedlagte casen. Eksamensbesvarelsen skal være en analyse

Detaljer

M A M M estre A mbisiøs M atematikkundervisning. Novemberkonferansen 2015

M A M M estre A mbisiøs M atematikkundervisning. Novemberkonferansen 2015 M A M M estre A mbisiøs M atematikkundervisning Novemberkonferansen 2015 Ambisiøs matematikkundervisning En undervisningspraksis hvor lærerne engasjerer seg i elevens tenkning, stiller spørsmål, observerer

Detaljer

S-TEAM/SUN Hvordan kan forskningsresultater herfra være til nytte for lærerutdanningene?

S-TEAM/SUN Hvordan kan forskningsresultater herfra være til nytte for lærerutdanningene? S-TEAM/SUN Hvordan kan forskningsresultater herfra være til nytte for lærerutdanningene? Majken Korsager og Peter van Marion Trondheim 15.11.2012 The Rocard Expert Panel ) Doris Jorde Leder av Naturfagsenteret

Detaljer

Lærerstudenters matematiske samtaler med elever om bruk av video i praksisopplæringa

Lærerstudenters matematiske samtaler med elever om bruk av video i praksisopplæringa Lærerstudenters matematiske samtaler med elever om bruk av video i praksisopplæringa Vivi Nilssen, Siri-Malén Høynes Utdanningskonferansen 2016 Oslo, 8. november LaUDiM kompetanseprosjekt i FINNUT Intervensjonsprosjekt

Detaljer

Case 2 - Fordeling av sjokoladekake

Case 2 - Fordeling av sjokoladekake Case 2 - Fordeling av sjokoladekake Thomas er lærer på 6.trinn og han begynner timen med å presentere følgende oppgave: Vi skal holde på med en oppgave som handler om at man skal dele rettferdig i mellom

Detaljer

Et nytt, felles matematikkurs for GLU 1-7. Nettverk for matematikk Gry Tuset, HSH

Et nytt, felles matematikkurs for GLU 1-7. Nettverk for matematikk Gry Tuset, HSH Et nytt, felles matematikkurs for GLU 1-7 Nettverk for matematikk Gry Tuset, HSH Matematikknivået er urovekkende lavt 30.10.2012: Statsråden mener lærerstudenter må møte en undervisning som er relevant

Detaljer

Matematikk 5. 10. trinn

Matematikk 5. 10. trinn 13.04.2015 Matematikk 5. 10. trinn «Det å være mattelærer er noe mer enn å være matematiker, og det å være mattelærer er noe mer enn å være pedagog» Ellen Konstanse Hovik og Helga Kufaas Tellefsen Hva

Detaljer

Kjersti Wæge Samtaletrekk redskap i matematiske diskusjoner

Kjersti Wæge Samtaletrekk redskap i matematiske diskusjoner Kjersti Wæge Samtaletrekk redskap i matematiske diskusjoner Matematiske diskusjoner og kommunikasjon fremheves som avgjørende for elevers forståelse og læring i matematikk. 1 Carpenter, Franke og Levi

Detaljer

Årsplan i matematikk - 1. klasse 2014-2015

Årsplan i matematikk - 1. klasse 2014-2015 Antall timer pr : 4 timer Lærere: Ida Nystuen Askjer og Elise G. Solberg Læreverk: Multi Gyldendal Grunnbok 1A og 1B + Oppgavebok 1 Nettstedet: www.gyldendal.no/multi Årsplan i matematikk - 1. klasse 2014-2015

Detaljer

Tallforståelse anvendelse og engasjement

Tallforståelse anvendelse og engasjement Anita Valenta Tallforståelse anvendelse og engasjement Det sies ofte at tallforståelse er viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer. Kilpatrick, Swafford

Detaljer

Argumentasjon og regnestrategier

Argumentasjon og regnestrategier Ole Enge, Anita Valenta Argumentasjon og regnestrategier Undersøkelser (se for eksempel Boaler, 2008) viser at det er en stor forskjell på hvilke oppfatninger matematikere og folk flest har om matematikk.

Detaljer

Telle i kor. Forfatter Morten Svorkmo, Matematikksenteret

Telle i kor. Forfatter Morten Svorkmo, Matematikksenteret Telle i kor Forfatter Morten Svorkmo, Matematikksenteret Publisert dato: April 2016 Matematikksenteret Hva er Telle i kor? Telle i kor er en aktivitet hvor klassen teller sammen ved å legge til eller trekke

Detaljer

Oppgavestreng divisjon med desimaltall - transkripsjon av samtalen

Oppgavestreng divisjon med desimaltall - transkripsjon av samtalen Oppgavestreng divisjon med desimaltall - transkripsjon av samtalen Elevene på 7. trinn sitter i lyttekroken foran tavla. Morten er lærer. 1 Morten Da skal vi kjøre i gang med en sekvens med divisjon, deling.

Detaljer

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett D

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett D Matematikk 2 1-7 Hjemmeeksamen i gruppe, Høst 2012 Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl. 9.00 Sett D Oppgaven tar utgangspunkt i den vedlagte casen. Eksamensbesvarelsen skal være en analyse

Detaljer

FoU i Praksis Artikkelsamling fra konferanse om praksisrettet FoU i lærerutdanning. Stjørdal/Levanger, 22. og 23. april 2013

FoU i Praksis Artikkelsamling fra konferanse om praksisrettet FoU i lærerutdanning. Stjørdal/Levanger, 22. og 23. april 2013 FoU i Praksis 2013 Artikkelsamling fra konferanse om praksisrettet FoU i lærerutdanning Stjørdal/Levanger, 22. og 23. april 2013 Redigert av Anne Beate Reinertsen, Berit Groven, Agneta Knutas og Astri

Detaljer

FoU i Praksis 2012. Samandrag av artiklane frå konferanse om praksisretta FoU i lærerutdanning. Trondheim, 23. og 24. april 2012

FoU i Praksis 2012. Samandrag av artiklane frå konferanse om praksisretta FoU i lærerutdanning. Trondheim, 23. og 24. april 2012 FoU i Praksis 2012 Samandrag av artiklane frå konferanse om praksisretta FoU i lærerutdanning Trondheim, 23. og 24. april 2012 Redigert av Ingar Pareliussen, Bente Bolme Moen, Anne Beate Reinertsen og

Detaljer

Stort ansvar (god) nok læring?

Stort ansvar (god) nok læring? Stort ansvar (god) nok læring? Praksis som læringsarena i PPU Kontaktperson, vgs: Det er to sekker, enten så har du det eller så har du det ikke. Og har du det, er du sertifisert Veileder- og kontaktpersonmøte

Detaljer

Vetenskapliga teorier och beprövad erfarenhet

Vetenskapliga teorier och beprövad erfarenhet Vetenskapliga teorier och beprövad erfarenhet Pixel er forskningsbasert på flere nivåer. En omfattende beskrivelse av vårt syn på matematikk, læring og undervisning finnes i boken "Tal och Tanke" skrevet

Detaljer

God matematikk og regneopplæring, fra barnehage til ungdomsskole. Innlandets utdanningskonferanse Tirsdag 11. mars 2014

God matematikk og regneopplæring, fra barnehage til ungdomsskole. Innlandets utdanningskonferanse Tirsdag 11. mars 2014 God matematikk og regneopplæring, fra barnehage til ungdomsskole Innlandets utdanningskonferanse Tirsdag 11. mars 2014 Internasjonale tester har løftet opp spørsmålet om hva god matematikkundervisning

Detaljer

IEA TEACHER EDUCATION STUDY - TEDS-M 2008 A CROSS-NATIONAL STUDY OF PRIMARY AND SECONDARY MATHEMATICS TEACHER PREPARATION

IEA TEACHER EDUCATION STUDY - TEDS-M 2008 A CROSS-NATIONAL STUDY OF PRIMARY AND SECONDARY MATHEMATICS TEACHER PREPARATION IEA TEACHER EDUCATION STUDY - TEDS-M 2008 A CROSS-NATIONAL STUDY OF PRIMARY AND SECONDARY MATHEMATICS TEACHER PREPARATION Organisering av TEDS-M i Norge ILS, Universitetet i Oslo har ledelsen av prosjektet

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

2MA Matematikk: Emne 3

2MA Matematikk: Emne 3 2MA5101-3 Matematikk: Emne 3 Emnekode: 2MA5101-3 Studiepoeng: 15 Semester Vår Språk Norsk Forkunnskaper Ingen Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget matematikk bli i stand

Detaljer

Utvikling av matematikklærerkompetansen hos studenter i allmennlærerutdanning

Utvikling av matematikklærerkompetansen hos studenter i allmennlærerutdanning Utvikling av matematikklærerkompetansen hos studenter i allmennlærerutdanning Ole Enge og Anita Valenta Bakgrunnen for denne artikkelen er vårt arbeid med det obligatoriske matematikkfaget i allmennlærerutdanningen.

Detaljer

IEA TEACHER EDUCATION STUDY: TEDS-M

IEA TEACHER EDUCATION STUDY: TEDS-M IEA TEACHER EDUCATION STUDY: TEDS-M 2008 Voss 26. september 2008 Liv Sissel Grønmo IEA TEACHER EDUCATION STUDY: TEDS-M 2008 A CROSS-NATIONAL STUDY OF PRIMARY AND SECONDARY MATHEMATICS TEACHER PREPARATION

Detaljer

Perlesnor og tom tallinje

Perlesnor og tom tallinje Hanne Hafnor Dahl, May Else Nohr Perlesnor og tom tallinje En perlesnor er en konkret representasjon av tallrekka. Den kan bestå av 10, 20 eller 100 perler, alt etter hvilket tallområdet elevene arbeider

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): Emnenavn: Studiepoeng: Eksamensdato: Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr på eksamensdagen) Oppgavesettet

Detaljer

Matematisk samtale Multiaden 2015. Tine Foss Pedersen

Matematisk samtale Multiaden 2015. Tine Foss Pedersen Matematisk samtale Multiaden 2015 Tine Foss Pedersen Matematisk samtale - muntlige ferdigheter Vi bør vektlegge bruk av ulike uttrykksmåter, strategier og løsningsmetoder. Det skaper grunnlag for diskusjon:

Detaljer

5E-modellen og utforskende undervisning

5E-modellen og utforskende undervisning Sesjon CD4.2: 5E-modellen og utforskende undervisning 5E-modellen som praktisk tilnærming til utforskende undervisning, for å hjelpe lærere til å gjøre den utforskende undervisningen mer eksplisitt og

Detaljer

Nye læreplaner, nye utfordringer i matematikk!

Nye læreplaner, nye utfordringer i matematikk! Oversikt Nye læreplaner, nye utfordringer i matematikk! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen

Detaljer

Fordypning i sentrale matematiske ideer som er relevant for matematikklærere i grunnskolen

Fordypning i sentrale matematiske ideer som er relevant for matematikklærere i grunnskolen Fordypning i sentrale matematiske ideer som er relevant for matematikklærere i grunnskolen Bakgrunn Våren 2013 ble NRLU bedt av KD om å koordinere en prosess for å utarbeide forslag til tiltak for å styrke

Detaljer

Definisjoner av gjennomsnitt

Definisjoner av gjennomsnitt Gert M. Hana Definisjoner av gjennomsnitt Et begrep som gjennomsnitt kan beskrives på flere måter. Undervisning av dette begrepet innebærer å velge beskrivelser definisjoner som egner seg i den aktuelle

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

Informasjon Singaporemodellen

Informasjon Singaporemodellen Informasjon Singaporemodellen Hva er heuristikk? Heuristikken beskjeftiger seg med metodene som kan eller bør brukes for å oppnå ny erkjennelse, for å løse problemer og for å beskrive disse metodene. Adjektivet

Detaljer

2MA Matematikk: Emne 2

2MA Matematikk: Emne 2 2MA5101-22 Matematikk: Emne 2 Emnekode: 2MA5101-22 Studiepoeng: 15 Semester Høst / Vår Språk Norsk Forkunnskaper Ingen spesielle krav Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget

Detaljer

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Identification Identifikasjonsboks Label TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Elevspørreskjema 4. trinn ILS, Universitetet i Oslo Postboks 1099 Blindern 0317 Oslo IEA, 2014 Veiledning

Detaljer

Kunnskap om posisjonssystemet

Kunnskap om posisjonssystemet Elisabet Lindland Kunnskap om posisjonssystemet sammenheng med leseferdighet? Kunnskap om posisjonssystemet ser ut til å være essensielt i elevenes kunnskap om matematikk, [5]. I addisjon, subtraksjon,

Detaljer

2MA Matematikk: Emne 4

2MA Matematikk: Emne 4 2MA5101-4 Matematikk: Emne 4 Emnekode: 2MA5101-4 Studiepoeng: 15 Språk Norsk Krav til forkunnskaper Ingen spesielle krav Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget matematikk

Detaljer

Problemløsning "Sjokoladekake" - transkripsjonen av samtalen

Problemløsning Sjokoladekake - transkripsjonen av samtalen Problemløsning "Sjokoladekake" - transkripsjonen av samtalen Elevene på 6. trinn sitter ved pultene. Thomas er lærer. 1 Thomas: Vi skal holde på med en oppgave som handler om at man skal dele rettferdig

Detaljer

Divisjon med desimaltall

Divisjon med desimaltall Divisjon med desimaltall Mål Generelt: Divisjon med desimaltall. Mønster og sammenhenger i divisjon. Spesielt: Bruke overslag til å vurdere plassering av desimalkomma. Se hva som skjer med kvotienten når

Detaljer

PISA i et internationalt perspektiv hvad der er idegrundlaget og hvad kan den bruges til? Júlíus K. Björnsson November 2012

PISA i et internationalt perspektiv hvad der er idegrundlaget og hvad kan den bruges til? Júlíus K. Björnsson November 2012 PISA i et internationalt perspektiv hvad der er idegrundlaget og hvad kan den bruges til? Júlíus K. Björnsson November 2012 Hvor kommer PISA fra? Kjent metodologi NAPE prøvene i USA bl.a. Like studier

Detaljer

LK06. Hvordan lykkes med Kunnskapsløftet? Intensjonene med den nye læreplanen. Oversikt

LK06. Hvordan lykkes med Kunnskapsløftet? Intensjonene med den nye læreplanen. Oversikt Hvordan lykkes med Kunnskapsløftet? Oversikt Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Hvilke konsekvenser får den nye Læreplanen for matematikkundervisningen? Hvordan

Detaljer

2MA Matematikk: Emne 3

2MA Matematikk: Emne 3 2MA5101-3 Matematikk: Emne 3 Emnekode: 2MA5101-3 Studiepoeng: 15 Semester Høst / Vår Språk Norsk Forkunnskaper Ingen Læringsutbytte Kunnskap har inngående undervisningskunnskap i matematikken elevene arbeider

Detaljer

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument Telle med 19 fra 19 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Matematikk 1 for 1-7. Høgskolen i Oslo og Akershus. Ida Heiberg Solem og Elisabeta Iuliana Eriksen

Matematikk 1 for 1-7. Høgskolen i Oslo og Akershus. Ida Heiberg Solem og Elisabeta Iuliana Eriksen Matematikk 1 for 1-7 Høgskolen i Oslo og Akershus Ida Heiberg Solem og Elisabeta Iuliana Eriksen Overordnet mål i kurset er at studentene: Utvikler en handlingsrettet lærerkompetanse i matematikk. Endrer

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Matematikk i lys av Kunnskapsløftet

Matematikk i lys av Kunnskapsløftet Matematikk i lys av Kunnskapsløftet Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Intensjoner med den nye læreplanen 1. Større handlingsrom for lærerne: Organisering, metoder, arbeidsmåter

Detaljer

Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø

Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø FAGLIG SNAKK OG UTFORSK- ENDE LÆRINGSMILJØ Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø Hvordan kan du som lærer styre den faglige samtalen for å motivere elevene

Detaljer

Norsk matematikkråd Årsmøte 2014. John Donne, fotball og matematikklæring. Tor Arne Mjølund

Norsk matematikkråd Årsmøte 2014. John Donne, fotball og matematikklæring. Tor Arne Mjølund Norsk matematikkråd Årsmøte 2014 John Donne, fotball og matematikklæring Tor Arne Mjølund Our work is driven by the desire to transform classrooms into communities of mathematicians: places where students

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU11004 A Emnenavn: Matematikk 1 1-7 Studiepoeng: 1 Eksamensdato: Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og

Detaljer

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø Forfatter Astrid Bondø Publisert dato: April 2016 Matematikksenteret Kvikkbilde Aktiviteten Kvikkbilde er designet for å engasjere elever i å visualisere tall og å forme mentale representasjoner av en

Detaljer

NOVEMBERKONFERANSEN TRONDHEIM HEIDI STRØMSKAG. Kunnskap for en bedre verden

NOVEMBERKONFERANSEN TRONDHEIM HEIDI STRØMSKAG. Kunnskap for en bedre verden FLISLEGGING FOR Å FINNE EN MATEMATISK SETNING NOVEMBERKONFERANSEN TRONDHEIM 25.11.2015 HEIDI STRØMSKAG Kunnskap for en bedre verden AGENDA En aktivitet å utvikle en tilsiktet kunnskap som løsning på et

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

Kartlegging av tallforståelse trinn

Kartlegging av tallforståelse trinn Kartlegging av tallforståelse 1. 10. trinn Ingvill Merete Stedøy-Johansen og May Renate Settemsdal 29-Oct-06 Veiledning Kartleggingstester Vurderingsskjemaer Retningslinjer for oppfølgende intervju 29-Oct-06

Detaljer

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell Løft matematikkundervisningen med Multi 1. 1.trinnsboka har vært for lite utfordrende for mange elever. Revidert Multi 1 består nå av to grunnbøker Elevene får med dette bedre tid til å utvikle grunnleggende

Detaljer

Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK

Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Fakultet for lærer- og tolkeutdanning Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Faglig kontakt under eksamen: Siri-Malén Høynes Tlf.: 73412621 Eksamensdato: 30. november 2016 2. desember

Detaljer

Geometriske begrepers doble natur. Frode RønningR Voss 24.09.07

Geometriske begrepers doble natur. Frode RønningR Voss 24.09.07 Geometriske begrepers doble natur Frode RønningR Voss 24.09.07 Geometriske begreper Hva kjennetegner geometriske begreper? Geometri er en logisk oppbygd struktur læren om det tredimensjonale rommet rundt

Detaljer

Hvilken kunnskap må en fremtidig matematikklærer ha? «Framtidas matematikklærer» Halden, Janne Fauskanger & Reidar Mosvold

Hvilken kunnskap må en fremtidig matematikklærer ha? «Framtidas matematikklærer» Halden, Janne Fauskanger & Reidar Mosvold Hvilken kunnskap må en fremtidig matematikklærer ha? «Framtidas matematikklærer» Halden, 18.09.13 Janne Fauskanger & Reidar Mosvold Hvor mange er egentlig «hundrevis»? Hvilken kunnskap trenger barnehagelæreren

Detaljer

Algebra og tallforståelse fagdidaktiske spørsmål

Algebra og tallforståelse fagdidaktiske spørsmål Algebra og tallforståelse fagdidaktiske spørsmål En innledning til gruppediskusjon Seminar for tilbydere av videreutdanning i matematikk Utdanningsdirektoratet Inger Christin Borge Universitetet i Oslo

Detaljer

Hvordan kan IKT bidra til pedagogisk utvikling?

Hvordan kan IKT bidra til pedagogisk utvikling? Hvordan kan IKT bidra til pedagogisk utvikling? Stortingsmelding 30 (2003-2004) påpeker viktigheten av å bruke IKT som et faglig verktøy, og ser på det som en grunnleggende ferdighet på lik linje med det

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

FoU i Praksis 2013. Artikkelsamling fra konferanse om praksisrettet FoU i lærerutdanning. Stjørdal/Levanger, 22. og 23. april 2013

FoU i Praksis 2013. Artikkelsamling fra konferanse om praksisrettet FoU i lærerutdanning. Stjørdal/Levanger, 22. og 23. april 2013 FoU i Praksis 2013 Artikkelsamling fra konferanse om praksisrettet FoU i lærerutdanning Stjørdal/Levanger, 22. og 23. april 2013 Redigert av Anne Beate Reinertsen, Berit Groven, Agneta Knutas og Astri

Detaljer

What does it mean to be a good mathematics teacher? Tor Arne Mjølund

What does it mean to be a good mathematics teacher? Tor Arne Mjølund What does it mean to be a good mathematics teacher? Tor Arne Mjølund 10.10. 2016 Hva gir god matematikklæring? Læreren er god til å lære fra seg Læreren er god til å forklare eller (svar fra elevundersøkelse

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 9-Jan-07 Kursinnhald Hva er matematisk

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Matematisk argumentasjon gjennom «imaginære dialoger»

Matematisk argumentasjon gjennom «imaginære dialoger» Silke Lekaus, Gjert-Anders Askevold Matematisk argumentasjon gjennom «imaginære dialoger» Hvordan kan lærere engasjere elever i bevis- og argumentasjonsprosesser? På hvilken måte kan vi få tilgang til

Detaljer

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Identification Identifikasjonsboks Label TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY Elevspørreskjema 9. trinn ILS, Universitetet i Oslo Postboks 1099 Blindern 0317 Oslo e IEA, 2014 Veiledning

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Halvårsplan våren 2015. Læreverk: Multi. informasjon

Halvårsplan våren 2015. Læreverk: Multi. informasjon Halvårsplan våren 2015 Fag: Matematikk Trinn: 1.trinn Læreverk: Multi Faglærer(e): Linda Lauritsen Uke Kompetansemål i Kunnskapsløftet etter 2. årstinn Tema Utfyllende informasjon 2 Repetisjon av alle

Detaljer

Læringsfremmende vurdering

Læringsfremmende vurdering Gardermoen januar 2016 Ressurslærersamling Læringsfremmende vurdering Marthe Lønnum Trude Kringstad Innhold i økta Modellere metoder for erfaringsdeling og refleksjon Synliggjøre sammenhengen mellom god

Detaljer

Utdanning og samfunn - Undervisningskunnskap i matematikk

Utdanning og samfunn - Undervisningskunnskap i matematikk Utdanning og samfunn - Undervisningskunnskap i matematikk Emnekode: MUT300_1, Vekting: 15 studiepoeng Tilbys av: Det humanistiske fakultet, Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015 MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

SETT Den profesjonelle læreren. «fra flau til profesjonell»

SETT Den profesjonelle læreren. «fra flau til profesjonell» SETT 291116 Den profesjonelle læreren «fra flau til profesjonell» 12 År 4380 Dager 105 120 Timer 6 307 200 Minutter Yrkesstolthet Pappa Jurist Mamma Lærer Pappa Musiker Mamma Lærer Bror Jurist Simen Lærer

Detaljer

Seminar IKT-senteret Jan-Arve Overland

Seminar IKT-senteret Jan-Arve Overland http://jao.typepad.com/masterstudiet/masteroppgaven.html Seminar IKT-senteret Jan-Arve Overland 09.02.2017 1 Blir du klokere lille venn? Seminar IKT-senteret Jan-Arve Overland 09.02.2017 2 Presentasjonens

Detaljer

Lærarkompetanse og skuleresultat. Terje Myklebust og Anne Norstein

Lærarkompetanse og skuleresultat. Terje Myklebust og Anne Norstein Lærarkompetanse og skuleresultat Terje Myklebust og Anne Norstein Bakgrunn Sogn og Fjordane har satsa mykje på vidareutdanning av lærarar de siste ti åra Nedgang i studenttalet ved Høgskulen ga rom for

Detaljer

Lisbeth M Brevik Hva kjennetegner kvalitet i engelskundervisningen? Koding av video-observerte engelsktimer ved norske ungdomsskoler (9.

Lisbeth M Brevik Hva kjennetegner kvalitet i engelskundervisningen? Koding av video-observerte engelsktimer ved norske ungdomsskoler (9. Lisbeth M Brevik Hva kjennetegner kvalitet i engelskundervisningen? Koding av video-observerte engelsktimer ved norske ungdomsskoler (9. trinn) LISA: Linking Instruction and Student Achievement Trinn 1:

Detaljer

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi Løft matematikkundervisningen med Multi 1.-4.trinn Oversikt Grunntanken bak Multi Hva er nytt i revisjonen? Vurdering i Multi Mona Røsseland Dette er Multi! Kjernekomponenter Grunntanken bak Multi Elevbok,

Detaljer

Emneplan for matematikk 1MB, trinn 1-7 (30 studiepoeng) oppdrag

Emneplan for matematikk 1MB, trinn 1-7 (30 studiepoeng) oppdrag Emneplan for matematikk 1MB, trinn 1-7 (30 studiepoeng) oppdrag Studieprogramkode K1MBO Emnekode og emnenavn Matematikk 1MB trinn 1-7 - oppdrag Engelsk emnenavn Mathematics for Grades level 1-7, Course

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Videreutvikling av «Det tredje rom» i arbeidet med kvalitet i praksis

Videreutvikling av «Det tredje rom» i arbeidet med kvalitet i praksis Videreutvikling av «Det tredje rom» i arbeidet med kvalitet i praksis «Det tredje rom» = en metafor for fellesarenaer/grensekryssende aktiviteter Koordinatorsamling 27.5 Eli Lejonberg Praktisk og akademisk

Detaljer

Årsplan i matematikk, 2. trinn, 2016/2017!

Årsplan i matematikk, 2. trinn, 2016/2017! Årsplan i matematikk, 2. trinn, 2016/2017! Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 1 34 37 Telle til 100, dele opp og bygge mengder opp til

Detaljer

Underveisvurdering i fag. Lære mer og bedre hvilken betydning har læreres vurderingspraksis?

Underveisvurdering i fag. Lære mer og bedre hvilken betydning har læreres vurderingspraksis? Underveisvurdering i fag Lære mer og bedre hvilken betydning har læreres vurderingspraksis? Underveisvurdering i fag Forskning viser at vurderingskultur og læreres vurderingspraksis har stor betydning

Detaljer