INF 4130 Svarforslag til «Midterm», 01/

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF 4130 Svarforslag til «Midterm», 01/"

Transkript

1 INF 4130 Svarforslag til «Midterm», 01/ Oppgave 1 1.a Den generelle reglen blir: Dersom S[i] = [j]: Dersom S[i] [j]: true dersom B[i-1, j-1] = true eller om B[i-1, j-1] = true ellers: false true dersom B[i, j-1] = true ellers: false Initialsiseringen blir som følger: B[0, j] for alle j settes til true, siden den tomme strengen alltid kan oppnås ved fjerninger B[i,0] for i>0 settes til false, siden S-strengen her er lenger enn -strengen, og da er det ikke håp. I eksempelet under ser vi på S = abc og = aacbbcc. Vi ser at det går bra. a a c b b a c t t t t t t t t a. t t t t t t t S b.... t t t t c t Et program som gjør dette kan være: for j = 0 to.length do { B[0, j] = true; } for i = 1 to S.length do { B[i, 0] = false; } for i = 1 to S.length do { // Rekkefølgen av løkkene er vilkårlig for j = 1 to.length do { if S[i] == [j] then { if B[i, j -1] == true or B[i-1, j -1] == true then { B[i, j] = true; } else { B[i, j] = false;} } else { if B[i, j -1] == true then { B[i, j] = true; } else { B[i, j] = false; } } } } return B[S.length,.length]; 1.b Vi innfører to varianter av true, nemlig: B[i, j] = tu, som betyr at man kan få likhet mellom S[1:i] og [1:j], uten at man behøver å fjerne [j]. Ellers B[i, j] = tm, som betyr at man kan få likhet mellom S[1:i] og [1:j], men da er man nødt til å fjerne [j].

2 Den generelle reglen blir da: Dersom S[i] = [j]: tu dersom B[i-1, j-1] = tu eller B[i, j] = tm ellers: tm dersom B[i, j-1] = tu ellers: false Dersom S[i] [j]: tm dersom B[i, j-1] = tu elles: false Initialsiseringen blir som følger: B[0, 0] settes til tu, siden de tomme strenger er like (uten noe fjerning) B[0, 1] settes til tm, siden vi kan oppnå den tomme streng ved å fjerne det ene symbolet i [1]. B[0, j] for j>1 settes til false, siden vi måtte fjerne alle (og dermed flere ved siden av hverandre) om vi skulle oppnå den tomme streng. B[i,0] for i>0 settes til false, siden S-strengen her er lenger enn -strengen, og da er det ikke håp. I eksempelet under ser vi på S = abc og = aacbcc. Vi ser at vi her kan få likhet. a a c b c c tu tm..... a. tu tu tm... S b.... tu tm. c..... tu tu Oppgave 2 For 0 i j n, lar vi c ij være kostnaden av å kutte (del)stokken med endepunkter i og j. Vi kan bruke følgende rekurrensrelasjon, som vi altså fyller ut i en to-dimensjonal tabell c[0,i][0,j]: Initialbetingelsene vil være k ii1 =0. luet er jo å se at dette er det samme som matrisemultiplikasjon, men at det her vil være en litt annen måte å beregne kostnaden på nå vi setter sammen to deler. Her vil det være lengden av den aktuelle stokken, avstanden mellom endepunktene, som vi finner ved p j p i..

3 Om man heller vil skrive ke, kan det se slik ut: for i = 0 to n-1 do c[i, i1] = 0 // initialbetingelsene (diag=1) for diag = 2 to n do for i = 0 to n-diag do // beregner ihht j = idiag // rekurrensrelasjonen min = // angitt over (finner beste k) tempcut = i // på samme måte som på side for k = i1 to j-1 do // 271 i læreboka temp = c[i,k] c[k,j] (p[j]-p[i]) if temp < min then min = temp tempcut = k fi c[i,j] = min firstcut[i,j] = tempcut Oppgave 3 3.a l.m = 1, l.u = 0. De uavhengige mengdene vil være {l} og, hhv. 3.b v.m = 1 // ne v er selv med v.u = 0 // ne v er ikke med FOR i in v.children DO { v.m = v.m i.u // Er v med, kan vi ikke ta med barna. v.u = v.u max(i.u, i.m) // Er v ikke med, kan vi ta med de barna } // vi ønsker, men behøver ikke ta alle. Det lille vanskelige her blir vel her nå (?) å se at man ikke må ta med alle barn av en ne v som ikke selv er tatt med, men at man kan gjøre det, og at man altså tar med/utelater på den måten som gir høyest verdi; tilsvarende er det ikke om man har tatt med ne v, da kan man ikke ta med noen av barna. 3.c Svaret finner vi ved å ta max(r.u, r.m).

4 Oppgave 4 4.a Omregning av vinduet mulo 3 Match? /3 = 41 / 0(m 3) spuriøs match /3 = 78 / 0(m 3) spuriøs match /3 = 115 / 0(m 3) spuriøs match /3 = 152 / 0(m 3) spuriøs match /3 = 188,66 / 2(m 3) ikke match /3 = 222 / 0(m 3) ekte match stopp 4.b Det forventede antall spuriøse matcher er n/3 om vi gjør n forsøk. Vi gjør seks forsøk, og forventer derfor 6/3=2. De fire spuriøse matchene vi fikk er altså noe i overkant av det forventede antallet. Oppgave 5 5.a For at en heuristikk-funksjon h skal være monoton, må følgende holde: i. For enhver måltilstand X skal vi ha h(x) = 0 ii. For enhver lovlig overgang fra M til N skal vi ha h(m) h(n) cost(m, N). Denne er ikke monoton, for eksempel vil tilstanden HHHHSS_SS, som er en lovlig slutttilstand, ha heuristikk-verdi 2. Et brudd på monotonitetskravet (punkt i). Denne er monoton. La oss kalle heuristikken h, og se på kravene hver for seg: i. Dette kravet er trivielt oppfylt, ettersom det i en måltilstand, uansett hvor den åpne ruten befinner seg, ikke vil være noen hvite brikker til høyre for noen svart brikke. ii. Dette kravet er også oppfylt ettersom et enkeltflytt av kostnad 1 aldri vil endre på heuristikk-verdien, slik at vi alltid vil ha h(n) = h(m) for en overgang fra M til N, og altså h(m) h(n) 1. For et hopp vil vi aldri endre heuristikken med mer enn 1, ettersom vi bare kan hoppe over 1 rute. Vi vil altså ha h(n) h(m) 1. Og altså h(m) h(m) 1 2 h(n) 1.

5 5.b Ja, professoren kan benytte datterens foreslåtte funksjon. Denne vil også være monoton om delfunksjonene er det. i-kravet er trivielt oppfylt når delfunksjonene er monotone. Vi må vise at ii-kravet også er oppfylt for h når h i -ene er monotone. Vi kan uten tap av generalitet se på bare to av delfunksjonene, h 1 og h 2. nta motsatt, altså at h 1 (M) h 1 (N) cost(m, N), h 2 (M) h 2 (N) cost(m, N), (delfunksjonene monotone) men at h(m) > h(n) cost(m, N). (sammensatt funksjon ikke monoton) La så h(n) være dominert av h 1 og h(m) være dominert av h 2, slik at h(n) = h 1 (N) > h 2 (N) og h(m) = h 2 (M) > h 1 (M), men da vil vi ha h 2 (M) > h 1 (N) cost(m, N) > h 2 (N) cost(m, N), en selvmotsigelse når h2 er monoton i utgangspunktet. Oppgave 6 6.a B B 0, 2 0, 1 0, 1 0, 0 0, 0 0, 0 1, 3 0, 3 1, 2 1, 1 0, 2 1, 1 1, 0 0, 1 1, 0 0, 1 0, 0 0, 1 1, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 6.b Merkene er angitt på treet over. 6.c Nei, for rotnen er merket med. 6.d Ja. Her er det bare å se på det midterste subtreet i treet fra 1.a. Roten av det er riktignok merket med, men man må kompensere for at det her er B som er i trekket, og for den finnes en vinnende strategi.

6 6.e Ola har rett. For selv om man ser på det dårligste trekket først, så kan det neste man ser på være det beste trekket fra denne situasjonen, og det kan gjøre at man får avskjæring på neste nivå under senere ner. Oppgave 7 7.a Høyrestiene 3 og 2-7 spleises, vi får Vi må snu i 2 fordi nullstikravet er brutt. 7.b Vi er altså gitt følgende streng: G Strengen har følgende suffixer: G Som vel skulle gi oss følgende ukomprimerte suffix-tre: * G c

7 Og altså i komprimert form, som suffix-tre: * G 7.c Vi skal her altså finne shift-avstandene som brukes i Horspool-algoritmen. Det dreier seg bare om å finne (korteste) avstand en bokstav har fra strengens (patterents) ende. G 7 (Nærmeste (eneste) G i avstand 7 fra enden) 2 (Nærmenste i avstand 2 fra enden) 1 (Nærmeste i avstand 1 fra enden) 8 (Endetegnet får ingen lavere verdi fra strengen) {,, Å} \ {G,,,} 8 (Resten får strengens lengde) [slutt]

UNIVERSITETET I OSLO. Med svar-forslag

UNIVERSITETET I OSLO. Med svar-forslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 3130/4130: Algoritmer: Design og effektivitet Eksamensdag: Fredag 14. desember 2007 Tid for eksamen: Kl. 09.00 til 12.00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet «Midterm» i: INF 4130: Algoritmer: Design og effektivitet Eksamensdag: 1. november 2011 Tid for «midterm»: Kl. 09:00 13:00 (4 timer) [124%,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Prøveekasmen 2007, med svarforslag Eksamen i: INF 330/430: Algoritmer: Design og effektivitet Eksamensdag: Fredag. desember 200 Tid

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av

Detaljer

Turingmaskiner.

Turingmaskiner. Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen

Detaljer

Prøveeksamen 2006 med svarforslag

Prøveeksamen 2006 med svarforslag Oppgave 1 Prøveeksamen 2006 med svarforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Prøve-eksamen i: INF 3130/4130: Algoritmer: Design og effektivitet Eksamensdag: Gjennomgås 30.

Detaljer

INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.)

INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.) Oppgave 1 Uavgjørbarhet INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/12-2005, 14.15 (lille aud.) L = {(M 1, M 2 ) M 1 og M 2 er Turingmaskiner som er ekvivalente, dvs. gir samme output for samme

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag Algoritmer og datastrukturer ved Høgskolen i OsloSide 1 av 6 Algoritmer og datastrukturer Løsningsforslag Eksamen 24. februar 2010 Oppgave 1A 1. Komparatoren sammenligner først lengdene til de to strengene.

Detaljer

INF 4130 / / Dagens foiler hovedsakelig laget av Petter Kristiansen Foreleser Stein Krogdahl Obliger:

INF 4130 / / Dagens foiler hovedsakelig laget av Petter Kristiansen Foreleser Stein Krogdahl Obliger: INF 4130 / 9135 29/8-2012 Dagens foiler hovedsakelig laget av Petter Kristiansen Foreleser Stein Krogdahl Obliger: Tre stykker, som må godkjennes. Frister: 21. sept, 26. okt, 16. nov Andre, «nærliggende»

Detaljer

Dynamisk programmering Undervises av Stein Krogdahl

Dynamisk programmering Undervises av Stein Krogdahl Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

Stein Krogdahl, Dino Karabeg, Petter Kristiansen. Kenneth A. Berman and Jerome L. Paul.

Stein Krogdahl, Dino Karabeg, Petter Kristiansen. Kenneth A. Berman and Jerome L. Paul. Stein Krogdahl, Dino Karabeg, Petter Kristiansen steinkr at ifi.uio.no dino at ifi.uio.no pettkr at ifi.uio.no INF 4130 / 9135 Algoritmer: Design og effektivitet Algorithms: Sequential Parallel and Distributed

Detaljer

Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist)

Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

Oppgaver til INF 5110, kapittel 4, med svarforslag Gjennomgått torsdag 14. febr Disse foilene er justert 15/2, kl. 11

Oppgaver til INF 5110, kapittel 4, med svarforslag Gjennomgått torsdag 14. febr Disse foilene er justert 15/2, kl. 11 Oppgaver til INF 5110, kapittel 4, med svarforslag Gjennomgått torsdag 14. febr. 2008. Disse foilene er justert 15/2, kl. 11 Oppgave 1 (Mye repetisjon): Gitt gram.: exp exp op exp (exp) num op + - * /

Detaljer

Oppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf:

Oppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf: INF100 Algoritmer og datastrukturer INF100 Algoritmer og datastrukturer Oppgave 1 LØSNINGSFORSLAG Betrakt følgende vektede, urettede graf: V 1 V Eksamen i INF100 1. desember 004 V V 4 V 4 V V Ragnar Normann

Detaljer

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut)

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut) Dagens program: Første time: INF 4130 6. oktober 2011 Stein Krogdahl Kap 23.5: Spilltrær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer

Detaljer

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å

Detaljer

Betinget eksekvering og logiske tester i shell

Betinget eksekvering og logiske tester i shell Betinget eksekvering og logiske tester i shell Betinget eksekvering *? Programmet utfører operasjon(er) bare hvis en logisk betingelse er sann Bash tilbyr to kontrollstrukturer for å kunne gjøre betinget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

Matchinger i ikke-bipartite grafer

Matchinger i ikke-bipartite grafer Matchinger i ikke-bipartite grafer Stein Krogdahl, Notat til INF 3/4130 Sist revidert september 2006 Vi skal i dette notatet se på det å finne matchinger i generelle grafer, uten noe krav om at grafen

Detaljer

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer

Detaljer

INF 3/ oktober : Avslutte Branch and Bound 23.6: Trær og strategier for spill med to spillere

INF 3/ oktober : Avslutte Branch and Bound 23.6: Trær og strategier for spill med to spillere INF 3/4130 18. oktober 2007 Dagens forelesning: Kapittel 23 i hovedboka 23.5: Avslutte Branch and Bound 23.6: Trær og strategier for spill med to spillere Oblig 2 har ligget ute en stund. Frist 26 oktober.

Detaljer

Notat for oblig 2, INF3/4130 h07

Notat for oblig 2, INF3/4130 h07 Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3

Detaljer

MAT1030 Plenumsregning 1

MAT1030 Plenumsregning 1 MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2015

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2015 Norsk informatikkolympiade 2015 2016 1. runde Sponset av Uke 46, 2015 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser

I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser Forelesning 5 Logikk Dag Normann - 28. januar 2008 Oppsummering av Kapittel 3 I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser i en datamaskin. Stoffet

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk

Detaljer

Quicksort. Fra idé til algoritme.

Quicksort. Fra idé til algoritme. Quicksort Fra idé til algoritme. Quicksortalgoritme algoritmeidé 1. Del arrayen i to deler, slik at alle elementer i den ene delen er mindre enn alle elementer i den andre delen. Q U I C K S O R T A L

Detaljer

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere INF 4130 1. oktober 2009 Stein Krogdahl Dagens program: Første time: Kap 23.5: Trær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer (Ikke

Detaljer

Obligatorisk oppgave 2 i INF 4130, høsten 2009

Obligatorisk oppgave 2 i INF 4130, høsten 2009 Obligatorisk oppgave 2 i INF 410, høsten 2009 Leveringsfrist 2. oktober Generelt for alle oppgavene Samme reglement gjelder som for obligatorisk oppgave 1. Det kan komme presiseringer og forandringer i

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel Velkommen til plenumsregning for MAT1030 MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Torsdager 10:15 12:00 Gjennomgang

Detaljer

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning

3/5/2012. Chart alternativ datastruktur. Fundamentalregelen. Chart-parsing. Bottom-up FORMELL SPRÅKTEORI. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning CHART-PARSING FORMELL SPRÅKTEORI 5. mars 2012 2 Chart alternativ datastruktur NP Det Nom Fundamentalregelen NP Det Nom Nom Nom PP Nom Nom PP NP PP P NP Det

Detaljer

Norsk informatikkolympiade 2013 2014 1. runde

Norsk informatikkolympiade 2013 2014 1. runde Norsk informatikkolympiade 2013 2014 1. runde Sponset av Uke 46, 2013 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Oppgave 2: def a (x): x = x + 1 y = 1 + x * 2

Oppgave 2: def a (x): x = x + 1 y = 1 + x * 2 Oppgave 2: def a (x): x = x + 1 y = 1 + x * 2 return y def b (n): y = 0 if (n

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver - LF. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python.

Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver - LF. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python. Algoritmer og datastrukturer Kondisjonstest Python-oppgaver - LF Onsdag 6. oktober 2004 Her er noen repetisjonsoppgaver i Python. Som alltid er den beste måten å lære å programmere på å sette seg ned og

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer

Detaljer

Øvingsforelesning 5 Python (TDT4110)

Øvingsforelesning 5 Python (TDT4110) Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 21. januar 2009 (Sist oppdatert: 2009-01-22 13:02) Kapittel 4: Logikk (fortsettelse) MAT1030

Detaljer

Kapittel 4: Logikk (fortsettelse)

Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret Matematikk Forelesning 4: Logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Logikk (fortsettelse) 21. januar 2009 (Sist oppdatert: 2009-01-22 13:03) MAT1030

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet LØSNINGSFORSLAG - KOMMENTARER til SENSOR N.B. RETTELSE 23.05 og 26.05 pkt. e) :UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 5 Eksamensdag : Lørdag 20 mai, 2000 Tillatte

Detaljer

Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python.

Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python. Algoritmer og datastrukturer Kondisjonstest Python-oppgaver Onsdag 6. oktober 2004 Her er noen repetisjonsoppgaver i Python. Som alltid er den beste måten å lære å programmere på å sette seg ned og programmere

Detaljer

MAT1030 Forelesning 4

MAT1030 Forelesning 4 MAT1030 Forelesning 4 Logikk Roger Antonsen - 21. januar 2009 (Sist oppdatert: 2009-01-22 13:02) Kapittel 4: Logikk (fortsettelse) Enda et eksempel (a) Jeg liker ikke Bamsemums. (b) Du liker alt jeg liker.

Detaljer

Løsnings forslag i java In115, Våren 1996

Løsnings forslag i java In115, Våren 1996 Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030 MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk

Detaljer

G høgskolen i oslo. Emnekode:!;_unstiq intelliqens lv 145A Gruppe(r) : Dato: Tillatte

G høgskolen i oslo. Emnekode:!;_unstiq intelliqens lv 145A Gruppe(r) : Dato: Tillatte I Emne: G høgskolen i oslo Emnekode:!;_unstiQ intelliqens lv 145A Gruppe(r) : Dato: 23.04.04 Tillatte Antall sider (inkl. Antall oppgaver: hjelpemidler: forsiden): 5 3 Inoen Faglig veileder: Eva Vihovde

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: Algoritmer: Design og effektivitet Eksamensdag: 11. desember 2009 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk INF0: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk Mathias Lohne mathialo Rekursjonseksempel Eksempel Finn kjøretid for følgende program: (Ex11 b) 1 float foo(a) { n = Alength; 3 4 if

Detaljer

Svarforslag til ukeoppgaver til INF 4130

Svarforslag til ukeoppgaver til INF 4130 Svarforslag til ukeoppgaver til INF 4130 15. november 2011 Oppgave 1: Løs 14.4 (hvori innbakt svaret på oppgave 14.5) Vi skal altså vise at Hungarian-algoritmen kan implementeres i tid O(n 3 ), der n er

Detaljer

INF 4130 Oppgavesett 3, 20/ m/løsningsforslag

INF 4130 Oppgavesett 3, 20/ m/løsningsforslag INF 4130 Oppgavesett 3, 20/09-2011 m/løsningsforslag Oppgave 1 1.1 Løs oppgave 20.19 (B&P), (a) er vist på forelesningen og kan vel bare repeteres, men løs (b). (a) er altså løst på forelesningen. (b)

Detaljer

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed).

Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/ Legger ut en oppgave til kap. 4 (se beskjed). Kap.4, del 2: Top Down Parsering Kap. 5, del 1: Bottom Up Parsing INF5110, 7/2-2008 Legger ut en oppgave til kap. 4 (se beskjed). tein Krogdahl Ifi, UiO Merk: Av de foilene som ble delt ut på papir på

Detaljer

Norsk. Language: English / Norwegian

Norsk. Language: English / Norwegian Rules of Coerceo by Coerceo Company Norwegian translation by Monica Rehaug Norsk Language: English / Norwegian Copyright Ingen deler av dette dokumentet kan reproduseres, kopieres eller sendes, uansett

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2001 KLASSE: 00HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

INF1010. Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene 0, 1 og 2: Sekvensgenerering. Generalisering. n n n! INF1010 INF1010 INF1010

INF1010. Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene 0, 1 og 2: Sekvensgenerering. Generalisering. n n n! INF1010 INF1010 INF1010 Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene, og : Kombinatorisk søking Generering av permutasjoner Lett: Sekvensgenerering Vanskelig: Alle tallene må være forskjellige Eksempel: Finne

Detaljer

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006 ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Pattern matching algorithms. INF Algoritmer og datastrukturer. Lokalisering av Substrenger. Brute force

Pattern matching algorithms. INF Algoritmer og datastrukturer. Lokalisering av Substrenger. Brute force Pattern matching algorithms INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo Algoritmer for lokalisering av substrenger Brute force Enkleste tenkelige

Detaljer

INF2220: Forelesning 7. Kombinatorisk søking

INF2220: Forelesning 7. Kombinatorisk søking INF2220: Forelesning 7 Kombinatorisk søking Oversikt Rekursjon - oppsummering Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige Eksempel: Finne korteste

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011

Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF /2-2011 Kap. 5, Del 2: SLR(1), LR(1)- og LALR(1)-grammatikker INF5110 22/2-2011 Stein Krogdahl, Ifi, UiO Oppgaver til kap 4: På slutten av dagens foiler ligger noen oppgaver med svarforslag. Disse vil bli forholdsvis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3110/4110 Programmeringsspråk Eksamensdag: 2. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Valg og betingelser TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne forstå og bruke if-setninger sammenlikning av strenger nøstede beslutningsstrukturer betingelser

Detaljer

Øvingsforelesning 1 Python (TDT4110)

Øvingsforelesning 1 Python (TDT4110) Øvingsforelesning 1 Python (TDT4110) Introduksjon, Kalkulasjoner Ole-Magnus Pedersen Oversikt Praktisk Info Repetisjon fra sist Oppgaver for øving 2 2 Praktisk Info Last opp øvinger på Blackboard før godkjenning

Detaljer

INF1010 Sortering. Marit Nybakken 1. mars 2004

INF1010 Sortering. Marit Nybakken 1. mars 2004 INF1010 Sortering Marit Nybakken marnybak@ifi.uio.no 1. mars 2004 Dette dokumentet skal tas med en klype salt og forfatter sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

Oppgave 2: def a (x): x = x + 1 y = 1 + x * 2

Oppgave 2: def a (x): x = x + 1 y = 1 + x * 2 Oppgave 2: def a (x): x = x + 1 y = 1 + x * 2 return y def b (n): y = 0 if (n

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 8. gang, 6.3.2014 Jan Tore Lønning I dag Chart parsing Implementasjon CKY og Chart: Parsing vs anerkjenning 2 Chart alternativ datastruktur (S, [0, 1]) (VP, [0,1]) (Det, [1,2])

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Tekstalgoritmer 1 Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 10 1

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2015 2016 1. runde Sponset av Uke 46, 2015 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1020 Algoritmer og datastrukturer Eksamensdag: 15. desember 2004 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 6 sider.

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

Obligatorisk oppgave 1 INF1020 h2005

Obligatorisk oppgave 1 INF1020 h2005 Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte

Detaljer

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning

INF2820 Datalingvistikk V Gang 4.5 Jan Tore Lønning INF2820 Datalingvistikk V2015 14. Gang 4.5 Jan Tore Lønning CHART PARSING 2 I dag Svakheter ved tidligere parsere RD og SR: ineffektivitet CKY: CNF Chart parsing,,dotted items og fundamentalregelen Algoritmer:

Detaljer

Avgjørbarhet / Uavgjørbarhet

Avgjørbarhet / Uavgjørbarhet Avgjørbarhet / Uavgjørbarhet For å kunne snakke om avgjørbarhet/uavgjørbarhet trenger vi Turingmaskiner og for å snakke om Turingmaskiner trenger vi formelle språk, og strenger og alfabeter. Pluss litt

Detaljer

Oppgave 1 Minimum edit distance

Oppgave 1 Minimum edit distance INF-2810 V 2012 Oppgavesett 10, kalenderuke 12. Oppgave 1 Minimum edit distance Vi vil finne det minste antall redigeringsoperasjoner som kreves for å komme fra strengen A til strengen B. Strengene oppgis

Detaljer

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1: INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2

Detaljer

Læringsmål og pensum. Oversikt

Læringsmål og pensum. Oversikt 1 2 Læringsmål og pensum TDT4105 Informasjonsteknologi grunnkurs: Uke 39 Betingede løkker og vektorisering Læringsmål Skal kunne forstå og programmere betingede løkker med while Skal kunne utnytte plassallokering

Detaljer

Læringsmål og pensum. if (be): else (not_to_be):

Læringsmål og pensum. if (be): else (not_to_be): 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som

Detaljer

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre

Oversikt. Branch-and-bound. Hvordan løse NP-hard kombinatorisk optimering? Eks: Eksakt Min Vertex cover. Mulige løsninger representert som søketre Oversikt Branch-and-bound Pål ætrom Branch and bound Prinsipper Min Vertex cover B & B eksempler Median string TP Hvordan løse NP-hard kombinatorisk optimering? Kombinatorisk opt. Løsningsrom, C Målfunksjon

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort

Detaljer

Skanning del I INF /01/15 1

Skanning del I INF /01/15 1 Skanning del I INF 5110-2015 21/01/15 1 Skanning: innhold (begge forelesningene) Hva gjør en skanner? Input: Programteksten. Output: Ett og ett token fra programteksten (sekvensielt). Regulære uttrykk/definisjoner.

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker

INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker INF5110 V2013 Stoff som i boka står i kap 4, men som er generelt stoff om grammatikker 29. januar 2013 Stein Krogdahl, Ifi, UiO NB: Ikke undervisning fredag 1. februar! Oppgaver som gjennomgås 5. februar

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær

GRAFER. Korteste vei i en vektet graf uten negative kanter. Korteste vei, en-til-alle, for: Minimale spenntrær IN Algoritmer og datastrukturer GRAER IN Algoritmer og datastrukturer Dagens plan: orteste vei, en-til-alle, for: ektet rettet graf uten negative kanter (apittel 9..) (Dijkstras algoritme) ektet rettet

Detaljer