SANNSYNLIGHETSREGNING I GRUNNSKOLEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "SANNSYNLIGHETSREGNING I GRUNNSKOLEN"

Transkript

1 1 I GRUNNSKOLEN Etterutdanningskurs for lærere på grunnskolens ungdomstrinn Opplegget som her presenteres til fordypning i STATISTIKK / SANNSYNLIGHETSDELEN av MATEMANIA er i utgangspunktet skrevet for lærere, men kan med fordel også brukes av interesserte elever. Innledning L97 har satt sannsynlighetsregning mer i fokus enn tidligere læreplaner (se.s.2) Dette innføringskurset ønsker å møte behovet for repetisjon og oppjustering for ungdomsskolens matematikklærere, både faglig og didaktisk. Oppbygningen av kurset viser først et mulig innføringsopplegg i sannsynlighetsregning for elever på 9. klassetrinn. Her settes elevaktivitet, gruppearbeid,drøfting og refleksjon i fokus uten å gi støtte i for mye teori. Etter introduksjonsfasen taes ulike problemstillinger opp til drøfting og sees i lys av teoristoffet som er samlet i et eget kapittel. Teoristoffet er primært innrettet mot lærer, slik at en del av dette går ut over grunnskolematematikken, men vil styrke lærerens teoretiske bakgrunn. Før en går i gang med sannsynlighetsregningen i klassen anbefales en rask gjennomgang av teoristoffet for egen oppdatering. Opplegget er basert på et konstruktivistisk læringssyn der vi bevisst søker å ta utgangspunkt og spille på elevenes egne refleksjoner i prosessen underveis og ved oppsummeringen når teoristoffet løftes fram. Et viktig stikkord er således - tid til refleksjon. I tråd med dette har læreren her en viktig rolle ved å gi de raskeste grupper nye utfordringer og ikke gå inn på eller gi løsninger for tidlig. Når problemstillingene drøftes er det viktig å gi plass til elevenes løsningsforslag og la drøftingen ta utgangspunkt i disse. En del oppgaver fra avgangsprøver, heldagsprøver med mer er tatt med for å gi muligheter for ekstra trening og differensiering i klassen. I oppsummeringsfasen trekkes nødvendig teoristoff inn, gjerne med utgangspunkt i elevenes egne forslag. Mengden av teori avhenger av klassens ståsted, tiden som avsettes til temaet, m.m - og avpasses av lærer. Emnet vil også kunne egne seg som tema / prosjektarbeid f.eks. om elevene tok utgangspunkt i ulike typer spill og sannsynlighet. ( kortspill / yatsee / spill som adm. av Norsk Tipping AS m.m.)

2 2 I GRUNNSKOLEMATEMATIKKEN L97 Temaet taes opp på ulike klassetrinn og i L97 finner vi under hovedemne Behandling av data følgende : I opplæringen skal elevene : 6. klasse - gjøre erfaringer med sannsynlighet ved å reflektere over og samtale om situasjoner fra dagliglivet, spill og forskjellige eksperimenter. 7. klasse - vurdere og etter hvert beskrive sannsynlighet som tall i området 0 til 1 - fra erfaringer i dagliglivet, i spill og ved eksperimenter. 9. klasse - arbeide med å utvikle mer presise begreper og uttrykksmåter for sannsynlighet og med å tallfeste sannsynligheter. - gjøre erfaringer med at relativ frekvens noen ganger må brukes som et anslag for sannsynlighet. - beregne sannsynligheter ut fra situasjoner hvor alle enkeltutfall har like stor sjanse. - undersøke situasjoner der det må regnes med usikkerhet, risiko og sjanse, for eksempel spill, forsikring, etterforskning og medisin. - prøve ut simulering av praktiske situasjoner der tilfeldighet inngår.

3 3 TIME 1 INTRODUKSJON Elevene grupperer seg i treer-grupper. Gruppen trenger følgende utstyr : GRUPPE : * 12 brikker - 3 ulike farger * 2 mynter * 2 terninger * 2 A4-ark med spillene : Double-toss og Sats på hester 1. Gruppene prøver de to spillene. Double-toss Elevene velger hvert sitt startfelt hhv. 0, 1 og 2. Notér opp posisjonene til brikkene når første brikke når mål. Prøv spillet 3 ganger og skift startfelt mellom hver gang. Drøft hvordan spillet fungerer og prøv å forklare hvorfor det blir slik. Svar her : Sats på hester Les først instruksjonen. Hver elev velger brikkefarge. Bestem startrekkefølge ved at hver elev gjør et terningkast. Den som har høyest terningøyne velger startfelt for sin første brikke, de øvrige i rekkefølge etter hva øynene viser. Fortsett i denne rekkefølge til alle brikkene er plassert på startfeltet. Prøv spillet og notér ned fra hvilken startposisjon vinnerbrikken kommer. Er dette tilfeldig? Prøv spillet påny og sjekk om resultatet gjentaes. Drøft erfaringene og gi svar på disse spørsmål : A. Hvilken hest bør du ikke velge om du vil komme først til mål? B. Hvilke hest / hester har størst sjanse til å vinne, og hvorfor? Svar her :

4 4 Double-toss TIME 1 Dere trenger : 3 brikker og 2 mynter. Spilleregler : 1. Plassér brikkene i startfeltene 0,1 og Kast med 2 mynter og flytt brikkene slik : A. Hvis resultatet er 2 mynt, flytt brikke 0 en rute fram. B. Hvis resultatet er 1 mynt og 1 krone, flytt brikke 1 en rute fram. C. Hvis resultatet er 2 krone, flytt brikke 2 en rute fram. Lykke til! MÅL START

5 5 Sats på hester 12 hester (brikker) stiller i startfeltet nederst på siden. (Se INTRODUKSJON) TIME 1 Spilleregler : 1. Kast med to terninger. 2. Ved hvert kast viser summen av øyne nummeret på den hest som får flytte en rute framover. 3. Skift om å kaste terningene. Lykke til! MÅL

6 6 Hva mener vi med begrepet sannsynlighet? TIME 2 *Start timen med en oppsummering fra time 1 Hva er elevenes forklaring på de to spillene? Vi skal nå se på en del sammenhenger der begrepet sannsynlighet dukker opp. Eksempler : 1. Kast mynt / krone og finn ut hvordan utfallet kan bli om vi : A. kaster 2 ganger. B. kaster 3 ganger Hvor mange muligheter har vi i tilfelle B? 2. Kast med en terning. Hva er sannsynligheten for ener? Hva mener vi med sannsynlighet? 3. Kast med to terninger og svar på følgende spørsmål : A. Hvilke verdier kan summen av øyne anta? B. Hvor mange ulike kombinasjoner har vi når vi kaster med 2 terninger? (for eksempel 3 5, treer i første kast,femmer i andre kast er én mulighet, osv.) C. Hva er sannsynligheten for to enere? 4. Kan du finne ut hva sannsynligheten er for 3 enere ved 3 kast? Drøfting : Om noen av eksemplene over ikke løses utfordre da elevene til å finne ut av dette til neste time. Bruk nå litt tid på å la elevene formulere sine forslag til hvordan sannsynligheten kan uttrykkes mest sannsynlig vil brøk bli nevnt, men kom også inn på sannsynligheten som et tall, mellom 0 og 1, og også muligheten for å uttrykke sannsynligheten i prosent. Til neste time kan elevene prøve å finne løsningen på følgende grublis : Grublis : En mattelærer på ungdomstrinnet hadde følgende opplegg for lekseprøve i muntlige fag : Om summen av øyne ved tre påfølgende terningkast blir mindre enn 8 skal elevene ha lekseprøve. Uten spørsmål fra lærer og uten bruk av hjelpemidler skal leksen da skrives. Vurdér sannsynligheten for lekseprøve ved et slikt opplegg. Begrunn svaret.

7 7 Mer sannsynlighetsregning TIME 3 *Start timen med en oppsummering fra time 2 Hvor stor sannsynligheter det for lekseprøve? Vil noen prøve å forklare hvorfor det blir slik. Flere eksempler : 1. Forsøk : Ved å kaste en tom fyrstikkeske vil 3 utfall være mulige : - flatside - kant - ende Del opp klassen i toer-grupper og start med en demonstrasjon av forsøket. Gruppene skal deretter stille opp en hypotese for hvor stor sannsynlighet det er for hvert av de mulige utfall. Lærer registrerer de ulike gruppenes hypoteser. Videre skal gruppene gjøre følgende : a) Samarbeid på gruppen og gjør 100 forsøk. Lag en frekvenstabell og presentér resultatene i din gruppe? Finn også relativ frekvens. Hva blir sannsynlighetene i prosent? b) Alle grupperesultatene samles i en tabell for hele klassen. Drøft resultatet og si noe om grunnen til at gruppene hadde svært ulike resultater. Hvordan stemte hypotesene med samletabellen for hele klassen? 2. I en boks er det 5 kuler - 2 røde, 2 blå og 1 gul. Vi trekker ut en kule tilfeldig. Hva er sannsynligheten for at vi trekker : a) en rød kule? b) en blå eller gul kule? c) en kule som ikke er gul? Utforskingsoppgave (til neste matematikk-time) På en norsk tippekupong er det 12 kamper. Finn ut hvor mange ulike kombinasjoner (rekker) vi maksimalt kan ha. Du leverer inn en rekke uten garderinger. Finn da ut, og angi svarene som brøk : a) Hvor stor sjanse har du for å få 12 rette? b) Cecilie fikk en gang 0 rette i tipping og sa da : Jeg fortjener sannelig en trøstepremie med dette resultatet. Kan du finne ut hvor mange tipperekker det hver gang er som gir resultatet 0 rette?

8 8 Mer sannsynlighetsregning TIME 4 43 *Start timen med en oppsummering fra time 3 Flere eksempler : 1. Gruppeoppgave Finn ut hvilke farger kulene har? I en sylinderformet metallboks med lokk ligger et ukjent antall fargete, men ellers like kuler. Læreren lar elevene etter tur trekke en kule som vises til alle før den legges tilbake i boksen. Etter at alle elever har trukket 2 ganger skal elevene i gruppen diskutere og finne ut hvor mange kuler av hver farge boksen inneholder. Oppgaven blir enklere om læreren opplyser hvor mange kuler totalt som finnes i boksen. En tom kakeboks og kinasjakk-kuler egner seg bra til denne oppgaven. 2. En familie har 4 barn. Hvor stor sannsynlighet er det for at det er 4 gutter? Her regner vi like stor sannsynlighet for gutt som for jente. Grublis : Ved en gjettelek i TV fikk en deltaker valget mellom 3 dører merket 1, 2 og 3. Bak en av dørene Grublis : sto en bil og bak de 2 andre en geit. Programlederen visste hvilken dør bilen var bak. Deltakeren valgte døren merket 2. Programlederen åpnet da en av de to andre dørene og viste fram en geit. Deltakeren fikk så tilbud om å holde på døren merket 2 eller å skifte til den andre døren som ikke var åpnet. Hva ville du gjort? Beregn sannsynligheten for å vinne bilen hvis du skifter til den andre døren. Tips : Det finnes 3 alternativer for bilens plassering : A B C Bil Geit Geit Geit Bil Geit Geit Geit Bil Vi antar at alle tre alternativene er like sannsynlige. a) Hvis bilen er plassert som i A, vil programlederen åpne dør 3. b) Hvis bilen er plassert som i B, vil programlederen åpne dør 1 eller 3, hvilken spiller ingen rolle. c) Hvis bilen er plassert som i C, vil programlederen åpne dør 1

9 9 TIME 5 *Start timen med en oppsummering fra time 4 Treningsoppgaver 1. Hentet fra avgangsprøven 1997 (oppgv. 15). RV 6 RV 3 RV 3 A RV 9 En gruppe elever foretok en trafikkundersøkelse ved punktet A på riksvei 3 ( RV 3 ). I løpet av en time passerte det i alt 36 biler i pilens retning. Av disse var det : 10 biler som kjørte inn på RV 6 14 biler som kjørte inn på RV 9 12 biler som fortsatte langs RV 3 1 p a) Hva er sannsynligheten for at den første av de 36 bilene kjørte inn på RV 9? 2p b) Hva er sannsynligheten for at begge de to første av de 36 bilene kjørte inn på RV 6? 2. Ved normert prøve i 1993 (og i 1994), var oppgaven gitt som følger : To jenter og tre gutter som er på tur sammen, blir enige om at to av dem skal ta seg av oppvasken. Hvem det skal være, avgjøres ved loddtrekning hvor alle har like stor sjanse til å bli trukket ut. Hva er sannsynligheten for at det blir to gutter som skal vaske opp? Vis / forklar hvordan du kom fram til svaret : Svar :

10 10 TIME 6 43 Flere treningsoppgaver 3. Hentet fra avgangsprøven 1992 (oppgv. 15). Johanne har tre røde, to grønne og en blå blyant i pennalet sitt. Blyantene er helt like bortsett fra fargen. a) Hun tar ut en blyant uten å se på fargen. Hva er sannsynligheten for at den er grønn? b) Hun legger blyanten tilbake, og ber Kari ta ut to blyanter uten å se på fargene. Johanne mener at sannsynligheten for at begge blyantene er røde, vil være 5 1, mens Kari mener at sannsynligheten vil være 3 1. Har noen av de to rett? Begrunn svaret. 4. Per gjør ett kast med 2 terninger, en svart og en hvit. a) Hva er sannsynligheten for å få 3 på den hvite terningen? De to tallene (antall øyner) han får, multipliserer han med hverandre. b) Hva er sannsynligheten for å få oddetall til svar?

11 11 Terminologi Kombinatorik LÆRER 1 Stokastisk - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. Utfallsrom / utfall (enkeltutfall) - Kaster vi f.eks. med terning har vi seks ulike muligheter for antall øyne terningen viser. En liste over alle mulighetene kaller vi forsøkets utfallsrom, terningøyne 3 og 4 betegnes som utfall, hvorav terningøyne 3 representerer det vi kaller et enkeltutfall. EKSEMPEL 1. For å klargjøre begreper og betegnelser studerer vi kast med en terning. Om vi får oddetall slipper vi oppvasken, får vi partall tar vi oppvasken. Begivenhet Det vi regner ut sannsynligheten for kalles ofte en begivenhet. Begivenheten A definerer vi som : A : Terningens øyne viser oddetall. Begivenheten A = {1, 3, 5 } gir 3 gunstige utfall av det totale 6 mulige. Utfallsrommet S = {1,2,3,4,5,6 } viser at vi totalt har 6 mulige antall gunstige utfall = antall mulige utfall 3 Sannsynlighet Sannsynligheten P( A) = = 0, 50 Relativ frekvens EKSEMPEL 2. I et statistisk forsøk kaster Ole og Anne med terning og noterer ned hver gang terningens øyne viser 6. Resultatene er vist i tabellen under. Antall kast Antall seksere Relativ frekvens a n a n , , ,16 6 Relativ frekvens defineres som antall gunstige utfall (a) dividert med antall mulige utfall (n).

12 12 De store talls lov Terminologi Tenk deg at vårt mynt / krone- forsøk fra time 2 utvides slik at elevene arbeider i grupper på to og to og at hver gruppe gjør 100 kast. 30 elever i klassen gir oss 15 forsøksgrupper. Sannsynligheten er like stor for krone som mynt. Likevel kan vi ikke forvente nøyaktig 50 % krone og 50 % mynt. Hvorfor ikke? La elevene være aktive om du tar opp dette spørsmålet til diskusjon i klassen. Stopp forsøket når alle grupper har gjort 5 kast og registrer resultatet. Plott resultatet inn i et diagram som viser antall kast på x-aksen og % eller sannsynlighet som brøk eller desimaltall på y- aksen. Resultatene vil vise at når antall kast i forsøket vårt øker og blir svært stort vil sannsynligheten nærme seg 0.5 i forsøket vårt. Dette er i samsvar med de store talls lov som kan formuleres slik : Dersom en rekke identiske forsøk gjøres, vil andelen av en bestemt hendelse nærme seg en bestemt verdi når antall forsøk gjøres stadig større. Denne verdien kalles for sannsynligheten for den bestemte hendelsen, og kan uttrykkes slik : LÆRER 2 sannsynligheten = Antall ganger en registrerer hendelsen Antall ganger forsøket ble gjort når antall ganger forsøket ble gjort er et stort tall Hva som menes med et stort tall må videre avklares. Ta utgangspunkt i den verdien klassen finner når hele forsøket avsluttes og la dette være en anledning til å komme inn på begrepet uendelig ( la antallet gå mot uendelig ). Geometrisk sannsynlighetsmodell Et eksempel på en slik modell kan være en terning. Om dette er det vi kaller en hederlig terning er sannsynligheten like stor for å få ener som et hvilket som helst annet av tallene fra 2 til og med seks. Geometrien tilsier at alle sider har like stor sannsynlighet derfor navnet geometrisk modell. La elevene foreslå andre eksempler på geometriske modeller. Uniform sannsynlighetsmodell Et klassisk eksempel er trekning av fargete, men ellers identiske kuler fra en boks (se TIME 4 eks. 1 ). Her vil alle utfallene ha samme sannsynlighet for å inntreffe, vi har det vi kan betegne et symmetrisk utfallsrom. Da vil sannsynligheten for en bestemt hendelse være gitt som : sannsynligheten = Antall gunstige utfall Antall mulige utfall

13 13 Teori - Kombinatorikk LÆRER 3 Kombinatorikk er den gren av statistikken som tar for seg ordning og gruppering av elementer og kommer fram til hvor mange ulike kombinasjoner et bestemt statistisk forsøk har. Et sentralt prinsipp innen kombinatorikken er multiplikasjonsprinsippet, eller multiplikasjonsregelen som den også kalles. Multiplikasjonsprinsippet Vi starter opp med å betrakte et eksempel. Eksempel 1 På en kafé kan du velge mellom 3 ulike middagsretter og 2 desserttyper. Hvor mange ulike kombinasjoner av middag og dessert har du totalt. Figuren under gir svar på problemet. A a b 1 2 B C Figur 1. Oversikt over middag / dessert kombinasjoner. a b a b middagsretter og 2 typer dessert gir 3 2 = 6 ulike kombinasjoner. Figuren over kalles et trediagram og gir en grei oversikt over antall kombinasjoner. Multiplikasjonsprinsippet : Dersom et statistisk forsøk har r trinn og n 1 muligheter i første trinn, n 2 muligheter i andre trinn, og n r muligheter i r te trinn, vil vi totalt ha n 1 n 2 n r muligheter.

14 14 Eksempel 2 Hvor mange ulike måter kan 4 personer, A, B, C, og D stille i kø på? Systematiserer vi og starter med A først vil figur 2 under gi oss en oversikt over problemet. LÆRER 4 A B C D A B D C A C B D A C D B 6 A D B C A D C B B A C D B A D C B C A D B C D A 6 B D A C B D C A C A B D C A D B C B A D 6 C B D A D A B C D A C B Figur 2. Oversikt over totalt antall køkombinasjoner. Figuren over viser klart at vi totalt har 6 4 = 24 ulike kombinasjoner. En annen måte å se dette på er følgende : 1. Først i køen kan hhv. A, B, C og D stå. Antall muligheter = 4 2. Når den første i køen er valgt er det 3 igjen til plass nr. 2 Antall muligheter = 3 3. Når de to første er valgt er det 2 igjen til plass nr. 3 Antall muligheter = 2 4. Når de tre første er valgt er det kun 1 mulighet på plass 4 Antall muligheter = 1 Totalt skulle dette gi : = 24 mulige køkombinasjoner. Dette kan vi skrive som 4! ( 4 fakultet ). Øker vi antall personer i køen til 5 vil vi totalt få 5! = = 120 ulike kombinasjoner. Overnevnte eksempel

15 15 representerer en kategori som betegnes : et ordnet utvalg uten tilbakelegging. LÆRER 5 Et utvalg uten tilbakelegging vil si at et objekt som er trukket ut ikke legges tilbake før trekningen foretas påny og følgelig kun kan opptre en gang i utvalget. Ved LOTTO-spill trekkes 7+2 nummererte kuler ut uten tilbakelegging. Dersom rekkefølgen i utvalget er avgjørende, har vi et ordnet utvalg og tilsvarende om rekkefølgen ikke spiller noen rolle har vi et ikke ordnet utvalg. LOTTO-spill er et eksempel på ikke-ordnet utvalg hvor rekkefølgen av de uttrukne vinnertallene ikke spiller noen rolle. Ordnet og uordnet utvalg uten tilbakelegging Eksempel 3 Av 4 bokstaver A, B, C og D skal 2 bokstaver trekkes ut. Hvor mange måter kan dette gjøres på? Oppstilles mulighetene i en figur har vi : ORDNET IKKE-ORDNET UTVALG UTVALG AB AC AB AD AC BA AD BC BD BC CA BD CB CD DA CD DB DC Figur 3. Antall mulige kombinasjoner av 2 uttrukne bokstaver av et utvalg på 4. Ved første trekning har vi 4 bokstaver å velge blant, ved neste trekning har vi 3. Dette gir totalt 4 3 = 12 kombinasjoner ved et ordnet utvalg. Ser vi bort fra rekkefølgen, dvs. vi har et uordnet utvalg reduseres antall kombinasjoner til 6. Ved et ordnet utvalg kan vi generalisere overstående til : Skal vi trekke s elementer utfra en total populasjon på n vil antall mulige kombinasjoner være gitt ved : n (n-1) (n-2) (n-(s-1)) Overstående antall kan vi ved å multiplisere med (n-s)! og deretter dividere med (n-s)!

16 16 Da får vi : n ( n 1)... ( n ( s 1) ( n s) ( n ( s + 1) n! n (n-1) (n-(s-1)) = = ( n s)! ( n s)! Overstående uttrykk lar seg lettere beregne med lommeregner hvor fakultetsfunksjon er tilgjengelig. Telleren er fakultetet av antall elementer vi totalt har til rådighet mens nevneren er fakultetet av de elementer som ikke skal trekkes ut. Eksempel 4 Utvider vi eksempel 3 til å trekke 3 bokstaver utfra totalt 4 vil følgende muligheter fremtre : LÆRER 6 ORDNET ABC ABD ACB ACD ADB ADC BAC BAD BCA BCD BDA BDC CAB CAD CBA CBD CDA CDB IKKE- ORDNET ABC ABD ACD DAB DAC DBA BCD DBC DCA DCB Figur 4 Ordnet og ikke-ordnet utvalg i eksemplets kombinatoriske forsøk. Antall ordnete utvalg blir (se eksempel 2) : = 24. Den første av de ikke-ordnete kombinasjonene over, ABC, gir utgangspunkt for 3! = 6 ordnete kombinasjoner. 3! får vi fordi dette representerer totalt antall muligheter å kombinere 3 bokstaver. Økes antallet

17 til 4 bokstaver, ABCD, får vi = 4! (se eksempel 2). Antall ikke-ordnete kombinasjoner i overnevnte eksempel finnes ved : 17 LÆRER 7 Antallordneteutvalg Ant. måteråordne3bokst. på = = = ! 4 Overnevnte oppstilling betegnes : 3 og leses 4 over 3. Generelt kan vi si : Skal vi trekke s elementer uten tilbakelegging av en populasjon på n vil antall uordnete utvalg være gitt ved : n n! n ( n 1)... ( n ( s 1)) = = s s!( n s)! s! Eksempel 5 LOTTO Ved LOTTO-spill trekkes 7 tall ut av en populasjon på 34 tall i alt. Dette er en ikke-ordnet trekning uten tilbakelegging og antall mulige kombinasjoner kan finnes ved : 34 34! = = = !27! En del interessante opplysninger vedrørende overnevnte spill fremgår av tabellen under, som er opplysninger fra Norsk Tipping AS. Premie Kombinasjoner Sannsynlighet Ant.vinnerrekker Premie % Gj.snittlig premiebeløp 7 rette 1 1 : ,6 30 % rette 21 1 : ,3 15 % rette : ,6 15 % rette : ,0 20 % rette : ,4 20 % 51 I LOTTO trekkes det 7 vinnertall + 3 tilleggstall koster hver rekke ved innlevering kr. 3,-

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Forskjellige typer utvalg

Forskjellige typer utvalg Forskjellige typer utvalg Det skal deles ut tre pakker til en gruppe på seks. Pakkene inneholder en TV, en PC og en mobiltelefon. På hvor mange måter kan pakkene deles ut? Utdelingen skal være tilfeldig

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk.

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Lottotrekningen i Excel

Lottotrekningen i Excel Peer Andersen Lottotrekningen i Excel Mange leverer ukentlig inn sin lottokupong i håp om å vinne den store gevinsten. Men for de aller fleste blir den store gevinsten bare en uoppnåelig drøm. En kan regne

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning 6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske

Detaljer

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet

6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet . kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

ST0202 Statistikk for samfunnsvitere [4]

ST0202 Statistikk for samfunnsvitere [4] ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning

Detaljer

10.5 Mer kombinatorikk

10.5 Mer kombinatorikk bestemt person skal utvikle en hjertesykdom er 70 %. Har du noen forslag på hvilket grunnlag en slik sannsynlighet kan settes opp? 10.5 Mer kombinatorikk Den måten å nærme seg løsningen på kombinatoriske

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet

Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet Utviklet med støtte fra Bakgrunn og innledning Tilfeldighetenes spill var et eksperiment som ble kjørt på Akvariet i Bergen under Forskningsdagene

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Løsningsforslag til tidligere mappeoppgaver

Løsningsforslag til tidligere mappeoppgaver til tidligere mappeoppgaver Avdeling for Lærerutdanning Høgskolen i Vestfold M1 høst 007 9. november 007 Her legger vi ut løsningsforslag til noen oppgaver fra tidligere i år. Se på http://www-lu.hive.no/team/t06ab/todelt-logg.htm

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte

Detaljer

Simulering - Sannsynlighet

Simulering - Sannsynlighet Simulering - Sannsynlighet Når regnearket skal brukes til simulering, er det et par grunninnstillinger som må endres i Excel. Hvis du får feilmelding om 'sirkulær programmering', betyr det vanligvis at

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Læreplan. Forsøk og simuleringer. Sannsynlighet 3.3 Sum av sannsynligheter 5.4 Multiplikasjonsprinsippet 9.5 Uavhengige hendinger 0. Avhengige hendinger 5 Symboler, formler og eksempler

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Kilde: www.clipart.com 1 Statistikk, sannsynlighet og kombinatorikk. Lærerens ark Hva sier læreplanen? Statistikk, sannsynlighet og

Detaljer

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13 TERNINGER - variasjon i matematikkundervisningen Astrid Bondø NSMO 18-Aug-13 Siffer blir tall Lamis skriftserie: Et ess i ermet Bruk en vanlig 6-er terning eller en 0-9 terning. Kast terningene. Du får

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Oppgaver i sannsynlighetsregning 1

Oppgaver i sannsynlighetsregning 1 Oppgaver i sannsynlighetsregning 1 Oppgave 1 Forklar hva som menes med en uniform sannsynlighetsmodell. Gi minst et eksempel på en uniform sannsynlighetsmodell. Begrunn hvorfor den er uniform. Gi også

Detaljer

Løsningskisse seminaroppgaver uke 11 ( mars)

Løsningskisse seminaroppgaver uke 11 ( mars) HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

MAT0100V Sannsynlighetsregning og kombinatorikk

MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet

Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet Sannsynlighet Sannsynligheter angis som 1. (desimal)tall fra 0 til 1, der 0 angir at noe aldri vil skje og at 1 angir at noe vil skje hver gang 2. prosent mellom 0 og 100 %, der 0 % angir at noe aldri

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Sannsynlighet for alle.

Sannsynlighet for alle. Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai 2008 Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL. mai 008 EKSAMEN I MATEMATIKK 1. semester 10 studiepoeng Skolebasert lærerutdanning Tid 5 timer Tillatte hjelpemidler:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer,

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet

Detaljer

Oppgaver i kapittel 6

Oppgaver i kapittel 6 Oppgaver i kapittel 6 603, 604, 606, 607, 608, 609, 610, 616, 619, 68, 630, 63, 633, 641 Jeg har ikke laget figurer på alle oppgavene, men det bør dere gjøre! 603 u og 70 er begge periferivinkler til v,

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2016 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Geir Storvik Basert på presentasjon av Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Faktor 3 Oppgavebok. Løsningsforslag. Løsningsforslag til kapittel 6: Statistikk, kombinatorikk og sannsynlighet. Kategori 1

Faktor 3 Oppgavebok. Løsningsforslag. Løsningsforslag til kapittel 6: Statistikk, kombinatorikk og sannsynlighet. Kategori 1 Faktor 3 Oppgavebok til kapittel : Statistikk, kombinatorikk og sannsynlighet Kategori 1.101 a) Gjennomsnittsverdien blir: 3 + + 1 + 9 = 7,50 kr Gjennomsnittsverdien blir: 9 + + 11 + + 1 = 7, m 5.10 a)

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk

Detaljer

JULETENTAMEN 2016, FASIT.

JULETENTAMEN 2016, FASIT. JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:

Detaljer

Mappeoppgave om sannsynlighet

Mappeoppgave om sannsynlighet Mappeoppgave om sannsynlighet Statistiske eksperimenter Første situasjon Vi kom frem til å bruke Yatzy som et spill vi ønsket å beregne sannsynlighet ut ifra. Vi valgte ut tre like og to par. Etter en

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle

Detaljer

Nasjonale prøver. Matematikk 10. trinn Oppgave 2

Nasjonale prøver. Matematikk 10. trinn Oppgave 2 Nasjonale prøver 2005 Matematikk 10. trinn Oppgave 2 Skolenr.... Elevnr.... Gutt Omslag_skriv_mate_10.indd 1 Jente Bokmål 15. mars 2005 03-02-05 12:54:02 Alt du gjør, skal skrives i dette heftet. Når

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer