Foredrag om matematisk modellering - med inspirasjon fra heftet Matematisk Modellbygging, andre utgåve av Leiv Storesletten og Olav Nygaard

Størrelse: px
Begynne med side:

Download "Foredrag om matematisk modellering - med inspirasjon fra heftet Matematisk Modellbygging, andre utgåve av Leiv Storesletten og Olav Nygaard"

Transkript

1 Foredrag om matematisk modellering - med inspirasjon fra heftet Matematisk Modellbygging, andre utgåve av Leiv Storesletten og Olav ygaard Jostein Trondal 6. april 2006 Ligger også på trondal.com/modellering/vekst.pdf Foredraget ble hol på atta - ristiansand atedralskole i valgfag di. likn.

2 Matematisk modellering Matematisk tankebygning for å analysere et problem i et annet fag Fysikk, økonomi, økologi, informatikk, astronomi, geofysikk, kjemi,... Matematiske modeller har vært grunnlaget og drivkraften i utviklingen av alle disse fagene fra mien av 600-tallet Eksempel - peak oil-teorien Modelleringsprosessen ilde: 2

3 Denne foredraget går inn på Dierensiallikninger Økologi (befolkningsvekst) Eksponentiell vekst (Malthus' modell) Logistisk vekst (Verhulsts modell) Generalisering av Verhulsts modell Økologi Læren om samspillet i naturen Individ, Populasjon, Samfunn, Økosystem Simulering vs. kvalitative modeller Vekst i populasjoner brukes for å beskrive antall individer i populasjonen. er en funksjon av tiden; = (t). Vi antar at er kontinuerlig og tilstrekkelig deriverbar. Vekstraten til en populasjon i et økosystem er i utgangspunktet bestemt av re faktorer: Fødsel, død, innvandring og utvandring: = B D + I E () Disse faktorene påvirkes av alderssammensetning, tilgang på mat og plass, fysiske og kjemiske forhold i omgivelsene, rovdyr, parasitter,... Den enkleste typen modell for populasjonsvekst får vi ved å anta at vekstraten til populasjonen i hvert tidspunkt er gitt som funksjon av størrelsen på populasjonen i samme tidspunkt; = f() (2) 3

4 Den spesikke vekstraten s() = (3) Er et mål for det enkelte individs gjennomsnittlige tilskudd til populasjonsveksten Eksponentiell vekst - Malthus' modell Forutsetning: Den spesikke vekstraten er konstant. Dette gir: = r, r = konstant (Malthus' lov) (4) Oppgave : Vis at startkravet (0) = 0 gir løsningen (t) = 0 e rt Oppgave 2: Hva skjer med (t) når t? Oppgave 3: Skisser noen vekstkurver for ulike verdier av r. Logistisk vekst - Verhulsts modell En mer realistisk modell for befolkningsvekst kan lages ved å innføre en øvre grense > 0 for den populasjonen omgivelsene kan livnære. kalles gjerne bærekapasiteten. En ny veksthypotese der denne faktoren tas hensyn til kan da formuleres, for eksempel slik: Den spesikke vekstraten er proporsjonal med det ledige livsrom. Dette gir: = r ( ) (5) = r( ) (Verhulsts lov) (6) Oppgave 4: Hva skjer med likning (6) når? Likning (6) er en separerbar dierensiallikning som kan løses med standard metoder: 4

5 Delbrøksoppspalting av = r( ) ( = r ) = r ( ) : ( ) ( ) ( ) ( ) ( ) = a + b ( ) a( ) = ( ) + b ( ) a + (b a) = a= b= ( ) = + ( ) Dette gir: ( ) ( ) = + = r ( ) + ( ) = r ln ln = ln e ln = e rt+c = e c e rt = ±ec e rt = Cert 5

6 Startkravet (0) = 0 > 0 gir: C = 0 = 0 e rt (7) 0 Denne likningen kan nå løses m.h.p. og vi får: (t) = + (/ 0 )e rt for t 0 (8) Og er en såkalt logistisk vekst. Oppgave 5: Hva skjer med (t) når t? Oppgave 6: Hva skjer med (t) når? Oppgave 7: Skisser noen vekstkurver for ulike verdier av 0. 0 Verhulsts generaliserte modell I Verhulsts modell antar man at den spesikke vekstraten er størst når bestanden er nær null og minker jevnt med økende bestand. I virkeligheten derimot, vil bestander dø ut når de kommer under en viss kritisk verdi H > 0. H er da den minimale levedyktige bestanden. Verhulsts modell kan utvides for å ta hensyn til dette ved å anta følgende hypotese: = k( H)( ) (Verhulsts generaliserte lov) (9) der H er minimal levedyktig bestand, er bærekapasiteten og k er en konstant. Det følger fra (9) at vekstraten er positiv når H < < og er negativ når < H eller >. Med startkravet (0) = 0 får vi løsningen (t) = H + H + [( 0 )/( 0 H)] e k( H)t (0) Oppgave 8: Hva skjer med (t) når t og 0 > H? Oppgave 9: Hva skjer med (t) når t og 0 < 0 < H? Oppgave 0: Skisser noen vekstkurver for ulike verdier av 0. 6

7 Fasit Oppgave 2: (t) når t. Oppgave 3: Skisse av vekstkurver i Malthus' modell: Oppgave 4: (6) (4) når. Oppgave 5: (t) når t. Oppgave 6: (t) 0 e rt når. Oppgave 7: Skisse av vekstkurver i Verhulsts modell: Oppgave 8: (t) når t og 0 > H. Oppgave 9: (t) når t og 0 < 0 < H. Oppgave 0: Skisse av vekstkurver i Verhulsts generaliserte modell: 7

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2011

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2011 Befolkningsvekst Nico Keilman Demografi grunnemne ECON 1710 Høst 2011 Oversikt dagens forelesning Demografisk rate Befolkningsregnskap Befolkningsvekst pga naturlig tilvekst nettoinnvandring Befolkningsvekst

Detaljer

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2015

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2015 Befolkningsvekst Nico Keilman Demografi grunnemne ECON 1710 Høst 2015 Oversikt dagens forelesning Demografisk rate Befolkningsregnskap Befolkningsvekst pga naturlig tilvekst nettoinnvandring Befolkningsvekst

Detaljer

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2012

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2012 Befolkningsvekst Nico Keilman Demografi grunnemne ECON 1710 Høst 2012 Oversikt dagens forelesning Demografisk rate Befolkningsregnskap Befolkningsvekst pga naturlig tilvekst nettoinnvandring Befolkningsvekst

Detaljer

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2017

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2017 Befolkningsvekst Nico Keilman Demografi grunnemne ECON 1710 Høst 2017 Oversikt dagens forelesning Befolkningsregnskap Befolkningsvekst pga naturlig tilvekst nettoinnvandring Befolkningsvekst aritmetisk

Detaljer

Test, 4 Differensiallikninger

Test, 4 Differensiallikninger Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

Poissonprosesser og levetidsfordelinger

Poissonprosesser og levetidsfordelinger Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien

Detaljer

Definisjon: I en BEFOLKNINGSPROGNOSE forsøker en å basere seg på realistiske og plausible forutsetninger når det gjelder vekstfaktorene "FORECAST"

Definisjon: I en BEFOLKNINGSPROGNOSE forsøker en å basere seg på realistiske og plausible forutsetninger når det gjelder vekstfaktorene FORECAST BEFOLKNINGSFRAMSKRIVINGER Definisjon: En BEFOLKNINGSFRAMSKRIVING defineres som en beregning om den fremtidige befolkningen (størrelse, alderssammensetning, utvikling osv.) basert på visse antakelser for

Detaljer

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2013

Befolkningsvekst. Nico Keilman. Demografi grunnemne ECON 1710 Høst 2013 Befolkningsvekst Nico Keilman Demografi grunnemne ECON 1710 Høst 2013 Oversikt dagens forelesning Demografisk rate Befolkningsregnskap Befolkningsvekst pga naturlig tilvekst nettoinnvandring Befolkningsvekst

Detaljer

2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK

2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK 2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK SIDE 111 2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK 2.8.1 INNLEDNING Dette er et treårig studieprogram med emner fra matematikk,, biologi og medisin. Programmet er

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Transformasjoner av stokastiske variabler

Transformasjoner av stokastiske variabler Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså

Detaljer

2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK

2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK 2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK SIDE 111 2.8 BACHELORGRADSPROGRAM I BIOMATEMATIKK 2.8.1 INNLEDNING Dette er et treårig studieprogram med emner fra matematikk, statistikk, biologi og medisin. Programmet

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

1 Algebra og likningar

1 Algebra og likningar Algebra og likningar Repetisjon av gamalt sto Løysingsforslag Oppgåve a) ln( + y) = ln + ln y F b) sin( + y) = sin + sin y F c) k ( + y) = k + ky R d) e +y = e e y R e) cos( + y) = cos cos y sin sin y

Detaljer

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed Kapittel 6 Vekstmodeller For å forstå prosesser i naturen er matematiske modeller et nyttig verktøy. Matematiske modeller tar utgangspunkt i naturlover og modellerer disse i et matematisk språk. Naturlovene

Detaljer

Det matematisk-naturvitenskapelige fakultet. Del 4. Modellering

Det matematisk-naturvitenskapelige fakultet. Del 4. Modellering Det matematisk-naturvitenskapelige fakultet Del 4 Modellering Modellering Modellering er en prosess for å finne en forenklet representasjon av et fenomen i virkeligheten. Modellering styrker: Kreativitet

Detaljer

4 Differensiallikninger R2 Oppgaver

4 Differensiallikninger R2 Oppgaver 4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver

Detaljer

Mandag 20.august, 2012

Mandag 20.august, 2012 ECON 2915 Mandag 20.august, 2012 Forelesere: 1.-6. forelesning Ingrid Krüger 7.-13. forelesning Finn Førsund ECON 2915 høsten 2012 Emneansvarlig: Finn Førsund Seminarledere: Gruppe 1 og 2 Ingrid Krüger/Gry

Detaljer

BEFOLKNINGSFRAMSKRIVINGER ECON 1730

BEFOLKNINGSFRAMSKRIVINGER ECON 1730 BEFOLKNINGSFRAMSKRIVINGER ECON 1730 Definisjon: En BEFOLKNINGSFRAMSKRIVING defineres som en beregning om den fremtidige befolkningen (størrelse, alderssammensetning, utvikling osv.) basert på visse antakelser

Detaljer

Through the Looking-Glass and What Alice Found There, Lewis Carroll

Through the Looking-Glass and What Alice Found There, Lewis Carroll Kapittel 4 Modellering Let s pretend that you re the Red Queen, Kitty! Do you know, I think if you sat up and folded your arms, you d look exactly like her. Now do try, there s a dear! And Alice got the

Detaljer

OPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11

OPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11 OPPGAVESETT MAT111-H16 UKE 46 (Tall i blått angir utgave 6.) Avsn. 6.2(6.3): 9, 20 Avsn. 6.3(6.2): 3, 19, 51(45). Avsn. 6.5: 13, 19, 31 Oppgaver til seminaret 18/11 Oppgaver til gruppene uke 47 Løs disse

Detaljer

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11 OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.

Detaljer

Examination paper for ( BI2033 ) ( Population Ecology/ Populasjonsøkologi )

Examination paper for ( BI2033 ) ( Population Ecology/ Populasjonsøkologi ) Department of Biology Eamination paper for ( BI2033 ) ( Population Ecology/ Populasjonsøkologi ) Academic contact during eamination: Phone: 92653244 (Vidar Grøtan) 91897032 (Thor Harald Ringsby) Eamination

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln

Detaljer

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.)

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.) RENDALEN KOMMUNE Fagertun skole Årsplan i naturfag for 8. trinn 2015/16 TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.) Nova 8 Aug. Sep. Kapittel

Detaljer

EKSAMENSOPPGAVE I BI2033 POPULASJONSØKOLOGI

EKSAMENSOPPGAVE I BI2033 POPULASJONSØKOLOGI Norges teknisk-naturvitenskapelige universitet Institutt for biologi EKSAMENSOPPGAVE I BI2033 POPULASJONSØKOLOGI - Faglig kontakt under eksamen: Tlf.: 92653244 (Vidar Grøtan) 91897032 (Thor Harald Ringsby)

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.)

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.) RENDALEN KOMMUNE Fagertun skole Årsplan i naturfag for 8. trinn 2018/19 TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER (materiell, ekskursjoner, lenker etc.) Innlevering av Nova 8 Aug.

Detaljer

Kapittel 8. Inntekter og kostnader. Løsninger

Kapittel 8. Inntekter og kostnader. Løsninger Kapittel 8 Inntekter og kostnader Løsninger Oppgave 8.1 (a) Endring i bedriftens inntekt ved en liten (marginal) endring i produsert og solgt mengde. En marginal endring følger av at begrepet defineres

Detaljer

Funksjoner S2 Oppgaver

Funksjoner S2 Oppgaver Funksjoner S Funksjoner S Oppgaver. Derivasjon... Den deriverte til en konstant funksjon... Den deriverte til en potensfunksjon... Den deriverte til et produkt av to funksjoner... 4 Den deriverte til en

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av

Detaljer

Differensiallikninger Forelesning i Matematikk 1 TMA4100

Differensiallikninger Forelesning i Matematikk 1 TMA4100 Differensiallikninger Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 18. november 2011 Kapittel 15.1. Retningsfelt og Picards teorem 3 Retningsvektorfelt for y = y

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under

Detaljer

cappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1

cappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1 7. Funksjoner av to variable Df FIGUR 7. FIGUR 7. FIGUR 7. Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 FIGUR 7. FIGUR 7.5 FIGUR 7.6 Matematikk for økonomi og samfunnsfag 9. utgave kapittel

Detaljer

TEORI FOR OPTISKE FIBRAR MED BRAGGITTER

TEORI FOR OPTISKE FIBRAR MED BRAGGITTER TEORI FOR OPTISKE FIBRAR MED BRAGGITTER Vi ser på ein optisk ber (lysbølgjeleiar) som går i z-retninga og har ein relativ permittivitet " f (x; y) = " f () som varierer over tverrsnittet. = (x; y) er ein

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

ECON 2915 forelesning 2 (av 13) Kapital som produksjonsfaktor. Solow-modellen. Solowmodellen. Mandag 27.august, 2012

ECON 2915 forelesning 2 (av 13) Kapital som produksjonsfaktor. Solow-modellen. Solowmodellen. Mandag 27.august, 2012 ECON 2915 Solow-modellen. Mandag 27.august, 2012 Tema på forelesning de første seks gangene Økonomisk vekst (1) Innledning til økonomisk vekst. Rammeverk for analysen. (2) Produksjonsfunksjonen. Solow-modellen.

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Brukerkurs i matematikk Mandag 4. desember 9, kl. 9-4 BOKMÅL Tillatte hjelpemidler: Lærebok og kalkulator i samsvar

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 13, 2006 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal

Detaljer

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse

Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse Prosjektoppgaver om diusjonsprosesser og diusjonstilnærmelse February 22, 2007 I alle oppgavene skal det skrives litt om hva diusjonsprosesser er, hvilke spesielle resultater fra diusjonsteorien man skal

Detaljer

Forsøkslæreplan i valgfag programmering

Forsøkslæreplan i valgfag programmering Forsøkslæreplan i valgfag programmering Gjelder bare for skoler som har fått innvilget forsøk med programmering valgfag fra 1.8.2016 Formål Valgfagene skal bidra til at elevene, hver for seg og i fellesskap,

Detaljer

Through the Looking-Glass and What Alice Found There, Lewis Carroll

Through the Looking-Glass and What Alice Found There, Lewis Carroll Kapittel 4 Modellering Let s pretend that you re the Red Queen, Kitty! Do you know, I think if you sat up and folded your arms, you d look exactly like her. Now do try, there s a dear! And Alice got the

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

Forvaltning og avskytningsmodeller for en hjortebestand i vekst

Forvaltning og avskytningsmodeller for en hjortebestand i vekst Forvaltning og avskytningsmodeller for en hjortebestand i vekst Utfordringer med forvaltningen av hjort i Agder Erling L. Meisingset Bioforsk Kvinnesdal, 08.04.2015 Felt hjort i Norge 1950-2014 Bestandsutvikling

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0 Løysingsforslag. Oppgåve a f cos f cos + cos cos + sin cos sin g g sin ln sin ln sin ln ln cos ln sin ln cos ln sin ln cos ln sin ln b 4 4 + y 4, P, 4 5 Implisitt derivasjon: d 4 y 4 + d d 4 d d d 4 4

Detaljer

Løsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11

Løsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11 Løsningsforslag Eksamen S, våren 014 Laget av Tommy O. Sist oppdatert: 1. september 018 Antall sider: 11 Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source,

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Differenslikn. p.124 Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2005 MAT-INF1100 Differenslikn. p.224 Differenslikning av orden 2 (1) Vi kjenner formler for

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Matematisk modellbygging. Leiv Storesletten Olav Nygaard

Matematisk modellbygging. Leiv Storesletten Olav Nygaard Matematisk modellbygging Leiv Storesletten Olav Nygaard 16. januar 2007 Forord I masterstudiet i matematikkdidaktikk ved Høgskolen i Agder inngår emnet Matematisk modellering. Denne teksten omfattar eit

Detaljer

Oversikt over kap. 19 i Gravelle og Rees. Sett i forhold til resten av pensum:

Oversikt over kap. 19 i Gravelle og Rees. Sett i forhold til resten av pensum: Oversikt over kap. 19 i Gravelle og Rees Først et forbehold: Disse forelesningene er svært kortfattede i forhold til pensum og vil ikke dekke alt. Dere må lese selv! Sett i forhold til resten av pensum:

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

f) Masteropptak høsten 2009

f) Masteropptak høsten 2009 Studiestyremøte 25.9.29 SAK III ORIENTERINGER f) Masteropptak høsten 29 Tallene for masteropptaket høsten 29 er hentet fra FS (Student samlebilde) den 11. september 29 og omfatter alle studenter som på

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene

2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene 3.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi inn for = 00

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Informasjon om studieprogrammet Beregningsorientert informatikk

Informasjon om studieprogrammet Beregningsorientert informatikk Informasjon om studieprogrammet Beregningsorientert informatikk Beregningsorientert informatikk kombinerer kunnskaper og ferdigheter i matematikk og informatikk, og legger spesielt vekt på utvikling av

Detaljer

Utvalgsstørrelse, styrke

Utvalgsstørrelse, styrke Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 1 Vekstrater og eksponensiell vekst 1.1 Vekstrater i iskret ti Vekstraten til en størrelse Y angir hvor stor

Detaljer

Bjørn i Nordland. Gro Kvelprud Moen og Ole-Gunnar Støen 26. september 2016

Bjørn i Nordland. Gro Kvelprud Moen og Ole-Gunnar Støen 26. september 2016 Bjørn i Nordland Gro Kvelprud Moen og Ole-Gunnar Støen 26. september 2016 1 Oppdraget Sammenfatte relevant kunnskap om bjørnen i Skandinavia for å kunne vurdere følgende momenter: Antall bjørner og arealkrav

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Prøvefiske i Lundadalsvatnet, Skjåk kommune 2000

Prøvefiske i Lundadalsvatnet, Skjåk kommune 2000 Prøvefiske i Lundadalsvatnet, Skjåk kommune 2000 Av Johannes Holmen Bakgrunn Lundadalsvatnet i Skjåk kommune administreres av Skjåk almenning. Med ønske om å vurdere ørretbestanden i innsjøen, foretok

Detaljer

Løsningsveiledning og kommentarer til obligatorisk semesteroppgave, Høst 2006, ECON 2915-Vekst og næringsstruktur

Løsningsveiledning og kommentarer til obligatorisk semesteroppgave, Høst 2006, ECON 2915-Vekst og næringsstruktur Løsningsveiledning og kommentarer til obligatorisk semesteroppgave, Høst 2006, ECON 2915-Vekst og næringsstruktur Dette er ment som en veiledning til oppgava, og er på ingen måte en mønsterbesvarelse.

Detaljer

OPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39

OPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39 OPPGAVESETT MAT111-H16 UKE 38 Oppgaver til seminaret 23/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39

Detaljer

Del ) Bestem x-verdien til eventuelle punkter der funksjonen ikke er kontinuerlig. Begrunn svaret ditt.

Del ) Bestem x-verdien til eventuelle punkter der funksjonen ikke er kontinuerlig. Begrunn svaret ditt. Del1 Oppgave 1 a) Deriver funksjonen f ( ) 5e b) Deriver funksjonen g ( ) ln(2 ) 2 c) Likningen 2 10 2 10 0 hartreløsninger.visat1 1erenløsningogfinn detoandre. d) Skrivsåenkeltsommulig lg ab 2 lg 1 ab

Detaljer

OPPGAVESETT MAT111-H17 UKE 38. Oppgaver til gruppene uke 39

OPPGAVESETT MAT111-H17 UKE 38. Oppgaver til gruppene uke 39 OPPGAVESETT MAT111-H17 UKE 38 Oppgaver til seminaret 22/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39

Detaljer

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2)

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2) Innføring i medisinsk statistikk del 2 regresjonsmodeller Hvorfor vil man bruke regresjonsmodeller? multippel logistisk regresjon. predikere et utfall (f.eks. sykdom, død, blodtrykk) basert på et sett

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 8 sider (inkludert formelsamling).

Detaljer

Notat om råd for fredning av sild i Nordfjord og Sognefjorden. Av Aril Slotte, Cecilie Kvamme, Jostein Røttingen og Florian Eggers

Notat om råd for fredning av sild i Nordfjord og Sognefjorden. Av Aril Slotte, Cecilie Kvamme, Jostein Røttingen og Florian Eggers Notat om råd for fredning av sild i Nordfjord og Sognefjorden Av Aril Slotte, Cecilie Kvamme, Jostein Røttingen og Florian Eggers Havforskningsinstituttet har i mange år hatt kjennskap til at det finnes

Detaljer

Og en repetisjon av bl.a. Solow-modellen.

Og en repetisjon av bl.a. Solow-modellen. ECON 2915 bl.a. Solow-modellen. Mandag 24.september, 2012 Tema på forelesning de første seks gangene Økonomisk vekst (1) Innledning til økonomisk vekst. Rammeverk for analysen. (2) Produksjonsfunksjonen.

Detaljer

Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019

Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019 Det matematisk-naturvitenskapelige fakultet Økt forståelse for matematikk ved bruk av programmering Sinusseminar 2019 Henrik Hillestad Løvold Institutt for Informatikk, UiO Program 1. Hva er programmering?

Detaljer

Simulering av differenslikninger

Simulering av differenslikninger Differenslikn. p.1/22 Simulering av differenslikninger Programmering i Java med eksempler Forelesning 20 september 2004 MAT-INF1100 Differenslikn. p.2/22 Differenslikning av orden 2 (1) Vi kjenner formler

Detaljer

Avskytningen av hjort i Rogaland Hvor går veien? Erling L. Meisingset Norsk Institutt for Bioøkonomi

Avskytningen av hjort i Rogaland Hvor går veien? Erling L. Meisingset Norsk Institutt for Bioøkonomi Avskytningen av hjort i Rogaland Hvor går veien? Erling L. Meisingset Norsk Institutt for Bioøkonomi Litt om dagens tema: Utviklingstrekk for avskytningen av hjort Hva avgjør bestandenes utvikling? Utfordringer

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for

Detaljer

Forelesning 2: Førsteordens lineære differensiallikninger

Forelesning 2: Førsteordens lineære differensiallikninger Forelesning 2: Førsteorens lineære ifferensiallikninger Tron Stølen Gustavsen 16. januar, 2009 Innhol Lesning 1 2.1. Likninger me konstante koeffisienter 1 2.2. Generelle koeffisienter 4 Referanser 5 Lesning.

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et kronologisk utvalg av tidligere ekamensoppgaver innenfor temaet lineær algebra gitt i tilsvarende kurs som MAT1001 ved UiO. Utvalget er gjort med hensyn

Detaljer

S2 kapittel 4 Modellering Løsninger til kapitteltesten i læreboka

S2 kapittel 4 Modellering Løsninger til kapitteltesten i læreboka S kapittel 4 Modellering Løsninger til kapitteltesten i læreboka 4.A a Enhetskostnaden er gitt ved totalkostnaden dividert med antall produserte enheter, altså K( x) Gx ( ) =. Det gir Gx ( ) = 0,x+ 5 +

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

1 Mandag 8. februar 2010

1 Mandag 8. februar 2010 1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Regresjon med GeoGebra

Regresjon med GeoGebra Praksis og Teori Askim videregående skole 14.08.14 1 Lærplanmål 2 Punkter og Lister 3 Regresjon 4 Teori 5 Nytt verktøy Læreplanmål i 2P Modellering gjere målingar i praktiske forsøk og formulere matematiske

Detaljer

Løsninger til innlæringsoppgavene

Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 4 Modellering Løsninger til innlæringsoppgavene 4.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer