11 Elastisk materiallov

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "11 Elastisk materiallov"

Transkript

1 lastisk materiallov Innhold: lastisk materialoppførsel Isotrope og anisotrope materialer Generalisert Hookes lov Initialtøninger Hookes lov i plan spenning og plan tøning Volumtøning og kompresjonsmodul Volumetrisk og deviatorisk tøningsenergitetthet Mises fltekriterium Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 2.5, 2.6, 3., 3.3 Bell, Konstruksjonsmekanikk Del II Fasthetslære, kap. Irgens, Fasthetslære, kap. 5.9, 6., 6.4, 6.6, 6.7 Larsen, Dimensjonering av stålkonstruksjoner, kap TKT424 Mekanikk 3, høst 26 - lastisk materiallov

2 lastisk materiallov Lineær elastisitet: Det er en lineær sammenheng mellom last og deformasjon. Videre er både pålastning og avlastning fullstendig reversibel. I sum gir dette at lineært elastisk materialoppførsel er uavhengig av vei og kan dermed representeres med en potensialfunksjon. σ Pålastning / Avlastning ε Hookes lov for elastiske materialer i D spenningstilstand: er elastisitetsmodulen [N/mm 2 ]. Gldighetsområde for lineært elastisk materialoppførsel: OK for de aller fleste materialer (stål, betong, tre, aluminium,.) forutsatt små tøninger. OK ved moderate temperaturendringer pga temperaturavhengige materialkonstanter. TKT424 Mekanikk 3, høst 26-2 lastisk materiallov

3 Generell elastisk materiallov Generalisering av lineær sammenheng mellom spenning og tøning til tredimensjonal spennings- og tøningstilstand hvor σ ε x x 2 6 σ, ε, x x x x Matrisen kalles den konstitutive matrisen. For lineær elastisitet har elementene i matrisen konstant verdi. Videre kan det vises at den er smmetrisk: T Matrisen kan generelt representere både isotrope og anisotrope materialegenskaper: Materialer som har samme egenskaper i alle retninger er isotrope. OK for de fleste metaller. Hookes lov forutsetter isotropt materiale. Hvis materialet har forskjellige egenskaper i ulike retninger, er det anisotropt. ksempel: Tre. TKT424 Mekanikk 3, høst 26-3 lastisk materiallov

4 Hookes lov ksperimentelle observasjoner for isotropt materiale:. Normalspenningen x virker alene. Tøninger: x x x,, x x Hvor: er tverrkontraksjonstallet [] 2. Skjærspenningen x virker alene. Tøninger: x x, x, x ; G G 2( ) Hvor: G er skjærmodulen [N/mm 2 ] Superposisjonsprinsippet leder til Hookes lov for 3D spenningstilstand: x ( x ( )) ( ( )) x ( ( )) x x x,, x x G G G For isotrope materialer er det ingen kobling mellom og, eller mellom og. I isotrop elastisitet er det kun to uavhengige materialparametre: og. Disse bestemmes fra D strekkforsøk (måler kraft pluss lengde- og tverrtøning). TKT424 Mekanikk 3, høst 26-4 lastisk materiallov

5 Hookes lov på matriseform Hookes lov på matriseform: ε σ tskrevet: x / / / x / / / / / / x / G x / G / G x x Invertering gir den konstitutive matrisen : tskrevet: σ ε x ( )c c c x c ( )c c c c ( )c x G x G G x x hvor: c, G ( )( 2 ) 2( ) TKT424 Mekanikk 3, høst 26-5 lastisk materiallov

6 Initialtøninger Total tøning i et legeme er summen av mekaniske tøninger (forårsaket av belastning) og initialtøninger: ε σ ε Invertering gir spennings-tøningsrelasjonen på formen: σ ε ε Initialtøninger kan skldes: Temperatur Svelling (f.eks pga. fukt i tre) Krp og svinn (betong) For et isotropt materiale er termisk tøning gitt som: ε T T hvor T er temperaturendring relativt til en referansetemperatur er termisk utvidelseskoeffisient (konstant for moderate temperaturendringer) TKT424 Mekanikk 3, høst 26-6 lastisk materiallov

7 Plan spenning og plan tøning Plan spenning: x Den konstitutive matrisen blir: / /, / / 2 ( ) / 2 / G Normaltøningen i -retning (IKK lik null!) beregnes fra: x Plan tøning: x Den konstitutive matrisen blir: ( )c c c ( )c, G 2 hvor: c, G ( )( 2 ) 2( ) Normalspenningen i -retning (IKK lik null!) beregnes fra: c 2 x x TKT424 Mekanikk 3, høst 26-7 lastisk materiallov

8 Volumtøning og kompresjonsmodul Volumtøning, også kalt dilatasjon, er definert ved: V V V V V V Forutsatt små tøninger er volumtøningen lik summen av normaltøningene i tre ortogonale retninger: Innfører Hookes lov: V x 2 V x x Hdrostatisk spenning: x m /3 Resultat: V K m Kompresjonsmodulen er definert som: K 3 2 Kompresjonsmodulen uttrkker materialets stivhet mot volumendring. Legg merke til at K når.5. Materialer med tverrkontraksjonstall nær.5, f.eks gummi, sies å være inkompressible under elastisk deformasjon. TKT424 Mekanikk 3, høst 26-8 lastisk materiallov

9 ksempel.: Stålprisme t stålprisme har dimensjoner a = 25 mm, b = 2 mm og c = 5 mm. Det er utsatt for en tredimensjonal normalspenningstilstand med x = 6 MPa, = 5 MPa og = 4 MPa. Stål har elastisitetsmodul = 2 MPa og tverrkontraksjonstall =.3. a) Bestem lengdeendringen a av sidekanten a. b) Regn ut kompresjonsmodulen K for stål. c) Bestem volumendringen V til prismet. Fasit: a,4 mm, K 75 MPa, V 243 mm 3 TKT424 Mekanikk 3, høst 26-9 lastisk materiallov

10 Volumetrisk og deviatorisk tøningsenergi Tøningsenergitetthet for normal- og skjærkomponent av spenning og tøning, se side 3-4, er henholdsvis: 2 og 2 Total tøningsenergitetthet fås ved å summere seks bidrag: 2 x x x x x x Innfører Hookes lov, og uttrkker som funksjon av spenning: 2 2G x x x x x Volumetrisk tøningsenergitetthet V: 2 m 2 2 2K 8K 6 V m V x x 2 2 Deviatorisk tøningsenergitetthet d er differansen mellom total tøningsenergitetthet og volumetrisk tøningsenergitetthet: Kan vise at: d = V d = 6 2G x x x x TKT424 Mekanikk 3, høst 26 - lastisk materiallov

11 Mises fltekriterium t alternativt navn på deviatorisk tøningsenergitetthet er formendringsenergi. Årsak: Deviatoriske spenninger forårsaker kun formendring av legemet; dvs. ingen volumendring. Omhggelige eksperimentelle undersøkelser viser at plastisk deformasjon av metaller er inkompressibel, dvs ingen volumendring. Dette leder til hpotesen (Huber, Mises, Henck): I en flerdimensjonal spenningstilstand inntreffer fltning når formendringsenergien har samme kritiske verdi d,cr som den formendringsenergien som gir fltning i en endimensjonal spenningstilstand. Deviatorisk tøningsenergitetthet ved fltning i -D spenningstilstand: f x d,d = 2 x = d,cr 2G 6G 6G Fltning I en flerdimensjonal spenningstilstand antas dermed fltning å inntreffe når: 2G d,cr = x x x x I 3D blir Mises fltekriterium dermed: j x x 3 x x f 2 j kalles jevnføringsspenning, Mises-effektivspenning eller Mises-ekvivalentspenning. Ofte benttes notasjonen eq. f 6G TKT424 Mekanikk 3, høst 26 - lastisk materiallov

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 10.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Sensuren faller senest 10. januar (så

Detaljer

9 Spenninger og likevekt

9 Spenninger og likevekt 9 Spenninger og likevekt Innhold: Volumkrefter og flatekrefter Traksjonsvektoren Spenningsmatrisen Retningscosinuser Cauchs ligning Hovedspenninger og hovedspenningsretninger Spenningsinvarianter Hdrostatisk

Detaljer

10 Tøyninger og kinematisk kompatibilitet

10 Tøyninger og kinematisk kompatibilitet 10 Tøninger og kinematisk kompatibilitet Innhold: Deformasjon kontra stivlegemebevegelse Normaltøning Skjærtøning Kinematikkligningene Plan tøningstilstand Kompatibilitetsbetingelsen Litteratur: Cook &

Detaljer

3 Tøyningsenergi. TKT4124 Mekanikk 3, høst Tøyningsenergi

3 Tøyningsenergi. TKT4124 Mekanikk 3, høst Tøyningsenergi 3 Tøningsenergi Innhold: Arbeid ved gradvis pålastning Tøningsenergitetthet og tøningsenergi Tøningsenergi som funksjon av lastvirkning,, T og V Skjærdeformasjoner Tøningsenergi som funksjon av aksialforskvning

Detaljer

MEK2500. Faststoffmekanikk 6. forelesning

MEK2500. Faststoffmekanikk 6. forelesning MEK2500 Faststoffmekanikk 6. forelesning Deformasjoner generelt Translasjon Rotasjon Stivlegemebevegelser Gir ikke tøyninger (eller spenninger) Ekspansjon/ Kontraksjon "formtro forandring" Skjærdeformasjon

Detaljer

6 Prinsippet om stasjonær potensiell energi

6 Prinsippet om stasjonær potensiell energi 6 Prinsippet om stasjonær potensiell energi Innhold: Konservative krefter Potensiell energi Prinsippet om stasjonær potensiell energi Stabil og ustabil likevekt rihetsgrader Litteratur: Irgens, Statikk,

Detaljer

Eksamensoppgave i TKT 4124 Mekanikk 3

Eksamensoppgave i TKT 4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT 44 Mekanikk Faglig kontakt under eksamen: Aase Rees Tlf.: 7 5(9 45 4) / 95 75 65 Eksamensdato: 6. desember Eksamenstid (fra-til): 9 - Hjelpemiddelkode/Tillatte

Detaljer

TKT4124 Mekanikk 3, høst Plastisk momentkapasitet og flyteledd

TKT4124 Mekanikk 3, høst Plastisk momentkapasitet og flyteledd 2 Plastisk momentkapasitet og flyteledd Innhold: Elastisk kontra perfekt plastisk materiale Plastifisering av tverrsnitt utsatt for bøyning Plastisitetsmoment Plastisk motstandsmoment Flyteledd Kollaps

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 9.05.06 YS-MEK 0 9.05.06 man tir uke 0 3 6 3 forelesning: 30 forelesning: 6 Pinse 7 4 3 7 7. mai spes. relativitet gruppe 5: gravitasjon+likevekt repetisjon gruppe

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori.05.05 YS-MEK 0.05.05 man uke 0 3 forelesning: 8 5 elastisitetsteori gruppe: gravitasjon+likevekt innlev. oblig 0 forelesning: spes. relativitet gruppe: spes. relativitet

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 Førsteamanuensis Jan. arseth 73 59 35 68 EKSMEN I EMNE TKT4116 MEKNIKK 1 Onsdag 23. mai 2007 Kl 09.00 13.00 Hjelpemidler (kode ): Irgens:

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 07.05.04 YS-MEK 0 07.05.04 man tir ons tor fre uke 9 0 3 5 9 6 forelesning: likevekt innlev. oblig 9 innlev. oblig 0 6 3 0 7 3 gruppe: gravitasjon+likevekt 7 4 8 4

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 13.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Arild H. Clausen, 73 59 76 32 Sensuren

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 08.05.017 YS-MEK 1110 08.05.017 1 uke 19 0 1 3 8 15 9 5 man forelesning: elastisitetsteori forelesning: spes. relativitet Eksamensverksted Pinse 9 16 3 30 6 tir ons

Detaljer

RA nov 2007. fasthet 1. Spenning. Spenningstyper. Skjærspenning F. A Normalspenning + strekk - trykk

RA nov 2007. fasthet 1. Spenning. Spenningstyper. Skjærspenning F. A Normalspenning + strekk - trykk asthet 1 Spenning Spenningstyper A 1 N mm 10 1 N = = 2 6 2 m 1MPa Skjærspenning τ = A A Normalspenning + strekk - trykk asthet 2 Materialers respons påp kreter Strekkspenning gir orlengelse Trykkspenning

Detaljer

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Frey Publishing 21.01.2014 1 Prøvemetoder for mekaniske egenskaper Strekkprøving Hardhetsmåling Slagseighetsprøving Sigeforsøket 21.01.2014

Detaljer

8. Elastisitet. Fysikk for ingeniører. 8. Elastisitet. Side 8-1

8. Elastisitet. Fysikk for ingeniører. 8. Elastisitet. Side 8-1 8. Elastisitet. Side 8-1 8. Elastisitet. Når vi jobber med legemer i mekanikk, er det vanligvis underforstått at disse legemene ikke endrer form uansett hvilke påvirkninger de blir utsatt for. Vi snakker

Detaljer

Elastisitetens betydning for skader på skinner og hjul.ca.

Elastisitetens betydning for skader på skinner og hjul.ca. 2. ARENA Narvik, 26. -27. november 2013 Elastisitetens betydning for skader på skinner og hjul.ca. Foreleser: Kjell Arne Skoglund Seniorforsker, dr.ing. jernbaneteknikk, Infrastruktur Kontakt: Kjell.Arne.Skoglund@sintef.no,

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 5 Faglig kontakt under eksamen: Bokmål Kjell Holthe, 951 12 477 / 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2 Fredag 3. desember

Detaljer

EKSAMEN I EMNE TKT4124 MEKANIKK 3

EKSAMEN I EMNE TKT4124 MEKANIKK 3 Faglig kontakt under eksamen: Aase Rees 7 59 5 / 915 75 65 BOKMÅL EKSAMEN I EMNE TKT1 MEKANIKK Onsdag 7. desember 11 Kl. 9. 1. Hjelpemidler: Bestemt, enkel kalkulator 9 vedlagte formelark Ingen medbrakte

Detaljer

YIELD CRITERIA. Introduction hva er flytekriterium?

YIELD CRITERIA. Introduction hva er flytekriterium? Plasticity Theory 6 YILD CRITRIA Introduction hva er flytekriterium? lastisk deformasjon t belastet legeme går tilbake til original konfigurasjon All spenning forårsaker elastisk tøyning Plastisk deformasjon

Detaljer

7 Rayleigh-Ritz metode

7 Rayleigh-Ritz metode 7 Rayleigh-Ritz metode Innhold: Diskretisering Rayleigh-Ritz metode Essensielle og naturlige randbetingelser Nøyaktighet Hermittiske polynomer Litteratur: Cook & Young, Advanced Mechanics of Materials,

Detaljer

Elastisitet, plastisitet og styrking av metaller

Elastisitet, plastisitet og styrking av metaller Elastisitet, plastisitet og styrking av metaller Mål: Forstå hvilke mekanismer som gjør materialene sterke og harde eller duktile og formbare Frey Publishing 1 Introduksjon Hvorfor danner de to svake metallene

Detaljer

Forord. Trondheim

Forord. Trondheim Forord Denne rapporten er resultatet av mitt arbeid med masteroppgaven i 5.klasse ved Institutt for konstruksjonsteknikk ved NTNU i Trondheim. Arbeidet er utført våren 2006. Arbeidet er gjennomført i Trondheim.

Detaljer

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7 Innhold Forord Symboler og forkortelser v og vi xv 1. INNLEDNING 1 1.1 Hva er fasthetslære? 1 1.2 Motivasjon 5 1.3 Konvensjoner - koordinater og fortegn 7 1.4 Små forskyvninger og lineær teori 11 1.5 Omfang

Detaljer

EKSAMEN I EMNE TKT4124 MEKANIKK 3

EKSAMEN I EMNE TKT4124 MEKANIKK 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: NORSK Arild H. Clausen, 73 59 76 32 EKSAMEN I EMNE TKT4124 MEKANIKK 3 Torsdag

Detaljer

13 Klassisk tynnplateteori

13 Klassisk tynnplateteori 13 Klassisk tnnplateteori Innhold: Forskjellige plateteorier Enveis- og toveisplater omenter og skjærkrefter i tnne plater Krumninger Platens likevektsligning og differensialligning Essensielle og naturlige

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Institutt for konstruksjonsteknikk Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 14. desember 2015 Eksamenstid (fra-til): 09.00 13.00 Hjelpemiddelkode/

Detaljer

MEK4540/9540 Høsten 2008 Løsningsforslag

MEK4540/9540 Høsten 2008 Løsningsforslag MK454/954 Høsten 8 øsningsforslag Oppgave 1 a) Kan velge mellom følgende produksjonsmetoder: Spray-opplegg Håndopplegg Vakuum-bagging (i kombinasjon med håndopplegg eller andre metoder) Prepreg Vakuum-injisering

Detaljer

Oppgavehefte i MEK2500 - Faststoffmekanikk

Oppgavehefte i MEK2500 - Faststoffmekanikk Oppgavehefte i MEK2500 - Faststoffmekanikk av Henrik Mathias Eiding og Harald Osnes ugust 20 2 Oppgave 1 En kraft har - og y-komponentene F og F y. vstanden fra et gitt punkt til et punkt på kraftens angrepslinje

Detaljer

Eksamensoppgave i TKT4124 Mekanikk 3

Eksamensoppgave i TKT4124 Mekanikk 3 Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 5. desember 2014 Eksamenstid (fra-til): 9.00 13.00 Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

DEFORMASJON AV METALLISKE MATERIALER

DEFORMASJON AV METALLISKE MATERIALER DEFORMASJON AV METALLISKE MATERIALER Vi skiller mellom: - Elastisk deformasjon - Plastisk deformasjon ELASTISK DEFORMASJON En ytre mekanisk kraft vil deformere atom gitteret. Ved små spenninger beholder

Detaljer

Hovedpunkter fra pensum Versjon 12/1-11

Hovedpunkter fra pensum Versjon 12/1-11 Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er

Detaljer

5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals)

5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals) 5 DEFORMASJON AV METALLISKE MATERIALER (Deformation of metals) Vi må skille mellom elastisk og plastisk deformasjon av metaller og legeringer. 5.1 Elastisk deformasjon En ytre mekanisk kraft som virker

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NTURVITENSKPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 EKSMEN I EMNE TKT4116 MEKNIKK 1 Mandag 2. juni 2008

Detaljer

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper Side 1av7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: NORSK Arild H. Clausen, 73 59 76 32 Kjell Holthe, 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2

Detaljer

Øvingsoppgave 3. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse to stoffene har høyest E-modul?

Øvingsoppgave 3. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse to stoffene har høyest E-modul? Oppgave 3.1 Hva er en elastisk deformasjon? Oppgave 3.2 Hvilke lov gjelder for elastisk deformasjon? Oppgave 3.3 Definer E-modulen. Oppgave 3.4 Hva er mest elastisk av stål og gummi, og hvilket av disse

Detaljer

Struktur, mikrostruktur og materialer

Struktur, mikrostruktur og materialer Struktur, mikrostruktur og materialer Materialvitenskap og teknologi er et forholdsvis nytt fagfelt. Opphavet er fysikken og kjemien som på 1960-årene avlet frem tverfagligheten som trengtes til å forstå

Detaljer

Tema i materiallære. HIN IBDK RA Side 1 av 7. Mekanisk spenning i materialer

Tema i materiallære. HIN IBDK RA Side 1 av 7. Mekanisk spenning i materialer Side 1 av 7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl L BD = 3 m side 1 av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Kontakt under eksamen Arne Aalberg (735) 94624, 976 42898 Tekst: Norsk EKSAMEN TKT 4122 MEKANIKK

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Spenninger i bjelker

Spenninger i bjelker N Teknologisk avd. R 1.0.1 Side 1 av 6 Rev Spenninger i bjelker rgens kap 18.1. ibbeler Sec. 1.1-1. En bjelke er et avlangt stkke materiale som utsettes for bøebelastning. Ren bøning bjelke b N 0 0 0 0

Detaljer

Løsningsforslag TMT 4170 Materialteknologi 1

Løsningsforslag TMT 4170 Materialteknologi 1 1 Løsningsforslag TMT 4170 Materialteknologi 1 Eksamen holdt 16. desember 2003 Oppgave 1: Materialfremstilling. Generelt stoff som kan hentes fra kompendium og forelesning gitt av Prof. Leiv Kolbeinsen.

Detaljer

Mekanisk belastning av konstruksjonsmaterialer Typer av brudd. av Førstelektor Roar Andreassen Høgskolen i Narvik

Mekanisk belastning av konstruksjonsmaterialer Typer av brudd. av Førstelektor Roar Andreassen Høgskolen i Narvik Mekanisk belastning av konstruksjonsmaterialer Typer av brudd av Førstelektor Roar Andreassen Høgskolen i Narvik 1 KONSTRUKSJONSMATERIALENE Metaller Er oftest duktile = kan endre form uten å briste, dvs.

Detaljer

Kapasitet av rørknutepunkt

Kapasitet av rørknutepunkt Kapasitet av rørknutepunkt Knutepunkt i fagverksplattformer Knutepunktstyper Knutepunktstyper Knutepunktenes oppgave q Overføre aksialkrefter fra et avstivningsrør til et annet. q Dette utføres ved et

Detaljer

Ekstraordinær EKSAMEN. MEKANIKK Fagkode: ILI 1439

Ekstraordinær EKSAMEN. MEKANIKK Fagkode: ILI 1439 HØGSKOLEN NRVK Teknologisk vdeling Studieretning: llmenn Maskin Studieretning: llmenn Bgg / Miljøteknikk Ekstraordinær EKSMEN MEKNKK Fagkode: L 439 Tid: 07.08.0, kl. 0900-400 Tillatte hjelpemidler: B:

Detaljer

Håndbok 014 Laboratorieundersøkelser

Håndbok 014 Laboratorieundersøkelser 14.481 - side 1 av 6 Håndbok 14.4 Løsmasser, fjell og steinmaterialer 14.48 Andre undersøkelser 14.481 Treaksialforsøk Versjon mars 2005. Prosess: erstatter versjon juli 1997 Omfang Treaksialforsøket brukes

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator Pedersen et al. Teknisk formelsamling med tabeller.

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator Pedersen et al. Teknisk formelsamling med tabeller. EKSAMENSOPPGAVE Eksamen i: TEK-1011, Anvendt mekanikk Dato: Tirsdag 19.5.2015 Tid: Kl. 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator Pedersen et al. Teknisk formelsamling med tabeller.

Detaljer

HiN Eksamen IST 1484 18.12.03 Side 4

HiN Eksamen IST 1484 18.12.03 Side 4 HiN Eksamen IST 1484 18.1.3 Side 4 Materialer og mekanikk. Teller 5% av eksamen Poengangivelsen viser kun vektingen mellom de fire oppgavene. Innenfor hver oppgave er det læringsmålene som avgjør vektingen.

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis Arne Aalberg 73 59 46 24 Førsteamanuensis Aase Gavina Reyes 73 59 45 24

Detaljer

God økologisk tilstand i vassdrag og fjorder

God økologisk tilstand i vassdrag og fjorder Norsk vann / SSTT Fagtreff «Gravefrie løsninger i brennpunktet» Gardermoen, 20. oktober 2015 PE-ledninger og strømpeforinger av armert herdeplast: Hva er ringstivhet? Krav til ringstivhet Gunnar Mosevoll,

Detaljer

KONSTRUKSJONSSTÅL MATERIAL- EGENSKAPER

KONSTRUKSJONSSTÅL MATERIAL- EGENSKAPER KONSTRUKSJONSSTÅL MATERIAL- EGENSKAPER FASTHETER For dimensjoneringen benyttes nominelle fasthetsverdier for f y og f u - f y =R eh og f u =R m iht produkstandardene - verdier gitt i følgende tabeller

Detaljer

Elastisitetsteori. Spesiell relativitetsteori

Elastisitetsteori. Spesiell relativitetsteori lastisitetsteori Spesiell relativitetsteori 14.05.013 FYS-MK 1110 14.05.013 1 man tir uke 0 1 3 13 0 7 3 gruppe: elastisitet 14 1 8 4 forelesning: spes. relativitet Pinsemandag forelesning: repetisjon

Detaljer

EKSAMEN. MEKANIKK Fagkode: ILI

EKSAMEN. MEKANIKK Fagkode: ILI HØGSKOLEN I NRVIK Teknologisk vdeling Studieretning: llmenn Maskin Studieretning: llmenn Bgg / Miljøteknikk EKSMEN I MEKNIKK Fagkode: ILI 439 000 Tid: 07.06.0, kl. 0900-400 Tillatte hjelpemidler: B: Godkjent

Detaljer

1 Virtuelt arbeid for stive legemer

1 Virtuelt arbeid for stive legemer 1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk

Detaljer

EKSAMEN I EMNE TKT4124 MEKANIKK 3

EKSAMEN I EMNE TKT4124 MEKANIKK 3 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: Svein Remseth, 924 20 930 BOKMÅ EKSAMEN I EMNE TKT4124 MEKANIKK 3 ørdag 18. desember

Detaljer

Ekstraordinær E K S A M E N. MATERIALLÆRE Fagkode: ILI 1269

Ekstraordinær E K S A M E N. MATERIALLÆRE Fagkode: ILI 1269 side 1 av 7 HØGSKOLEN I NARVIK Teknologisk Avdeling Studieretning: Allmenn Maskin Ekstraordinær E K S A M E N I MATERIALLÆRE Fagkode: ILI 1269 Tid: 21.08.01 kl 0900-1200 Tillatte hjelpemidler: Kalkulator

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Faglig kontakt under eksamen: Jan Bjarte Aarseth 73 59 35 68 Aase Reyes 915 75 625 EKSAMEN I EMNE TKT4116 MEKANIKK 1 Fredag 3. juni 2011 Kl 09.00 13.00 Hjelpemidler (kode C): Irgens: Formelsamling mekanikk.

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

SVEISTE FORBINDELSER NS-EN 1993-1-8 Knutepunkter

SVEISTE FORBINDELSER NS-EN 1993-1-8 Knutepunkter SVEISTE FORBIDELSER S-E 1993-1-8 Knutepunkter I motsetning til S 347 er sveiser og skruer behandlet i S-E 1993-1-8, som i tillegg til orbindelsesmidlene også gir regler or knutepunkter (joints) Generelt

Detaljer

hvor: E = hellingen på den elastiske del av strekk-kurven Figur Spenning - tøyning ved strekkprøving.

hvor: E = hellingen på den elastiske del av strekk-kurven Figur Spenning - tøyning ved strekkprøving. Oppgave 3.1 Hva er en elastisk deformasjon? En ikke varig formendring. Atomene beholder sine naboer. Oppgave 3.2 Hvilke lov gjelder for elastisk deformasjon? Hooke s lov: hvor: ε = relativ lengdeendring

Detaljer

HIN Industriteknikk RA 17.11.03 Side 1 av 13. Struktur og innkapsling

HIN Industriteknikk RA 17.11.03 Side 1 av 13. Struktur og innkapsling Side 1 av 13 Struktur og innkapsling Et romfartø med instrumentering skal tåle akselerasjonen i oppsktingen, vibrasjonene fra motoren, bevegelsen ved ufoldingen, åpning osv. Dessuten skal instrumenter

Detaljer

Kap. 16: Kontinuerlige systemer

Kap. 16: Kontinuerlige systemer Kap. 16: Kontinuerlige systemer Har betraktet systemer med én frihetsgrad (avhengig av tiden) Partikler (med føringer) Stive legemer (med føringer) Ordinære differensiallikninger (ODE) Deformerbare legemer

Detaljer

EKSAMEN. MATERIALER OG BEARBEIDING Fagkode: ILI 1458

EKSAMEN. MATERIALER OG BEARBEIDING Fagkode: ILI 1458 side 1 av 6 HØGSKOLEN I NARVIK Teknologisk Avdeling Studieretning: Allmenn Maskin EKSAMEN I MATERIALER OG BEARBEIDING Fagkode: ILI 1458 Tid: 12.06.02 kl 0900-1400 Tillatte hjelpemidler: Kalkulator med

Detaljer

UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER

UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER UTMATTINGSPÅKJENTE SVEISTE KONSTRUKSJONER konstruksjons Levetid, N = antall lastvekslinger Eksempel: Roterende aksel med svinghjul Akselen roterer med 250 o/min, 8 timer/dag, 300 dager i året. Hvis akselen

Detaljer

Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside.

Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside. 6.4.3 Eksempel 3 Spenningsanalyse av dobbeltbunn i tankskip (eksamen 07) Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside.

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

Øvingsoppgave 4. Oppgave 4.8 Hvorfor er de mekaniske prøvemetodene i mange tilfelle utilstrekkelige?

Øvingsoppgave 4. Oppgave 4.8 Hvorfor er de mekaniske prøvemetodene i mange tilfelle utilstrekkelige? Oppgave 4.1 Hva er et konstruksjonsmateriale, designmateriale? Oppgave 4.2 Hvilke grupper konstruksjonsmaterialer, designmaterialer har vi? Oppgave 4.3 Hva er egenskapen styrke til et konstruksjonsmateriale?

Detaljer

Eksempel-samvirke. Spenningsberegning av bunnkonstruksjon i tankskip

Eksempel-samvirke. Spenningsberegning av bunnkonstruksjon i tankskip Eksempel-samvirke Spenningsberegning av bunnkonstruksjon i tankskip Tankskipkonstruksjon Beregn jevnføringsspenninger ved A og B for plate og stiver (A) Spant (stiver) A Toppflens 00 y mm 4 mm 0,7 m B

Detaljer

Herdnende betong. Daniela Bosnjak. Fredrikstad, 03.12. 2015

Herdnende betong. Daniela Bosnjak. Fredrikstad, 03.12. 2015 Herdnende betong Daniela Bosnjak Fredrikstad, 03.12. 2015 2 Betongens livsløp Fersk betong - herdnende betong - herdnet betong Fersk betong: blanding, transport, utstøpning fram til avbinding (betong begynner

Detaljer

Stavelement med tverrlast q og konstant aksialkraft N. Kombinert gir dette diff.ligningen for stavknekking 2EI 2EI

Stavelement med tverrlast q og konstant aksialkraft N. Kombinert gir dette diff.ligningen for stavknekking 2EI 2EI DIMENSJONERING AV PLATER 1. ELASTISK STAVKNEKKING Stavelement med tverrlast q og konstant aksialkraft N Likevekt dv q x dx 0 vertikallikevekt ch e j e V dx dm N d 0 momentlikevekt Kombinert gir dette diff.ligningen

Detaljer

Det teknisk- naturvitenskapelige fakultet

Det teknisk- naturvitenskapelige fakultet Det teknisk- naturvitenskapelige fakultet EMNE: BIB 120 KONSTRUKSJONSMEKANIKK 1 DATO: 6. Mai, 2011 VARIGHET: 4 TIMER HJELPEMIDLER: Bestemt, enkel kalkulator tillatt. Ingen trykte eller håndskrevne hjelpemidler

Detaljer

Styrkeberegning grunnlag

Styrkeberegning grunnlag grunnlag Henning Johansen side: 0 INNHOLD INNLEDNING 3 BEREGNING AV SPENNINGER GENERELT 4 3 FORHOLDET MELLOM KONSTRUKTIV UTFORMING, SPENNINGER OG FASTHET 5 4 SPENNINGSANALYSE 7 4. Enakset spenningstilstand

Detaljer

Elastisitetsteori. Spesiell relativitetsteori

Elastisitetsteori. Spesiell relativitetsteori Elastisitetsteori Spesiell relativitetsteori 1.05.014 FYS-MEK 1110 1.05.014 1 man tir ons tor fre uke 0 1 3 1 19 6 forelesning: spes. relativitet innlev. olig 10 13 0 7 3 gruppe: spes. relativitet 14 1

Detaljer

MEK2500 Faststoffmekanikk Forelesning 1: Generell innledning; statisk bestemte kraftsystemer

MEK2500 Faststoffmekanikk Forelesning 1: Generell innledning; statisk bestemte kraftsystemer MEK2500 Faststoffmekanikk Forelesning 1: Generell innledning; statisk bestemte kraftsystemer MEK2500-2014-1.1 MEK2500 Undervisning H2014 Forelesere: Brian Hayman, professor II Lars Brubak, amanuensis II

Detaljer

Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013

Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013 Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013 Blakkstadelvbrua E39 Astad-Knutset Gjemnes kommune 3 spenn: 28 34 28 Samvirke Kasselandkar Frittstående søyler Fjell og løsmasser Beregnet med

Detaljer

Styrkeberegning Sveiseforbindelser - dynamisk

Styrkeberegning Sveiseforbindelser - dynamisk Henning Johansen side: 0 INNHOLD 2 1 UTMATTENDE BELASTNING 3 2 UTMATTINGSKAPASITET 4 2.1 SPENNINGSVIDDEN 4 2.2 SPENNINGSVIDDE MED KONSTANT AMPLITUDE 5 2.3 SPENNINGSVIDDE MED VARIERENDE AMPLITUDE 5 2.3.1

Detaljer

Oppgave for Haram Videregående Skole

Oppgave for Haram Videregående Skole Oppgave for Haram Videregående Skole I denne oppgaven er det gitt noen problemstillinger knyttet til et skip benyttet til ankerhåndtering og noen av verktøyene, hekkrull og tauepinne, som benyttes om bord

Detaljer

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5

Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Oppgave 1 Figuren viser en 3,5m lang bom som benyttes for å løfte en gjenstand med tyngden 100kN. Gjenstanden henger i et blokkarrangement

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

Øvingsoppgave 4. Oppgave 4.8 Hvorfor er de mekaniske prøvemetodene i mange tilfelle utilstrekkelige?

Øvingsoppgave 4. Oppgave 4.8 Hvorfor er de mekaniske prøvemetodene i mange tilfelle utilstrekkelige? Oppgave 4.1 Hva er et konstruksjonsmateriale, designmateriale? Oppgave 4.2 Hvilke grupper konstruksjonsmaterialer, designmaterialer har vi? Oppgave 4.3 Hva er egenskapen styrke til et konstruksjonsmateriale?

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Lecture 1 Phenomenology of plastic deformations LECTURES ON PLASTICITY THEORY. NTNU, Fall 2006

Lecture 1 Phenomenology of plastic deformations LECTURES ON PLASTICITY THEORY. NTNU, Fall 2006 LECTURES ON PLASTICITY THEORY NTNU, Fall 2006 Aase Reyes Based on lecture notes of Prof. Odd Sture Hopperstad Structural Impact Laboratory (SIMLab) Department of Structural Engineering Norwegian University

Detaljer

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent.

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent. Innlevering i BYFE 000 Oppgavesett Innleveringsfrist: 0 oktober klokka :00 Antall oppgaver: 6 Noen av disse oppgavene løses ved hjelp av papir blyant, mens andre oppgaver løses ved hjelp av MATLAB til

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid:

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: Side 1 av 9 Løsningsforslag Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: 09 00-13 00 Oppgave 1 i) Utherdbare aluminiumslegeringer kan herdes ved utskillingsherding (eng.: age hardening

Detaljer

7.2.5 Typer forbindelser

7.2.5 Typer forbindelser Kapittel: 7.2 Limte forbindelser Side: 1 av 5 7.2.5 Typer forbindelser Først: Det er viktig å merke seg att styrken til et hvilke som helst lim utsatt for strekkbelastning er ca. 10 ganger mindre enn de

Detaljer

DIMENSJONER OG TVERRSNITTSVERDIER

DIMENSJONER OG TVERRSNITTSVERDIER MEMO 811 Dato: 16.08.2012 Sign.: sss TEKNISKE SPESIFIKASJONER Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/11 Kontr.: ps DIMENSJONERING TEKNISKE SPESIFIKASJONER DTF150/DTS150 DIMENSJONER

Detaljer

Styrkeberegning: grunnlag

Styrkeberegning: grunnlag Kompendium / Høgskolen i Gjøvik, 0 nr. Styrkeberegning: grunnlag Henning Johansen Gjøvik 0 ISSN: 503 3708 grunnlag Henning Johansen side: 0 INNHOLD INNLEDNING 3 BEREGNING AV SPENNINGER GENERELT 4 3 FORHOLDET

Detaljer

Alkalireaksjoners effekt på betongbruers konstruktive tilstand

Alkalireaksjoners effekt på betongbruers konstruktive tilstand Alkalireaksjoners effekt på betongbruers konstruktive tilstand Tjeldsundbrua i Nordland: Terje Kanstad, Professor, NTNU PhD-prosjekt: Simen Kongshaug, PhD-kandidat, HiOA/NTNU 1 Teknologidagene SVV, Trondheim

Detaljer

Løsningsforslag nr.4 - GEF2200

Løsningsforslag nr.4 - GEF2200 Løsningsforslag nr.4 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 - Definisjoner og annet pugg s. 375-380 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor finner vi det? 1-2 km. fra bakken

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Effekt av anisotropi på udrenert skjærstyrke i naturlige skråninger

Effekt av anisotropi på udrenert skjærstyrke i naturlige skråninger Effekt av anisotropi på udrenert skjærstyrke i naturlige skråninger Marit Isachsen Bygg- og miljøteknikk Innlevert: Juni 2012 Hovedveileder: Steinar Nordal, BAT Norges teknisk-naturvitenskapelige universitet

Detaljer

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG

OPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 09.12.2008 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:

Detaljer