L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider"

Transkript

1 Page 76 of 80 L12-Dataanalyse Introduksjon Introduksjon til dataanalyse Presentasjonen her fokuserer på dataanalyseteknikker med formål å estimere parametere (MTTF,, osv) i modeller vi benytter for vedlikeholdsoptimering Ikkeparametriske metoder vil her være grafiske teknikker for å synliggjøre aldring, overlevelsessannsynlighet og midlere tid til svikt Dersom vi har fullstendige data, er metodene enklere og gir bedre resultater enn dersom vi har mange sensurerte datapunkter Et sensurert datapunkt betyr her at vi ikke har observert svikttiden, men kun at enheten har overlevd en viss tid Levetider og sensurerte tider Figuren viser hvordan vi kan tenke oss at levetider fremkommer ved et kontrollert forsøk. Alle komponentene settes i drift ved t = 0, og vi registrere tid til svikt for hver komponent Vi benytter notasjonen T i for å betegne levetiden til komponent i når vi betrakter denne som en tilfeldig størrelse. Tilhørende observerte verdi betegnes t i, dvs tallverdiene T 5 * er en sensurert levetid fordi komponent 5 ikke har sviktet når forsøket opphører Lokal og global tid Lokal tid benyttes for komponenter. Vi ønsker å estimere parametre i levetidsfordelinger Global tid er for systemer. Vi ønsker å se om det er trend i intensiteten av svikt over tid Nelson Aalen plott Nelson Aalen plott Nelson Aalen plottet benyttes for å se om det er global trend i dataene Dette gjelder spesielt dersom vi observerer flere svikt per system (vi bruker begrepet system her fordi et slikt system kan ha flere komponenter som kan svikte, men vi betrakter systemet generelt under ett) Ofte vil slike enheter ikke være så god som ny etter en svikt, og vi får en økning i antall svikt per tidsenhet. Nelson Aalen plottet viser essensielt kumulativt antall svikt som funksjon av global tid Prosedyre for å konstruere et Nelson Aalen plott Vi observerer data for n systemer, og for system i observerer vi svikt i perioden (a i,b i ] i forhold til global alder

2 Page 77 of 80 La T ij betegne svikttid j i system i (global eller kalendertid) Slå sammen alle tidene, T ij, og sorter dem i økende orden. Betegn resultatet T k, k = 1,2,... For hver k, la O k betegne antall systemer som er i drift like før svikttid T k La W^ 0 =0 Beregn W^ k = W^ k 1 +1/ O k Plott ( t k, W^ k ) Eksempel på et Nelson Aalen plottet Data: a i b i t ij , 20, 35, , 33, 41, 48, , 60, 69, 83, 88, 92, 99 Tilørende plott Fortolkning av Nelson Aalen plottet Et plott som krummer oppover (konveks) indikerer økende antall svikt Et plott som krummer nedover (konkav) viser et system som forbedrer seg Et plott som ligger langs en rett linje indikerer at det ikke er noen trend Dersom vi ikke kan se noen trend, kan vi anta at tid mellom svikt er tilnærmet identisk fordelt, og klassisk levetidsanalyse kan benyttes Dersom vi har kun ett system blir prosedyren svært enkel: Lag et plott som øker med 1 på y-aksen for hver svikt Plottet er et estimat for W(t), som er forventet antall svikt i intervallet [0,t) for ett system TTT plott TTT plott for komplette data Vi antar at vi har n uavhengige identisk fordelte levetider Enhetene er operert under tilnærmet like betingelser, og enhetene er så god som ny etter en svikt dersom flere svikttider er observert for en og samme enhet Dersom vi observerer flere svikt for samme system, så må Nelson Aalen plottet vise punkter tilnærmet på en linje Levetidene betegnes T 1,T 2,T 3,..,T n T (1),T (2),T (3),..., T (n) er sorterte levetider dvs T (1) T (2) T (3).. T (n) Den såkalte TTT observatoren defineres nå for et hvert tidspunkt t som totalt observert tid (Total Time on Test) fram til t: T (t) = i j=1 T (j) +(n i) T (i) hvor i er slik at T (i) t < T (i+1) TTT plottet finnes nå ved å plotte normalisert TTT observator mot normalisert indeks i T ( T (i) ) (, ) n T ( T (n) ) TTT plott - Eksempel

3 Page 78 of 80 i T (i) T (j) T i = T (j) + (n-i)t (i) i/n / Tilhørende plott T i T n Fortolkning av TTT plottet Et plott rundt diagonalen indikerer konstant sviktintensitet, dvs eksponensialfordelte levetider Et konkavt plott (over diagonalen) indikerer økende sviktintensitet (IFR = Increasing Failure Rate) Et konvekst plott indikerer avtakende sviktintensitet (DFR = Decreasing Faiure Rate) Ett plott som først er konvekst, og deretter konkavt, indikerer "badekarskurven" Et plott som først er konkavt, og deretter konvekst, indikerer hetrogenitet i dataene TTT transformen TTT transformasjonen er en parametrisk analog til TTT-plottet, og er gitt ved: F 1 (v) 0 R(u)du ϕ F (v) = MTTF For Weibullfordelingen: ϕ W (v, α) = CDFGamma( ln(1 v), 1/α,1) CDFGamma() er fordelingsfunksjonen i gammafordelingen, og finnes i MS Excel ved =GAMMADIST(-LN (1-v),1/Alpha,1,TRUE) Ved å prøve med ulike verdier for, og sammenligne TTT transformen med TTT plottet, kan man anslå om Weibull fordelingen er rimelig, og verdien på aldringen, Kaplan Meier plott Kaplan Meier plott Standard TTT plot antar at vi har komplette data Dersom vi har sensurerte data, viser det seg at det vanlige TTT plottet ikke hensiktsmessig, og Kaplan Meier plottet er bedre La T (1), T (2),...,T (n) være de sorterte levetidene vi har (inkluder sensurerte levetider) La n (i) være antall komponenter «under risiko», dvs som fortsatt lever, ved tid T (i) og s (i) være antall svikt ved tid T (i) I regelen er s (i) = 1, men kan være større enn 1, dersom vi observerer like svikttider (med målenøyaktigheten vi benytter)

4 Page 79 of 80 Kaplan Meier estimatoren for overlevelsessannsynligheten er nå gitt ved: n (i) s (i) R^ (t) = T(i) <t n (i) n (i) s (i) For å lage plottet beregner vi n for hvert svikttidspunkt T (i) (i) Tidligere verdier multipliseres da med denne brøken for å finne neste verdi av R^ (t) Vi plotter så R^(t) mot t for å lage Kaplan Meier plottet Dette plottet kan da sammenlignes med f eks R(t) i Weibullfordelingen Estimering Introduksjon til parameterestimering Med estimering mener vi å fastsette verdien på parametere i en stokastisk modell En estimator er en formel for å estimere en parameter, og er en funksjon av observasjonene Et estimat er en tallverdi, når vi setter inn verdiene på observasjonene i estimatoren Vi betrakter to situasjoner: Konstant sviktintensitet Økende sviktintensitet - Weibullfordeling Prinsipper for estimering Maksimering av rimelighetsfunksjonen (MLE) Bruke de verdiene av parameterne som er mest «rimelig» i lys av observasjonene Minste kvadratsum s prinsipp (LS) Lage en modell som beskriver forventet verdi av en observasjon, og finn verdiene av parameterne som minimerer avstanden mellom Momentprinsippet Finn gjennomsnitt og standardavvik fra observasjonene (f eks ved Excel), og tilpass parametere i en statistisk modell slik at uttrykkene for forventning og standardavvik i den statistiske modellen passer best mulig med beregnede verdier fra dataene I dette kurset betrakter vi kun MLE MLE prinsippet La T 1, T 2,...,T n være levetider og sensurerte levetider Store bokstaver benyttes når vi betrakter disse som stokastiske variabler, og små bokstaver benyttes når vi setter inn tallverdiene La t være en vektor av alle observerte levetider og sensurerte levetider La U være mengden av usensurerte levetider, og la C være mengden av sensurerte levetider La θ være en vektor av ukjente parametere som vi ønsker å estimere Rimelighetsfunksjonen er nå gitt ved: L(θ; t) = i U f( t i ;θ) i C R( t i ;θ) L(θ; t) representerer sannsynligheten for at vi har observert det vi har gjort i lys av dataene (observasjonene) ML estimatorene er nå gitt ved verdien av θ som maksimerer L(θ; t) Vi benytter symbolet θ^ for å angi løsningen av dette optimaliseringsproblemet For å forenkle analysen, er det ofte lettere å maksimere l(θ; t) =lnl(θ; t), hvor ln x er den naturlige logaritmen til x MLE prinsippet for exponensialfordelingen Anta at vi har observert levetider for en eller flere komponenter La T 1, T 2,...,T n være levetidene vi har (inkluder sensurerte levetider) La x være antall levetider, og n-x være antall sensurerte levetider For eksponensialfordelingen har vi ( θ = λ ): f(t) =λe λt R(t) =e λt Setter så inn for eksponensialfordelingen i det generelle uttrykket: L(θ; t) = i U f( t i ;θ) i C R( t i ;θ), og får: L(λ; t) = i U λe λti i C e λti Dersom vi nå tar logaritmen får vi: l(λ; t) =lnl(λ; t) =xlnλ λ i U t i λ i C t i Siden vi har x svikttider, og n-x sensurerte tider får vi: l(λ; t) =xlnλ λ n i=1 t i Deriverer mht λ, og setter lik 0: x = n = 0 = λ i=1 t x i λ^ dl(λ;t) dλ n i=1 ti For eksponensialfordelingen kan vi derfor enkelt finne feilraten ved å telle antall observerte svikt, og dividere med total eksponering. Denne metoden kan vi benytte enten det er en komponent, eller flere komponenter vi har data for.

5 Page 80 of 80 MLE prinsippet for Weibullfordelingen Anta at vi har observert levetider for en eller flere komponenter La T 1, T 2,...,T n være levetidene vi har (inkludert sensurerte levetider) La videre I 1, I 2,...,I n være indikatorer slik at I i = 1 dersom tid nummer i er en levetid, og 0 hvis det er en sensurert levetid Rimelighetsfunksjonen, L(α, λ; t), er nå gitt ved produktet av sannsynlighetstetthetene i punktene t 1, t 2,...,t n for levetidene multiplisert med produktet av overlevelsessannsynlighetene i punktene t 1, t 2,...,t n for de sensurerte levetidene Log-rimelighetsfunksjon blir: l(α, λ; t) =lnl(α, λ; t) = n i=1 I i[lnα + αlnλ +(α 1)ln t i ] n i=1(λt i ) α Rimelighetsfunksjonen må nå maksimeres numerisk, f eks «problemløser» i MS Excel, og bruk av fila MaintOpt.xlsm Oppgaver Øving TTT plott Anta at sviktdata for en spesiell type komponent er samlet inn. Svikttidene (i måneder) er gitt ved: 8,9,7,6,12,18,14,6,9,11,24. Vi antar at svikttidene er uavhengige, og identisk fordelte. a. Konstruer et TTT plott for disse dataene. b. Hva kan du ut fra plottet si om sviktintensiteten? c. Hva kan være en rimelig verdi for aldringsparameteren,? Øving Analyse av sensurerte data Anta at sviktdata for en spesiell type komponent er samlet inn. Svikttidene (i måneder) er gitt ved: 8,9,7,6,12,18,14,18*,6,9,11,24,30*,28*. Svikttider med en stjerne (*) representerer sensurerte levetider. Vi antar at svikttidene er uavhengige, og identisk fordelte. a. Konstruer et Kaplan Meier plott for disse dataene b. Estimer parametrene dersom du antar at det ligger en Weibull modell til grunn. Bruk MLE-prinsippet. c. Plott overlevelsessannsynligheten i Kaplan Meier plottet med parametre du finner fra MLE

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Fredag 26. mai 2006

Detaljer

i=1 t i +80t 0 i=1 t i = 9816.

i=1 t i +80t 0 i=1 t i = 9816. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Jo Eidsvik 901 27 472 EKSAMEN I FAG SIF5075 LEVETIDSANALYSE Torsdag 22. mai 2003 Tid:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 2. juni 24 Tid for eksamen: 4.3 8.3 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK429

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Poissonprosesser og levetidsfordelinger

Poissonprosesser og levetidsfordelinger Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien

Detaljer

Introduksjon til pålitelighetsanalyse. Jørn Vatn NTNU

Introduksjon til pålitelighetsanalyse. Jørn Vatn NTNU Introduksjon til pålitelighetsanalyse Jørn Vatn NTNU jorn.vatn@ntnu.no Trondheim Gjøvik Ålesund Pålitelighet av hva? Komponent- og systempålitelighet Fokus i denne presentasjonen Terminologi Metoder og

Detaljer

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

Eksamensoppgave i TMA4275 Levetidsanalyse

Eksamensoppgave i TMA4275 Levetidsanalyse Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: Torsdag 9. juni, 2011 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK4400/STK9400

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

Forelesning 27. mars, 2017

Forelesning 27. mars, 2017 Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

Normal- og eksponentialfordeling.

Normal- og eksponentialfordeling. Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt

Detaljer

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva

Detaljer

Løsningsforslag øving 8, ST1301

Løsningsforslag øving 8, ST1301 Løsningsforslag øving 8, ST3 Oppgave Hva gjør følgende funksjon? Hvilken fordeling har variabelen n som returneres som funksjonsverdi? Forklar hvorfor. Forutsett at to enkle positive tall blir oppgitt

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

Levetid (varighet av en tilstand)

Levetid (varighet av en tilstand) Levetid (varighet av en tilstand) Levetidsanalyse (survival analysis) Rosner.8-. av Stian Lydersen Forlesning 6 april 8 Eksempler: Tid til personen dør (målt fra fødsel, fra diagnose, fra behandling) Tid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ: Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK2120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 6. juni 2011. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen

Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Modifisering av Black & Scholes opsjonsprising ved bruk av NIG-fordelingen Prosjektoppgave STK-MAT2011 Sindre Froyn Salgsopsjon A B K S 0 T S 0 : porteføljeprisen ved tiden t = 0. K: garantert salgspris

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100

Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk

Detaljer

Transformasjoner av stokastiske variabler

Transformasjoner av stokastiske variabler Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

Eksponensielle klasser

Eksponensielle klasser Eksponensielle klasser, de Jong & Heller, Kap. 3 Eksponensielle klasser STK3100-1. september 2008 Sven Ove Samuelsen En stokastisk variabel Y sies å ha fordeling i den eksponensielle fordelingsklasse dersom

Detaljer

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 1 2 Oppgave 2 a) Vi lar x s, x g og x p være nye priser for henholdsvis standard-, gull- og platinarom. Hvis

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Notat 4 - ST februar 2005

Notat 4 - ST februar 2005 Notat 4 - ST1301 8. februar 2005 1 While- og repeat-løkker Vi har tidligere sett på bruk av før-løkker. Slike løkker er hensiktsmessig å bruke når vi skal gjenta visse beregninger (løkke-kroppen) et antall

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Copula goodness-of-fit testing

Copula goodness-of-fit testing Daniel Berg Universitetet i Oslo & Norsk Regnesentral DET 14. NORSKE STATISTIKERMØTET Sommarøya 19. -21. Juni 2007 Outline 1. 2. 2.1 Lovende tester 2.2 Cpit2-testen 3. 4. 5. C n C ρ C ρν v u v u v u C

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

Eksamen STK2400, 6/ Løsningsforslag

Eksamen STK2400, 6/ Løsningsforslag Eksamen STK2400, 6/12-07 - Løsningsforslag Arne ang Huseby December 19, 2007 Oppgave 1 I denne oppgaven skal vi se på et binært monotont system (C, φ) med komponentmengde C = {1,..., 5} og strukturfunksjon

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

EKSAMEN I FAG ST2202 ANVENDT STATISTIKK

EKSAMEN I FAG ST2202 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG ST2202 ANVENDT STATISTIKK Fredag 5. desember

Detaljer

Notat 6 - ST februar 2005

Notat 6 - ST februar 2005 Notat 6 - ST1301 22. februar 2005 1 Instruksjoner som data I begynnelsen av kurset definerte vi data som informasjon uttrykkt i et programmeringsspråk. Slike data kan være av ulik type, f.eks. enkle skalarer

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert ) Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),

Detaljer

vekt. vol bruk

vekt. vol bruk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Par-copula konstruksjoner: Et fleksibelt verktøy for å modellere multivariat avhengighet

Par-copula konstruksjoner: Et fleksibelt verktøy for å modellere multivariat avhengighet Par-copula konstruksjoner: Et fleksibelt verktøy for å modellere multivariat avhengighet Foredrag for Norsk ASTIN-gruppe (NAG) Lysaker, 14. November, 2010 Kjersti Aas Norsk Regnesentral Innhold Innledning

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Driftspålitelighet. Innhold. 1. Innledning Levetider: Teori Levetider: Statistisk analyse Levetider: Fornyelsesprosess...

Driftspålitelighet. Innhold. 1. Innledning Levetider: Teori Levetider: Statistisk analyse Levetider: Fornyelsesprosess... . Jostein Lillestøl Norges Handelshøyskole Driftspålitelighet - med statistikk som hjelper Innhold. Innledning.... Levetider: Teori... 4. Levetider: Statistisk analyse... 8 4. Levetider: Fornyelsesprosess....

Detaljer