Matematisk statistik 9 hp, HT-16 Föreläsning 12, Hypotesprövning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Matematisk statistik 9 hp, HT-16 Föreläsning 12, Hypotesprövning"

Transkript

1 Matematisk statistik 9 hp, HT-16 Föreläsning 12, Hypotesprövning Anna Lindgren november, 2016 Anna Lindgren FMS012/MASB03 F12: Hypotestest 1/17

2 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt värde på θ med sannolikheten 1 α. 1 α kallas konfidensgrad. Vanliga värden är 0.95, 0.99 och Intervall för normal(approximation) Om θ N(θ, D(θ )) eller θ N(θ, D(θ )): Om D(θ ) känd: I θ = θ ± λ α/2 D(θ ) Om D(θ ) okänd, skattas med d(θ ): I θ = θ ± t α/2 (f) d(θ ) om d(θ ) innehåller σ = s = I θ = θ ± λ α/2 d(θ ) annars Q f Anna Lindgren FMS012/MASB03 F12: Hypotestest 2/17

3 Ex Hypotesprövning Exempel: Fosforhalt Man har mätt fosforhalten (μg/l) i en viss sjö n = 4 gånger: Vi antar att mätningarna är oberoende observationer av X i N(μ, σ) där μ är den sanna fosforhalten i sjön. Vi vet att σ = 16 och skattar μ = x = Om fosforhalten i en sjö överstiger 100 μg/l klassas sjön som hypertrof (övergödd). Kan vi påstå att sjön är övergödd, baserat på dessa fyra mätningar? Är 100 ett orimligt väntevärde om skattningen blev ? (Konfidensintervall) Ligger bland de värden man inte kan förvänta sig att få om väntevärdet är 100? (Kritiskt område) Hur osannolikt är värdet om väntevärdet är 100? (Direktmetoden) Anna Lindgren FMS012/MASB03 F12: Hypotestest 3/17

4 Ex Hypotesprövning Hypotesprövning H 0 förkastas om observationerna, θ, avviker för mycket från nollhypotesen θ 0. Testa nollhypotesen H 0 : θ = θ 0 mot mothypotesen (t.ex.) H 1 : θ θ 0 på nivån α; signifikansnivån (felrisken) α ges av α = P(H 0 förkastas, givet att den är sann) För mycket beror på osäkerheten i skattningen, D(θ ), samt på signifikansnivån α. Normalt är α = 0.05, 0.01 eller Anna Lindgren FMS012/MASB03 F12: Hypotestest 4/17

5 Ex Hypotesprövning Mothypoteser De vanligaste mothypoteserna är H 1 : θ θ 0 H 0 förkastas om θ avviker för långt från θ 0 både uppåt och nedåt. H 1 : θ < θ 0 H 0 förkastas om θ är tillräckligt mycket < θ 0. H 1 : θ > θ 0 H 0 förkastas om θ är tillräckligt mycket > θ 0. Anna Lindgren FMS012/MASB03 F12: Hypotestest 5/17

6 Normalfördelning Fosforhalt Olika metoder för att utföra hypotestest 1. Konfidensmetoden. Gör ett konfidensintervall med konfidensgraden 1 α och förkasta H 0 på nivån α om intervallet ej täcker θ 0. Intervallen skall, beroende på H 1, vara Test H 1 : θ < θ 0 H 1 : θ θ 0 H 1 : θ > θ 0 Intervall: uppåt begr tvåsidigt nedåt begr 2. Testkvantitet T(X) och kritiskt område C Förkasta H 0 om testkvantiteten hamnar i det kritiska området. C och T skall väljas så att α = P(T(X) C) = P(Förkasta H 0 om H 0 är sann) 3. Direktmetoden eller P-värde Antag att H 0 är sann Räkna ut P-värdet p = P(Få det vi fått eller värre) Förkasta H0 om p < α Anna Lindgren FMS012/MASB03 F12: Hypotestest 6/17

7 Normalfördelning Fosforhalt Normalfördelning, θ N (θ, D(θ )), H 0 : θ = θ 0 Testkvantitet: T = θ θ 0 D(θ ), D(θ ) känd T = θ θ 0 d(θ ), D(θ ) okänd och σ = s = Förkasta H 0 om (kritiska områden) Q f H 1 : θ < θ 0 H 1 : θ θ 0 H 1 : θ > θ 0 D(θ ) känd T < λ α T > λ α/2 T > λ α D(θ ) okänd T < t α (f) T > t α/2 (f) T > t α (f) Jfr. kvantiler λ α eller t α med konfidensintervallen. Anna Lindgren FMS012/MASB03 F12: Hypotestest 7/17

8 Normalfördelning Fosforhalt Lämplig procedur för lösningar: 1. Modell och problem: Vad är slumpmässigt och vilken fördelning kan det ha? Inför beteckningar, sätt upp en lämplig modell och formulera problemet. 2. Skattning: Vilken parameter är vi intresserade av, vad i den är okänt och hur skattar vi det? 3. Egenskaper: Vad har skattningen för egenskaper? 4. Lösning: Lös problemet. 5. Slutsats: Svara på frågan. Anna Lindgren FMS012/MASB03 F12: Hypotestest 8/17

9 Normalfördelning Fosforhalt Exempel: Fosforhalt(igen) 1. Modell och problem: Vi har n = 4 oberoende observationer x 1,..., x n från X i = fosformätning nr. i N(μ, σ) där σ = 16 är känd. Vi vill testa H 0 : μ = 100 mot H 1 : μ > 100 på signifikansnivån (t.ex.) α = Skattning: Vi skattar μ med μ = x = Egenskaper: Vi har att μ = X σ 16 (μ, ) = N(μ, ) = N(μ, 8). n 4 4. Lösning:... Anna Lindgren FMS012/MASB03 F12: Hypotestest 9/17

10 Normalfördelning Fosforhalt 4.a: Konfidensintervall (ensidigt!) I μ = (μ λ α D(μ ), ) = ( x λ 0.05 = ( , ) = (93.8, ) σ n, ) Eftersom μ 0 = 100 ligger i intervallet kan H 0 inte förkastas på signifikansnivå α = Slutsats: Vi kan inte påstå att sjön är övergödd. Anna Lindgren FMS012/MASB03 F12: Hypotestest 10/17

11 Normalfördelning Fosforhalt 4.b: Kritiskt område: Om H 0 är sann så gäller att μ N(μ 0, Teststorheten blir t = μ μ 0 D(μ ) = x = σ n ) = N(100, 8) Eftersom t λ α = λ 0.05 = 1.64 kan H 0 inte förkastas på signifikansnivån α = Slutsats: Vi kan inte påstår att sjön är övergödd. = Anna Lindgren FMS012/MASB03 F12: Hypotestest 11/17

12 Normalfördelning Fosforhalt 4.c: Direktmetoden: Om H 0 är sann så gäller att μ N(μ 0, σ n ) = N(100, 8). P-värdet för testet blir P = P(få det vi fått eller värre om H 0 är sann) = P( X > x μ = μ 0 ) = P( X > μ = 100) = 1 Φ( x μ 0 σ/ n = 1 Φ(0.87) = ) = 1 Φ( ) 8 Eftersom P = 0.19 α = 0.05 kan H 0 inte förkastas på signifikansnivån α = Slutsats:Vi kan inte påstår att sjön är övergödd. Anna Lindgren FMS012/MASB03 F12: Hypotestest 12/17

13 Rattonykterhet Styrkefunktion & Felrisker Styrkefunktion Används för att avgöra hur bra testet skiljer H 0 från H 1. h(θ) = P(Förkasta H 0 om θ är rätt värde) Typ 1-fel: Typ 2-fel: α = P(H 0 förkastas om H 0 sann) β = P(H 0 förkastas ej om H 0 ej sann) Vi ser att α = h(θ 0 ). Om rätt värde på θ är θ 1 fås β = 1 h(θ 1 ). Naturens okända sanning H 0 sann H 1 sann Vårt H 0 förk. ej β beslut H 0 förkastas α Anna Lindgren FMS012/MASB03 F12: Hypotestest 13/17

14 Rattonykterhet Felrisker Antag n = 5 observationer från en N (μ, 1) fördelning. Om vi vill testa H 0 : μ = 1 H 1 : μ > 1 blir fördelningen för μ då H 0 är sann respektive om μ = 2: Anna Lindgren FMS012/MASB03 F12: Hypotestest 14/17

15 Rattonykterhet Exempel: Rattonykterhet Gränsen för rattonykterhet är 0.2. Antag att mätvärdet vid en mätning, x i, är X i = μ + ε i där μ är den sanna alkoholhalten och ε i är oberoende, N(0, 0.04)-fördelade mätfel. För att avgöra om en person är skyldig till rattonykterhet kan man testa hypotesen på nivån α = H 0 : μ = 0.2 mot H 1 : μ > 0.2 Anna Lindgren FMS012/MASB03 F12: Hypotestest 15/17

16 Rattonykterhet 1. Ange i ord vad felrisken α = P(Förkasta H 0 om H 0 är sann) innebär i hypotestestet ovan. 2. Om man gjort n = 3 mätningar och fått medelalkoholhalten till x = 0.24, skall man då dömas? 3. Hur högt kan det uppmätta medelvärdet, baserat på tre mätningar, vara utan att man döms? 4. Bestäm styrkefunktionen för testet. Dvs h(μ) = P(H 0 förkastas om μ är det sanna värdet) 5. Om den sanna alkoholhalten är 0.25, vad är då sannolikheten att inte dömas. 6. Hur många mätningar behöver göras för att man med högst β = 0.20 skall frikännas om man har 0.25? Anna Lindgren FMS012/MASB03 F12: Hypotestest 16/17

17 Rattonykterhet Styrkefunktion för testet av promillehalt (H 0 : μ = 0.2) h(µ) = P(Förkasta H 0 ) n = 3, σ = faktisk alkoholhalt µ n fördubblad resp. σ halverad faktisk alkoholhalt µ Den okända sanningen Nykter Olovligt påverkad Mätresultat μ = x Säkerhetsmarginal Kritiskt område Slutsats från test Frikänns Döms μ Anna Lindgren FMS012/MASB03 F12: Hypotestest 17/17

Matematisk statistik 9 hp, HT-16 Föreläsning 14: Enkel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 14: Enkel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 14: Enkel linjär regression Anna Lindgren 21+22 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F14: Regression 1/21 Hypotesprövning Olika metoder

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34) ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

TMA4240 Statistikk H2010 (19)

TMA4240 Statistikk H2010 (19) TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Övningar till Matematisk analys IV Erik Svensson

Övningar till Matematisk analys IV Erik Svensson MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik 1-1-4 Övningar till Matematisk analys IV Erik Svensson L 1. Avgör om fx, y) 1 + x + y )e x y förekommande fall största/minsta värdet. har

Detaljer

Alkoholpolitik i förändring:

Alkoholpolitik i förändring: Alkoholpolitik i förändring: från dryckerna till drickandet i fokus Bengt Ekdahl ValueMerge Consulting - hjälper företag att förstå sina kunder Drickandets utveckling i Sverige 1997-2003 Totalkonsumtionens

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting Hypotesetesting H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Rettsvesen hypotese Tiltalte er uskyldig inntil det motsatte er bevist. Hypoteser H 0 : Tiltalte er uskyldig H 1 :

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Fredag 26. mai 2006

Detaljer

Estimering og hypotesetesting

Estimering og hypotesetesting Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4245 V2007: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere

Detaljer

Estimering og hypotesetesting

Estimering og hypotesetesting Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4240 H2006: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Vektorvärda funktioner

Vektorvärda funktioner Vektorvärda funktioner En vektorvärd funktion är en funktion som ger en vektor som svar. Exempel på en sådan är en parametriserad kurva som r(t) = (t, t 2 ), 0 t 1, som beskriver kurvan y = x 2 då 0 x

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

FIRST LEGO League. Härnösand 2011. Laggabraxxarna. Lagdeltakere:

FIRST LEGO League. Härnösand 2011. Laggabraxxarna. Lagdeltakere: FIRST LEGO League Härnösand 2011 Presentasjon av laget Laggabraxxarna Vi kommer fra Timrå Snittalderen på våre deltakere er 1 år Laget består av 0 jenter og 0 gutter. Vi representerer Laggarbergs skola

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK ENKEL LINJÄR REGRESSION. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK ENKEL LINJÄR REGRESSION. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 15. ENKEL LINJÄR REGRESSION Ja Gradell & Timo Koski 07.03.2016 Ja Gradell & Timo Koski Matematisk statistik 07.03.2016 1 / 63 INNEHÅLL Ekel lijär regressio,

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Fasit og løsningsforslag STK 1110

Fasit og løsningsforslag STK 1110 Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),

Detaljer

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1 ÅMA 0 (TE 99) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 005, s. Oppgave a) P (X 0) 0.04 + 0.04 + 0.06 + 0.06 + 0. + 0. + 0. 0.6 P (0 X 40) 0.0 + 0.0 + 0.04 + 0.04 + 0.06 0.0 P

Detaljer

Løsningsforslag oblig 1 STK1110 høsten 2014

Løsningsforslag oblig 1 STK1110 høsten 2014 Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

Introduksjon til inferens

Introduksjon til inferens Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =

Detaljer

Svar til spørsmål I forbindelse med «Anskaffelse Display Vestfold og Telemark

Svar til spørsmål I forbindelse med «Anskaffelse Display Vestfold og Telemark Anskaffelse Display Vestfold og Telemark Vestviken Kollektivtrafikk Tønsberg, 27.01.12 Svar til spørsmål I forbindelse med «Anskaffelse Display Vestfold og Telemark Spørsmål DVT8 Fråga angående "Konkurransebetingelser

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

01.11.2012. Hvilke svar er mulige? 1) 8 2 a) 4-3 8 b) 5 c) 6. Ida Heiberg Solem Bjørnar Alseth. 2) 29 a) 885. + 1 c) 140.

01.11.2012. Hvilke svar er mulige? 1) 8 2 a) 4-3 8 b) 5 c) 6. Ida Heiberg Solem Bjørnar Alseth. 2) 29 a) 885. + 1 c) 140. Utmana studenter för att skapa motivation, resonemang och konstruktiv diskurs i klassrummet Ida Heiberg Solem Bjørnar Alseth Blekkflekkoppgaver Hvilke svar er mulige? 1) 8 2 a) 4-3 8 b) 5 c) 6 2) 29 a)

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst

Detaljer

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert ) Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Instruction manual. Babyfix ECE R44 / 04. Babyfix babysete. For barn som veier opp til 13 kilo.

Instruction manual. Babyfix ECE R44 / 04. Babyfix babysete. For barn som veier opp til 13 kilo. Instruction manual Babyfix Babyfix babysete For barn som veier opp til 13 kilo. Tested Testet and og godkjent approved i according henhold til to ECE R44 / 04 Viktig informasjon Takk for at du har valgt

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

Samløping i NM lang

Samløping i NM lang Bakgrunn I nasjonale og internasjonale langdistansemesterskap har det ved flere anledninger vært mye samløping som i stor grad har påvirket resultatlista. Enten ved at en løper henger etter en annen, eller

Detaljer

INSEKTSGARDIN ROLLO FÖR FÖNSTER

INSEKTSGARDIN ROLLO FÖR FÖNSTER INSEKTSGARDIN ROLLO FÖR FÖNSTER lundbergs.com Ø3, Ø4 mm Tejp teip, ca. 30 mm bred Ph 2 1x RHP304 (1x) RHP422 (1x) RHP421 (1x) RHP302 (2x) 3,5x28 (8x) RHP411 (1x) RHA655 (2x) RHP581 (1x) RHP332 (2x) RHP582

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.

Detaljer

C1 D1 D2 B2 B3 B4 A1 A2 C1 C2 C3 C4 C5 C6 B1 B2 B3 B4

C1 D1 D2 B2 B3 B4 A1 A2 C1 C2 C3 C4 C5 C6 B1 B2 B3 B4 Rev.nr 170925 Mix Läs noga igenom hela monteringsanvisningen innan ni börjar montera er produkt. Kontrollera att leveransen är komplett och utan skador. Les nøye gjennom hele monteringsanvisningen før

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens har som mål å tolke/analysere

Detaljer

Tillegg: Spørsmål/svar/endringer

Tillegg: Spørsmål/svar/endringer ANSKAFFELSE: VIKARTJENESTER HELSEPERSONELL LEGESPESIALISTTJENESTER VADSØ Tillegg: Spørsmål/svar/endringer Alle spørsmål og endringer legges under fortløpende. Nyeste spørsmål/svar/endring kommer øverst.

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i: MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

721-296. Snabbguide till robotgräsklippare Hurtigveiledning til robotgressklipper

721-296. Snabbguide till robotgräsklippare Hurtigveiledning til robotgressklipper 721-296 Snabbguide till robotgräsklippare Hurtigveiledning til robotgressklipper VIKTIGT FÖRE INSTALLATION Läs igenom bruksanvisningen noggrant och förstå innehållet innan du använder robotgräsklipparen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Störande ljus vid vägarbeten om natten

Störande ljus vid vägarbeten om natten Störande ljus vid vägarbeten om natten Referat fra møtet 13. mai 2005, Arlanda Deltagande: Tommy Bäckström Vägverket Jan-Erik Elg Vägverket Morten Hafting Vegdirektoratet Anita Ihs VTI Erik Randrup Vejdirektoratet

Detaljer

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer