DERIVASJON MED LITT TEKNISK HJELP

Størrelse: px
Begynne med side:

Download "DERIVASJON MED LITT TEKNISK HJELP"

Transkript

1 DERIVASJON MED LITT TEKNISK HJELP Viskalnåsepåhvordanvikanundersøkeenfunksjonvednoesomvikallerderivasjon. Funksjoner er en sammenhengen mellom størrelser. Det kan være antall solgte biler per måned, temperaturvariasjoner, tidevannshøyde i løpet av dagen, kort sagt hva som helst. Det viofteerinteressertiåfinneuterhvordandisseverdienestiger,synker,erpåtoppellerbunn. Snartskalvifåetnyttigverktøytildet! Detvisomoftestønskeråfinneutomgrafentilenfunksjoner: Hvilketopp-ellerbunnpunktdenhar Ihvilkeområderfunksjonenvokserelleravtar Hvormyedenvokserelleravtar Hvadefinisjonsområdettilfunksjonener Hvaverdimengdentilfunksjonener Dettekanvibesvarevedåbaresepågrafenellerlakalkulatorenfinnepunktene.Vivarmer oppmedetparoppgaver. Oppgave1... Merkavtopp-ogbunnpunktpågrafen Per G. Østerlie: Derivasjon 1T side 1

2 y x Oppgave2... Tangenter Detteergrafentil 2x 3 13x 2 7x 1.TegngrafeniNSpire. Greierduåseekstremalpunktene( alletopp-ogbunnpunkt)? FinnekstremalpunktenevedbrukavNspire Tangentererlinjersom"treffer"grafeniettpunkt(denkanskjæregrafenetstykkeunna).De tangerer grafen! Se figuren under. Oppgave3... Brukenblyantogtegntangenterpågrafenunder: Per G. Østerlie: Derivasjon 1T side 2

3 Legginnfunksjonen f x x 4 x 3 5x 2 inspire. Tegnoppfunksjonen. BrukmenyentilåfinneTangent.Tegnoppogkontrollerdetdutegnetmed blyant på figuren over. Stemmerdet? Stigningstallet til tangenten Foråkunnesvarepåallespørsmålenesomerlistetoppistarten,erdetnokåsepå stigningstallet til tangenten. Denne verdien sier oss hvor mye funksjonen vokser og hvor mye den avtar. Den kan også brukes til å finne ekstremalpunktene(topp- og bunnpunkt). Laosssepåenfigur: Per G. Østerlie: Derivasjon 1T side 3

4 Her ser vi sammenhengen mellom stigningstallet til tangenten og ekstremalpunktene til funksjonen. Kan du se sammenhengen? Oppgave4... Finnstigningstallenetildetangentenedutegnetioppgave3 Finntoppunkteneogbunnpunktenetil f x x 2 4x 1 f x x 2 2x 5 f x x 3 3x Sepåhttp://osterlie.net/matte/ velgdenderiverte Den deriverte funksjonen Funksjoner Laossførstrepeterelittomhvaenfunksjoner.Ilærebokaharvisettdennedefinisjonenav en funksjon: "y er en funksjon av x hvis hver mulig verdi for x gir nøyaktig én verdi for y" Enannenmåteådefinereenfunksjon(littupresist)eråsiatenfunksjonersammenhengen mellomtostørrelser.itilleggmåvistillekravomatdetbaretoogtostørrelsersomhører sammen. Foråillustreredetteharvisettpåfunksjonensomenbokssominneholdermetodenforå finne denne funksjonsverdien. Per G. Østerlie: Derivasjon 1T side 4

5 Dennemodellenkallesoftefor blackbox modellen.detdenermentåviseeratfunksjon er en framgangsmåte, en metode eller en prosess, som gir oss sammenhengen mellom den verdien vi kaller argumentverdien(som regel er dette vi kaller en x-verdi) som vi ønsker å finne den tilhørende verdien til(funksjonsverdien). Metoden beskrives i matematikkboka som etuttrykk,f.eks.: f x x 4 5x 7. Ved hjelp av dette uttrykket vet vi framgangsmåten for å finne funksjonsverdien, nemlig slik: tatalletoggangdetmedsegsjølfireganger leggtil5gangertallet trekkfra7ogviharfunksjonsverdien Oppgave5... f (x) Sepåhttp://osterlie.net/matte/ velgfunksjoner Stigningstallet til tangenten i et punkt er også en funksjon. Denne funksjonen gir oss sammenhengen mellom x-verdien i punktet og y-verdien som er stigningstallet til tangenten til den opprinnelige funksjonen. Vi kaller denne funksjonen for den deriverte funksjonen. Viskriver f x somsymbolfordenderivertefunksjonen.vikanillustreredettepåsamme måte som over: Per G. Østerlie: Derivasjon 1T side 5

6 Et eksempel: Laosssiat f 3 4. Hvabetyrdet?Viserdaatstigningstallettiltangententil f x ipunktetder x 3er 4. Ekstremalpunkter og den deriverte Nåvetvihvadenderiverteerogvikantegneetfortegnsdiagram(Seunderulikheteriboka). Det hjelper oss til å se når stigningstallet til tangenten er posistivt, negativt og null. Vetviatdenderivertetilenfunksjon f x er: f x x 2 x 6 x 3 x 2 kan vi tegne fortegnsdiagram, slik: Dette gir oss følgende informasjon: funksjonen f x avtariintervallet 2, 3 funksjonen f x vokseriintervallet, 2 3, funksjonenharettoppunktder x 2 funksjonenharetbunnpunktder x 3 Enda et eksempel Ifigurenundererfunksjonen f x x 4 x 3 5x 2 tegnetoppmedhelgrønnstrek. Per G. Østerlie: Derivasjon 1T side 6

7 f x ertegnetmedrødstiplalinje. Leggmerketilhvor f x ernegativ,positivognull.hvordanstemmerdettemed egenskapenetil f x? y x Oppgave6... For alle oppgavene under skal du: tegnefortegnsdiagramfor f x. finneforhvilkex-verdier f x avtarogvokser finneforhvikex-verdier f x hartopp-ellerbunnpunkt a) f x 2x 4 b) f x x 2 3x 2 c) f x x 2 2x 2 d) f x 1 x 1 2 Hvordan skal jeg gå fram for å finne f x p å TI-Nspire? Per G. Østerlie: Derivasjon 1T side 7

8 Førstmåviskriveinn f x.startoppennykalkulator(settinnkalkulator)ogskrivinn: f x : 3x 4 2x 3 7x 2 3x 12 Vi kunne også skrevet: Define f x 3x 4 2x 3 7x 2 3x 12 Vi har nå definert funksjonen for kalkulatoren. Nåkanviregnetut f x ( denderiverte) Fårdusvaret 12x 3 6x 2 14x 3? Leggmerketilatdetbenyttesenannenskrivemåtefordenderiverteenndetviervanttil. Istedenforåskrive f x benyttesskrivemåten d dx f x.detkallesforleibniz-notasjonog er svært utbredt Oppgave7... prøveåfinneetuttrykkforfunksjonen f x når: a) f x x 2 b) f x x 3 c) f x x 4 d) f x x 3 x 2 4x 4 Per G. Østerlie: Derivasjon 1T side 8

9 e) f x x x 2 Komduframtilnoenregelforhvordandukanfinnedenderiverte?Prøvå formuler den med ord. TI84 og numerisk derivasjon PåTI84/83kanviikkefinnedenderivertesomenfunksjon. Vi må nøye oss med å få regnet ut stigningstallet til tangenten(numerisk derivasjon). Her er framgangsmåten for å gjøre det numerisk: LegginnenfunksjoniY1: Y1 X^2 LegginndenderiverteiY2: Y2 nderiv(y1,x,x) nderive finner du i MATH, 8:nDeriv( eller A:Calculus Y1 finner du i VARS, Y-VARS,1:Function,1:Y1 Gjørdudetteskaldufådennegrafen: y x -10 Per G. Østerlie: Derivasjon 1T side 9

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

12 Vekst. Areal under grafer

12 Vekst. Areal under grafer MATEMATIKK: 2 Vekst. Areal under grafer 2 Vekst. Areal under grafer 2. Stigningstall og gjennomsnittlig vekst I kapitlene 8 og 0 viste vi hvordan vi kunne regne ut stigningen til en rett linje eller lineær

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1 Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5

Detaljer

Derivasjonen som grenseverdi

Derivasjonen som grenseverdi Gitt graf. Start/stopp. Fra sekant til tangent. Veien til formelen for den deriverte til funksjon f i et punkt Animasjonens jem: ttp://ome.ia.no/~cornelib/animasjon/ matematikk/mate-online-at/ablgrenz/

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Læreplanmål Matematikk S1 lage og tolke funksjoner som modellerer og beskriver praktiske problemstillinger i økonomi tegne grafen til polynomfunksjoner,

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6

Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6 Delprøve 1 OPPGAVE 1 a) Deriver funksjonen ( ) = + 3 f x 3x x 7 b) Bestem den gjennomsnittlige veksthastigheten til funksjonen f( x ) = 3 x fra x = 0 til x = 3. c) Skriv så enkelt som mulig x 3 + x 9 3x

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Matematikk 1T. det digitale verktøyet. Kristen Nastad

Matematikk 1T. det digitale verktøyet. Kristen Nastad Matematikk 1T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Skoleprosjekt i MAT4010: Derivasjon

Skoleprosjekt i MAT4010: Derivasjon Skoleprosjekt i MAT4010: Derivasjon Marie Vaksvik Draagen, Anne Line Kjærgård og Cecilie Anine Thorsen 20. mars 2014 1 Innhold 1 Introduksjon 3 1.1 Oppgavebeskrivelse................................. 3

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk S1 og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

Fjerdegradsfunksjoner og det gylne snitt

Fjerdegradsfunksjoner og det gylne snitt Svein Haugerudbråten, Christoph Kirfel Fjerdegradsfunksjoner og det gylne snitt Matematikkfagets plass i norsk skole blir av mange begrunnet med dets nytteverdi for samfunnet Men sammen med dette har faget

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

( ) = ( ) = ( ) = + = ( ) = + =

( ) = ( ) = ( ) = + = ( ) = + = 6. Lineær modell I modell A (foregående side) la vi til grunn en tanke om like stor tilvekst pr. tidsenhet. Vi kan lage tabell: År 989 990 99 992 993 994 År etter 989 0 2 3 4 5 Antall elever 00 5 30 År

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene P kapittel Modellering Løsninger til innlæringsoppgavene.1 a c d e y = 4x+ 1 Stigningstallet er 4. Konstantleddet er 1. Linja skjærer altså y-aksen i punktet (0,1). y = 3x 4 Stigningstallet er 3. Konstantleddet

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Løsningsskisser til arbeidsoppgaver i CAS.

Løsningsskisser til arbeidsoppgaver i CAS. Løsningsskisser til arbeidsoppgaver i CAS. Oppgave 1 En bonde har et 20 meter langt gjerde og skal sperre av et rektangulært område der en av sidene i rektangelet er en fjøsvegg. Finn maksimalt areal som

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Heldagsprøve i R1-8.mai 2009 DEL 1

Heldagsprøve i R1-8.mai 2009 DEL 1 Oppgave 1 Heldagsprøve i R1-8.mai 2009 Løsningsskisser DEL 1 I et koordinatsystem med origo O 0,0 har vi gitt punktene A 1,3, B 3,2 og C t,5. 1. Bestem t slik at AB AC. 2. Bestem t slik at AB AC. 3. Bestem

Detaljer

Eksempeloppgåve / Eksempeloppgave

Eksempeloppgåve / Eksempeloppgave Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre

Detaljer

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette:

Generelle opplysninger om eksamen i 1T. I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Forord Generelle opplysninger om eksamen i 1T I vurderingsveiledning fra Utdanningsdirektoratet finner vi blant annet dette: Eksamensordning Eksamen varer fem timer og er todelt. Del 1 og del 2 av eksamensoppgaven

Detaljer

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Vår 31.05.01 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f ( ) e b) g ( ) 1 c) h( ) (3 1) e Oppgave (3 poeng) På figuren har vi tegnet grafen til en funksjon f gitt ved 3 f( ) k k, D f f a) Faktoriser

Detaljer

Bruksanvisning i Mathcad Videregående skoler i Oppland

Bruksanvisning i Mathcad Videregående skoler i Oppland Bruksanvisning i Mathcad Videregående skoler i Oppland Sverre Nygård, Sverre.Nygard@oppland.org. En kort bruksanvisning 7.4 Symbolsk løsning av ligninger.0 Symbolpalettene 5.5 Ulikheter. De mest brukte

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Matematikk i videregående skole

Matematikk i videregående skole Identification Label Teacher Name: Class Name: Teacher ID: Teacher Link # Lærerspørreskjema Matematikk i videregående skole Institutt for lærerutdanning og skoleutvikling Universitetet i Oslo International

Detaljer

E k s e m p e l o p p g a v e oktober 2000

E k s e m p e l o p p g a v e oktober 2000 E k s e m p e l o p p g a v e oktober 000 Matematikk 1MX Bokmål Les opplysningene på neste side. Eksamenstid: 5 timer Hjelpemidler: Andre opplysninger Vedlagt formelark. Formelsamling utgitt av Eksamenssekretariatet/Gyldendal

Detaljer

IKT-basert eksamen i matematikk

IKT-basert eksamen i matematikk IKT-basert eksamen i matematikk Hvordan besvare Del 2 av eksamen i matematikk? Vi viser til beslutningen om innføring av revidert eksamensordning for sentralt gitt skriftlig eksamen i matematikk fra og

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 3ln( x ) b) g( x) x ln(3 x ) Oppgave ( poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen.

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Matematikk med TI-83

Matematikk med TI-83 Matematikk med TI-83 3MX/Y Brukerveiledning knyttet til eksempler av Eystein Raude Arbeidet bygger på Matematikk med TI-83 på GK og VKI Eksemplene oppfyller læreplanens mål Læreplanens mål 1 Mål 3 Funksjonslære

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 27.01.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Sti 1 Sti 2 Sti 3 600, 601, 602, 603, 604, 605, 607, 609, 610 613, 614, 615, 616, 617, 618, 619 623, 624, 625, 626, 627 630, 631, 632 634, 635

Sti 1 Sti 2 Sti 3 600, 601, 602, 603, 604, 605, 607, 609, 610 613, 614, 615, 616, 617, 618, 619 623, 624, 625, 626, 627 630, 631, 632 634, 635 6 Derivasjon Kompetansemål: Mål for opplæringen er at eleven skal kunne beregne gjennomsnittlig veksthastighet, finne tilnærmede verdier for momentan veksthastighet og gi noen praktiske tolkninger ved

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 a) Skriv tallet 2460000 på standardform. b) Regn ut: 3 3 3 2 81 4 + 12 5 + 8 + 4 3 c) Løs likningssystemet: 2x y = 3 x+ 2y = 4 d) Løs ulikheten: 2 2x + 2x+ 4 0 e) Løs

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Matematikk 1P. det digitale verktøyet. Kristen Nastad

Matematikk 1P. det digitale verktøyet. Kristen Nastad Matematikk 1P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 Forord Dette kompendiet dekker analysedelen av pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på anvendelser av teorien enn på

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Det digitale verktøyet. Matematikk S2. Kristen Nastad. Aschehoug Undervisning

Det digitale verktøyet. Matematikk S2. Kristen Nastad. Aschehoug Undervisning Det digitale verktøyet og Matematikk S2 Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.6.4319 2008 12 09 av operativsystemet til programmet TI-nspire TM CAS Computer

Detaljer

Kapittel 6. Funksjoner

Kapittel 6. Funksjoner Kapittel 6. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. Dette kapitlet handler blant annet om: Hva en funksjon er. Lineære

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Matematikk S2. det digitale verktøyet. Kristen Nastad

Matematikk S2. det digitale verktøyet. Kristen Nastad Matematikk S2 og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.6.4295 2008 12 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer