EKSAMEN I FAG SIO1073 VARME- OG FORBRENNINGSTEKNIKK Måndag 5. mai 2003 Tid:
|
|
- Ulrik Magnar Kristiansen
- 7 år siden
- Visninger:
Transkript
1 Side 1 av 3/nyn NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar Ertesvåg, tel /Kjell Erik Rian, tel EKSAMEN I FAG SIO1073 VARME- OG FORBRENNINGSTEKNIKK Måndag 5. mai 2003 Tid: Oppgåveteksten finst også på bokmål. Planlagd sensur i veke 21 Tillatne hjelpemiddel: Ingen trykte eller handskrivne hjelpemiddel. Bestemt, enkel kalkulator tillaten. Bruk helst ikkje raud blyant/penn, det er halde av for sensuren. Les gjennom oppgåvene først. Start med den oppgåva du meiner du har best innsikt i. Dersom det er råd, lat ikkje noko oppgåve vere heilt blank. Skriv klart, det løner seg! Oppgåve 1 I k-ε-modellen ( standard, konstant tettleik) kan den modellerte k-likninga skrivast t (ρk) + (ρku j ) = (( µ + µ ) ) t k + ρ P k ρε, (1) x j x j σ k x j Vis korleis den eksakte (ikkje modellerte) k-likninga vert utleia. (Du skal vise framgangsmåten og treng ikkje vise alle detaljar i alle ledd.) Kva for ledd i den eksakte k-likninga må modellerast, og korleis vert det gjort? Korleis vert ε-likninga modellert? I eit område nær ein plan vegg brukar vi tilnærminga du 1 dx 2 = u τ κx 2, (2) Vis korleis vi finn ei vegglov for dissipasjonen (dissipasjonsraten) ε. Forklar dei føresetnadene du må gjere i tillegg til likning (2).
2 Side 2 av 3/nyn Vis og forklar korleis ein kjem fram til vegglovene T + = σ x + 2 (3) der T + = ρc p (T w T)u τ /q w. T + = 1 κ T ln x D T, (4) Opplysning: ν t = κu τ x 2 Oppgåve 2 Flammefarta kan uttrykkjast som v L = D/τ, der τ = k 1 = [ A exp( E RT )] 1. I forblanda flammer: Korleis kan flammefarta tolkast? Korleis kan vi uttrykkje og tolke ein tilhøyrande lengdeskala? Kva med uforblanda flammer? For å definere ulike regime for turbulente flammer kan vi bruke to dimensjonslause grupper. Dei må vere sette saman av to turbulensskalaer og éin kjemisk skala, i tillegg til stoffeigenskapar. Vel eitt sett av slike skalaer som kan brukast (det finst fleire brukande alternativ) og forklar korleis desse skalaene er definerte og kva dei representerer. Svaret skal vere for både forblanda og uforblanda flammer. Ein global, eitt-stegs mekanisme for butan-forbrenning kan skrivast C 4 H ,5 O 2 4CO 2 + 5H 2 O (5) Reaksjonsorden i høve til butan er 0,15, og i høve til oksygen 1,6. Reaksjonskoeffisienten ( rate coefficient ) kan uttrykkjast på Arrhenius-form der pre-eksponensialfaktoren er 4, (kmol/m 3 ) 0,75 s 1 og aktiveringsenergien er kj/kmol. Den universelle gasskonstanten er 8,314 kj/(kmol K). Skriv ut eit uttrykk for reaksjonsraten til butan. I samband med forbrenning av flytande brensel gjennomgår dropane tre ulike faser. Gjer greie for disse fasene. Levetida for ein drope kan reknast ut fra ei d 2 -lov. Forklar denne lova og skisser d 2 som funksjon av tida for ein drope ved forbrenning.
3 Side 3 av 3/nyn Oppgåve 3 For matematisk modellering og numerisk rekning på varme- og strøymingsproblem er Navier-Stokeslikningane (rørslemengd- eller impulslikningane), kontinuitets- og energilikninga viktige differensiallikningar. For to-dimensjonal, numerisk rekning på varme- og strøymingsproblem kan ei generell, partiell differensiallikning uttrykkjast som t (ρφ) + x (ρuφ) + y (ρvφ) = ( Ŵ φ ) + ( Ŵ φ ) + S, (6) x x y y der S = S(φ). Gje ei kort, fysikalsk forklaring av kvart ledd i likning (6). Kva praktiske føremonar har ei generelt formulert differensiallikning, som likning (6), i samband med utvikling av eit numerisk simuleringsprogram for å rekne på varme- og strøymingsproblem? Utlei differanselikninga (diskretisert likning) for den éin-dimensjonale, stasjonære utgåva av likning (6) ved å bruke kontrollvolum-metoden og sentraldifferensiering for eit uniformt nettverk. Svaret skal gjevast som senterpunktskoeffisient, nabokoeffisientar og kjeldeledd for eit indre knutepunkt. Diskuter kva for avgrensingar som gjeld ved bruk av sentraldifferensiering. Kvifor vert underrelaksering, eventuelt overrelaksering, gjerne nytta ved iterativ løysing av eit likningssystem? Vis prinsippet matematisk ved å ta utgangspunkt i likninga der S u er ein konstant. a P T P = (a nabo T nabo ) + S u, (7) Utlei eit uttrykk for å rekne ut transportkoeffisienten Ŵ (sjå likning (6)) på grenseflata mellom to kontrollvolum der det er stor skilnad i verdiene for transportkoeffisienten.
4 Side 1 av 3/bm NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar Ertesvåg, tel /Kjell Erik Rian, tel EKSAMEN I FAG SIO1073 VARME- OG FORBRENNINGSTEKNIKK Mandag 5. mai 2001 Tid: Oppgaveteksten finnes også på nynorsk. Planlagt sensur i uke 21 Tillatte hjelpemiddel: Ingen trykte eller handskrevne hjelpemiddel. Bestemt, enkel kalkulator tillatt. Bruk helst ikke rød blyant/penn, det er holdt av for sensuren. Les gjennom oppgavene først. Start med den oppgava du meiner du har best innsikt i. Dersom det er råd, lat ikke noen oppgave være heilt blank. Skriv klart, det lønner seg! Oppgave 1 I k-ε-modellen ( standard, konstant tetthet) kan den modellerte k-likninga skrives: t (ρk) + (ρku j ) = (( µ + µ ) ) t k + ρ P k ρε, (1) x j x j σ k x j Vis hvordan den eksakte (ikke modellerte) k-likninga blir utleda. (Du skal vise framgangsmåten og trenger ikke vise alle detaljer i alle ledd.) Hvilke ledd i den eksakte k-likninga må modelleres, og hvordan blir det gjort? Hvordan blir ε-likninga modellert? I et område nær en plan vegg bruker vi tilnærminga du 1 dx 2 = u τ κx 2, (2) Vis hvordan vi finner en vegglov for dissipasjonen (dissipasjonsraten) ε. Forklar de antakelsene du må gjøre i tillegg til likning (2).
5 Side 2 av 3/bm Vis og forklar hvordan man kommer fram til vegglovene T + = σ x + 2 (3) der T + = ρc p (T w T)u τ /q w. T + = 1 κ T ln x D T, (4) Opplysning: ν t = κu τ x 2 Oppgåve 2 Flammefarten kan uttrykkes som v L = D/τ, der τ = k 1 = [ A exp( E RT )] 1. I forblanda flammer: Hvordan kan flammefarten tolkes? Hvordan kan vi uttrykke og tolke en tilhørende lengdeskala? Hva med uforblanda flammer? For å definere ulike regimer for turbulente flammer kan vi bruke to dimensjonslause grupper. De må være satt sammen av to turbulensskalaer og én kjemisk skala, i tillegg til stoffegenskaper. Velg ett sett av slike skalaer som kan brukes (det finst flere brukende alternativ) og forklar hvordan disse skalaene er definerte og hva de representerer. Svaret skal være for både forblanda og uforblanda flammer. En global, ett-stegs mekanisme for butan-forbrenning kan skrives C 4 H ,5 O 2 4CO 2 + 5H 2 O (5) Reaksjonsorden i forhold til butan er 0,15, og i forhold til oksygen 1,6. Reaksjonskoeffisienten ( rate coefficient ) kan uttrykkes på Arrhenius-form der pre-eksponensialfaktoren er 4, (kmol/m 3 ) 0,75 s 1 og aktiveringsenergien er kj/kmol. Den universelle gasskonstanten er 8,314 kj/(kmol K). Skriv ut et uttrykk for reaksjonsraten til butan. I forbindelse med forbrenning av flytende brensler gjennomgår dråpene tre ulike faser. Beskriv disse fasene. En dråpes levetid kan beregnes ut fra en d 2 -lov. Forklar denne loven og skisser d 2 som funksjon av tiden for en dråpe ved forbrenning.
6 Side 3 av 3/bm Oppgave 3 Ved matematisk modellering og numerisk beregning av varme- og strømningsproblemer er Navier- Stokes likninger (bevegelsesmengde- eller impulslikningene), kontinuitets- og energilikningen sentrale differensiallikninger. Ved to-dimensjonal, numerisk beregning av varme- og strømningsproblemer kan en generell, partiell differensiallikning uttrykkes som t (ρφ) + x (ρuφ) + y (ρvφ) = ( Ŵ φ ) + ( Ŵ φ ) + S, (6) x x y y der S = S(φ). Gi en kort, fysikalsk beskrivelse av hvert ledd i likning (6). Hvilke praktiske fordeler har en generelt formulert differensiallikning, som likning (6), i forbindelse med utvikling av et numerisk simuleringsprogram for beregning av varme- og strømningsproblemer? Utled differanselikningen (diskretisert likning) for den én-dimensjonale, stasjonære utgaven av likning (6) ved bruk av kontrollvolum-metoden og sentraldifferensiering for et uniformt nettverk. Svaret skal gis som senterpunktskoeffisient, nabokoeffisienter og kildeledd for et indre knutepunkt. Diskuter hvilke begrensninger som gjelder ved bruk av sentraldifferensiering. Hvorfor benyttes gjerne underrelaksering, eventuelt overrelaksering, ved iterativ løsning av et likningssystem? Vis prinsippet matematisk ved å ta utgangspunkt i likningen der S u er en konstant. a P T P = (a nabo T nabo ) + S u, (7) Utled et uttrykk for beregning av transportkoeffisienten Ŵ (se likning (6)) på grenseflaten mellom to kontrollvolumer der det er stor forskjell i verdiene for transportkoeffisienten.
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 18. august 2012 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 17. august 2013 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål. EKSAMEN
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2018 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 10. august
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 8. august 2009 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 8. august
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 4. juni 2011 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål./ EKSAMEN
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2017 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 11. august
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2015 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 20. mai
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 15. august 2011 Tid: 09.00 13.00
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål. EKSAMEN
Side 1 av 4/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2018 Tid:
Side 1 av 4/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid:
(Termo.2 16.8.2010) Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK
NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg
Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 26.
Side 1 av 2/nyn. MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 20. februar 2013 Tid:
Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 20.
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK juni 2016 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 11. juni
EKSAMEN I FAG TEP4170 VARME- OG FORBRENNINGSTEKNIKK 18. mai 2007 Tid:
1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for energi- og prosessteknikk Kontakt under eksamen: Torleif Weydahl, tlf. 73591634 / 9045 EKSAMEN I FAG TEP4170 VARME- OG FORBRENNINGSTEKNIKK
2) Finn entropiproduksjonsraten i blandeprosessen i oppgåve 1. (-rate= per tidseining)
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
Side 3 av 3/nyn. Bruk van der Waals likning p = Vedlegg: 1: Opplysningar 2: Mollier h-x-diagram for fuktig luft
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Torsdag
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 august 2015 Tid: 4 timar
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 august
Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
EKSAMEN I TMA4285 TIDSREKKJEMODELLAR Fredag 7. desember 2012 Tid: 09:00 13:00
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 8 Nynorsk Fagleg kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKJEMODELLAR Fredag 7.
Eksamensoppgåve i TMA4250 Romleg Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4250 Romleg Statistikk Fagleg kontakt under eksamen: Professor Henning Omre Tlf: 90937848 Eksamensdato: 5. juni 2015 Eksamenstid (frå til): 09:00-13:00
EKSAMEN I FAG SIO1073 VARME- OG FORBRENNINGSTEKNIKK Tysdag 22. mai 2001 Tid:
Side 1 av 3/nyn NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR MEKANIKK, TERMO- OG FLUIDDYNAMIKK Kontakt under eksamen: Ivar Ertesvåg, tel. 93839/Ole Melhus, 93662 EKSAMEN I FAG SIO1073 VARME-
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2016 Tid:
Sde 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 19. august
Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
EKSAMEN I EMNE TMA4245 STATISTIKK
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72 EKSAMEN
Matematikk 1, MX130SKR-B
Skriftlig eksamen i Matematikk 1, MX130SKR-B 20 studiepoeng ORDINÆR/UTSATT EKSAMEN 4.juni 2010. Sensur faller innen 25.juni. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,
EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9
EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,
LØYSINGSFORSLAG, eksamen 20. mai 2015 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 2015/sist revidert 9.juni 2015.
Termodyn. 2, 20.5.205, side LØYSINGSFORSLAG, eksamen 20. mai 205 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 205/sist revidert 9.juni 205. Les av i h-x-diagrammet: x = 0,05 kg/kg, T dogg, = 20
Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012
NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:
TMA4265 Stokastiske prosessar
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 6 Nynorsk Fagleg kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosessar Onsdag
Eksamen TFY 4104 Fysikk Hausten 2009
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY 404 Fysikk Hausten 2009 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Mandag 30. november
Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk Fagleg kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23
EKSAMEN I: BIT260 Fluidmekanikk DATO: 20. desember TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 0. desember 006 TID FOR EKSAMEN: kl. 09-13 (4 timar) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard
Eksamensoppgåve i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra
Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY45/FY006 Innføring i kvantemekanikk Vår 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Onsdag.
EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Bokmål Faglig kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag
EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn
Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK
Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
Eksamensoppgåve i ST0103 Brukarkurs i statistikk
Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (frå til): 09:00-13:00
EKSAMEN I FAG TMA4275 LEVETIDSANALYSE
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Fredag 26. mai 2006
EKSAMEN I: BIT260 Fluidmekanikk DATO: 26. august TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 6. august 010 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk
Institutt for kjemi Eksamensoppgåve i KJ1041 Kjemisk binding, spektroskopi og kinetikk Fagleg kontakt under eksamen: Ida-Marie øyvik Tlf: 99 77 23 63 Eksamensdato: 11. desember 2014 Eksamenstid (frå til):
ORDINÆR EKSAMEN Sensur faller innen
Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Skriftlig eksamen i Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K 15 studiepoeng ORDINÆR EKSAMEN 11.12.09. Sensur faller innen
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
KONTINUASJONSEKSAMEN I EMNE. TDT4136 Logikk og resonnerande system. Laurdag 8. august 2009, kl. 09.00 13.00
Side 1 av 6 KONTINUASJONSEKSAMEN I EMNE TDT4136 Logikk og resonnerande system Laurdag 8. august 2009, kl. 09.00 13.00 Oppgåva er laga av Tore Amble, og kvalitetssikret av Lester Solbakken. Kontaktperson
Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamensoppgave i SOS1000 Innføring i sosiologi
Institutt for sosiologi og statsvitenskap Eksamensoppgave i SOS1000 Innføring i sosiologi Faglig kontakt under eksamen: Per Morten Schiefloe/Signe Ringdal Tlf.: 73 59 63 23 73 59 17 75 Eksamensdato: 05.12.2014
EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 1.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk
EKSAMEN I FAG SIF5050 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN
Institutt for matematiske fag Faglig kontakt under eksamen: Einar M. Rønquist (73593547) EKSAMEN I FAG SIF55 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Onsdag 29. mai
Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 13 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9.05.204 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del 2: 5 timar: Del skal leverast inn etter 2 timar. Del 2 skal leverast
Eksamensoppgave i TMA4250 Romlig Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4250 Romlig Statistikk Faglig kontakt under eksamen: Professor Henning Omre Tlf: 90937848 Eksamensdato: 5. juni 2015 Eksamenstid (fra til): 09:00-13:00
Kalkulator, lærebok og formelsamling er lov. Handskrivne notat i lærebok og formelsamling er lov. Lause ark, med unntak av bokmerke, er ikkje lov.
Eksamen 7. desember 207 Eksamenstid 4 timar AR005 Grunnleggjande Matematikk Nynorsk Kalkulator, lærebok og formelsamling er lov. Handskrivne notat i lærebok og formelsamling er lov. Lause ark, med unntak
LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Syvert P. Nørsett 7 59 5 45 LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF545 NUMERISK LØSNING
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.05.014 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Skriftlig eksamen. HUD2002 Kommunikasjon og samhandling. Våren 2014. Privatister/Privatistar. VG2 Hudpleier/Hudpleiar
Finnmark fylkeskommune Troms fylkeskommune Nordland fylkeskommune Nord-Trøndelag fylkeskommune Sør-Trøndelag fylkeskommune Møre og Romsdal fylke Skriftlig eksamen HUD2002 Kommunikasjon og samhandling Våren
EKSAMEN I EMNE. TDT4136 Logikk og resonnerande system. Tysdag 4. desember 2007 Tid: kl
Side 1 av 6 Fagleg kontakt under eksamen: Tore Amble (94451) Ein engelsk versjon av oppgåva er vedlagt. Oppgåva kan besvarast på engelsk eller norsk. NYNORSK EKSAMEN I EMNE TDT4136 Logikk og resonnerande
EKSAMEN I FAG TMA4220 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN
Institutt for matematiske fag Faglig kontakt under eksamen: Einar M. Rønquist (73593547 EKSAMEN I FAG TMA422 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Torsdag 3. mai
Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra
EKSAMEN I EMNE TVM 4116 HYDROMEKANIKK
NORGES TEKNISK-NATURVITENSKAPLIGE UNIVERSITET INSTITUTT FOR VANN OG MILJØTEKNIKK Side av 9 Faglige kontakter under eksamen: Prof. Geir Moe, Tel. 7359 467 Prof. Nils R. Olsen, Tel. 7359 4773 EKSAMEN I EMNE
Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.
EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.
Eksamensoppgave i NORD1102 Nordisk språk moderne, 15 sp.
Institutt for språk og litteratur Eksamensoppgave i NORD1102 Nordisk språk moderne, 15 sp. Faglig kontakt under eksamen: Maren Berg Grimstad, 90801610 - Heidi Brøseth, 93087797 - Brit Mæhlum, 922 32 148
Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
KONTINUASJONSEKSAMEN I EMNE. TDT4136 Logikk og resonnerande system. Onsdag 10. august 2011, kl. 09.00 13.00
Side 1 av 5 KONTINUASJONSEKSAMEN I EMNE TDT4136 Logikk og resonnerande system Onsdag 10. august 2011, kl. 09.00 13.00 Oppgåva er laga av Tore Amble, og kvalitetssikra av Lester Solbakken. Kontaktperson
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Fylkeskommunenes landssamarbeid. Eksamen NAB3001 Naturforvaltning. Programområde: Naturbruk. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 24.05.2018 NAB3001 Naturforvaltning Programområde: Naturbruk Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel Bruk av kjelder Eksamen varer i
Eksamensoppgave i SØK2103 Økonomiske perspektiver på politiske beslutninger
Institutt for samfunnsøkonomi Eksamensoppgave i SØK2103 Økonomiske perspektiver på politiske beslutninger Faglig kontakt under eksamen: Leiv Opstad Tlf.: 92 66 77 09 Eksamensdato: 15.12.2014 Eksamenstid
EKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING
NTNU Norges teknisk-naturvitenskapelige universitet Side 1 av 8 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 23.11.2015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til
EKSAMEN I EMNE TMT4110 KJEMI. BOKMÅL (Nynorsk s. 5 7) Lørdag 12. juni 2010 Tid: 9:00 13:00
Side 1 av 7 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Faglig kontakt under eksamen: Institutt for Materialteknologi, Gløshaugen Professor Kjell Wiik, tlf.: 73 59 40
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:
Modellering av NOx frå forbrenning
Modellering av NOx frå forbrenning Erlend Liavåg Grotle Master i energi og miljø Oppgåva levert: Juni 28 Hovudrettleiar: Ivar Ståle Ertesvåg, EPT Medrettleiar(ar): Kjell Erik Rian, EPT Bjørn Lilleberg,
Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2012
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 01 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131
Skriftlig eksamen. KJP2002 Kjemisk teknologi. Våren 2014. Privatister/Privatistar. VG2 Kjemiprosess
Finnmark fylkeskommune Troms fylkeskommune Nordland fylkeskommune Nord-Trøndelag fylkeskommune Sør-Trøndelag fylkeskommune Møre og Romsdal fylke Skriftlig eksamen KJP2002 Kjemisk teknologi Våren 2014 Privatister/Privatistar
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember
Fylkeskommunenes landssamarbeid. Eksamen MAT1001 Matematikk 1P-Y. Programområde: Design og håndverk. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 28.05.2019 MAT1001 Matematikk 1P-Y Programområde: Design og håndverk Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Eksamen varar i 4 timar. Del 1 skal leverast
EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Teorifagb, hus 3, og og Adm.bygget, Aud.max og B.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 06.12.2016 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Tillatte hjelpemidler:
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
Eksamensoppgåve i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne
EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10:30
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1100 Innf. i progr. og datam. virkem. Dato: 05.12.2018 Klokkeslett: 09:00 13:00 Sted: Kraft I og II Hall del 3 Tillatte hjelpemidler:
EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE
AVDELING FOR HELSE- OG SOSIALFAG EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE Utdanning Kull : Bachelorutdanning i sykepleie/sjukepleie : GRS10 Emnekode og navn/namn : BSSV1 Samfunnsvitenskapelige perspektiver på grunnleggende
Eksamensoppgåve i TMA4240 / TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 / TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (frå til): 09.00-13.00
OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1006 Matematikk teoretisk. Våren 2014. Privatister/Privatistar. VG1 Yrkesfag
OPPLÆRINGSREGION NORD LK06 Finnmark fylkeskommune Troms fylkeskommune Nordland fylkeskommune Nord-Trøndelag fylkeskommune Sør-Trøndelag fylkeskommune Møre og Romsdal fylke Skriftlig eksamen MAT1006 Matematikk
Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram
Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del
FINF Forvaltningsinformatikk Onsdag 10. desember 2003, klokken
Eksamensoppgave FINF4001 - Forvaltningsinformatikk Onsdag 10. desember 2003, klokken 9.00 15.00 Casebeskrivelse: En kommune ønsker å styrke innbyggernes muligheter til å kommunisere med politikerne slik
EKSAMENSOPPGAVE. MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2. Kalkulator Rom Stoff Tid: Fysikktabeller (utskrift)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 28. mai 2018 Klokkeslett: Kl. 09:00-13:00 Sted: TEO-H1
Eksamensoppgåve i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
Eksamensoppgave i NORD1108 Nordisk litteraturhistorie, 7.5 sp.
Institutt for nordistikk og litteraturvitenskap Eksamensoppgave i NORD1108 Nordisk litteraturhistorie, 7.5 sp. Faglig kontakt under eksamen: Sissel Furuseth Telefon: 92 41 46 51 Eksamensdato: 21.05.2013
EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur:
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (9264) EKSAMEN I NUMERISK MATEMATIKK(TMA425) Lørdag 2. desember
Eksamen i GEOF330 Dynamisk Oseanografi. Oppgave 1: Stående svingninger
Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i GEOF330 Dynamisk Oseanografi 15. Desember 2006, kl 0900-1400 Tillatte hjelpemiddel: Kalkulator og matematisk formelsamling Oppgave