Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)

Størrelse: px
Begynne med side:

Download "Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)"

Transkript

1 HG April 010 Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) Innledende merknad. De fleste oppgavene denne uka er øvelser i bruk av den viktige regel 5.0, som er sentral i dette kurset, og som det forventes at studentene behersker til eksamen. Les også eksempel 5.18 i boka nøye, som viser et trikk (såkalt heltallskorreksjon) for å forbedre tilnærmelsen av en heltallsfordeling til normalfordelingen. Dette er nyttig i situasjoner der kriteriet for tilnærmelse til normalfordelingen (dvs. at variansen σ 5) så vidt er oppfylt. Hvis variansen er vesentlig større enn 5, er trikket overflødig. Tilnærmingen kan oppsummeres som følger: La X være en heltallsvariabel med en fordeling som angitt i regel 5.0. La μ og σ betegne forventning og variansen til X henholdsvis, og la Gz ( ) være den kumulative fordelingsfunksjonen i N(0, 1)-fordelingen. Tilnærmingen har da følgende form: Uten heltallskorreksjon (brukt når σ er betydelig større enn 5): x μ PX ( x) G σ Med heltallskorreksjon (brukt når σ er større og relativt nær 5): x + 0,5 μ PX ( x) G σ Oppg Oppgaven inneholder en liten felle. Merk at X er definert som antall frø som spirer - ikke antall millioner frø. Dvs. enheten er et enkelt frø og ikke en million frø. Derfor må vi omgjøre tallene i oppgaven til riktig enhet. Forøvrig synes forutsetningene for en binomisk modell å være rimelige (diskuter selv). Modell: X bin( np, ) der n = og p = P(et vilkårlig frø spirer) = 0,8.

2 :I denne modellen er E( X) = np og var( X) = np(1 p) Vi skal finne PX ( ). I følge regel 5.0 er X normalfordelt hvis np(1 p) 5 og p ikke er for nær 0 eller 1. Dette er klart oppfylt her. Dermed: ( ( ), var( ) ) = (, (1 ) ) = ( ; 1073,313) X N E X X N np np p N hvorav (ved hjelp av Gz ( ) = PZ ( z) der Z N(0,1) ) PX ( ) G = G( 968,96) ,313 = Den siste likheten følger av tabellen (D.3) i boka siden vi vet at Gz ( ) er en ikkeavtagende funksjon av z samtidig som Gz ( ) 1for alle z. Dermed blir nemlig tabell D.3 1 G(968,96) G(3, 09) = 0,9990. Mao., 0,9990 G(968,96) 1, og vi kan sette G (968,96) = 1 som er tilstrekkelig nøyaktig for de fleste praktiske formål. Merknad. Som et kuriosum (uten praktisk betydning) kan nevnes at G(968,96) ligger veldig mye nærmere 1 enn grensen 0,9990 fra tabell D.3 skulle tilsi. Videregående metoder utenfor pensum gir faktisk at tall G(968,96) = 1 10 = 0, Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,15. Utvalgsstørrelsen er n = 900. Utvalget antas å være et rent tilfeldig utvalg trukket fra populasjonen. I så fall er X egentlig hypergeometrisk fordelt, men siden populasjonen er stor, kan vi uten vesentlig tap av realisme anta en binomisk modell for X: Modell: X bin( n, p ) = bin(900;0,15) Vi skal finne P(115 X 150). Betingelsene i regel 5.0 er opplagt oppfylt, og vi kan utnytte at X er normalfordelt: ( ( ), var( ) ) = (, (1 ) ) = ( 135; 10,7114) X N E X X N np np p N

3 3 Siden X bare kan anta hele verdier, er begivenheten ( X 115) ekvivalent med ( X > 114), og vi får (ved hjelp av Gz ( ) = PZ ( z) der Z N(0,1) ): P(115 X 150) = P(114 < X 150) = P( X 150) P( X 114) tabell D.3 G G G(1,40) G( 1,96) 0,919 0,050 10,7114 = = 10,7114 = 0,894 Oppg Populasjonen består av N = 6400 elger, hvorav M = 1400 er merket. Andelen av merkete elger i populasjonen er dermed M p = = 0,1875 N Utvalgsstørrelsen er n = 800 og X er antall merkete elger i utvalget. Vi ønsker å beregne sannsynlighetene PX ( 00) og P(160 X 185) = P(159 < X 185) = PX ( 185) PX ( 159). Oppgaven har flere (akseptable) løsninger: Versjon 1: Vi antar at utvalget kan anses å være rent tilfeldig trukket fra populasjonen. I så fall er X hypergeometrisk fordelt, og vi kan utnytte regel 5.0 for å finne sannsynlighetene (betingelsen for dette er klart oppfylt): Regel 5.0 gir da X N E X X N np np p N N 1 N n ( ( ), var( ) ) =, (1 ) = ( 175; 10,9384) hvorav (ved hjelp av Gz ( ) = PZ ( z) der Z N(0,1) ): PX ( 00) G = G(, 9) = 0,989 10,9384 og

4 P(160 X 185) G G G(0,91) G( 1,46) 0,8186 0,071 10,9384 = = 10,9384 = 0,7465 Versjon : Siden populasjonen er relativt stor, kunne vi som en forenkling, uten vesentlig tap av realisme, i utgangspunktet anta at X er binomisk (n,p)-fordelt. Regel 5.0 gir i så fall ( ( ), var( ) ) = (, (1 ) ) = ( 175; 11,697) X N E X X N np np p N som gir PX ( 00) 0,984 tabell D.3 P(160 X 185) G(0,86) G( 1,37) = 0,7198 (Fasiten tyder på at Løvås antakelig har valgt versjon. Små avvik for øvrig kan skyldes avrunding) Oppg La X = antall dødsulykker i en gitt måned. Som modell antar vi at X er poisson-fordelt, X pois(1) (som bl.a. innebærer at E( X ) = 1). Punktsannsynlighetene er gitt ved Vi får da 1 1 PX x e x x! e x! x 1 ( = ) = = for = 0,1,, 1 1 PX ( = 0) = 0,368 og PX ( ) 0,184 e = = = e = La Y være antall dødsulykker i et helt år. Hvis poisson-forutsetningene gjelder i hele året, kan vi anta Y pois(1 1) = pois(1). Denne fordelingen omfattes av tabell D. som gir og PY ( = 6) = PY ( 6) PY ( 5) = 0,046 0,00 = 0,06 PY ( 8) = 0,155

5 5 Oppg La X være antall diskotekbranner i løpet av et år og Y = antall personer som omkommer i diskotekbranner i et år. Oppgaven hevder det er rimelig å anta en poisson-fordeling for X, og spør om hvorfor det samme er en urimelig antakelse for Y. Da må vi se på de grunnleggende forutsetningene som impliserer poisson-fordelingen. Forutsetningen om neglisjerbar sannsynlighet for opphopning av begivenheter i et kort tidsrom, virker åpenbart urimelig siden det gjerne er flere omkomne i samme diskotekbrann. Derfor virker poissonmodellen klart som en dårlig modell for Y. Merknad. Også poisson-modellen for X, kan naturligvis diskuteres. En trussel mot den modellen kan være avskrekningseffekten som en større diskotekbrann kan ha. Etter en slik katastrofe kan man godt tenke seg at mange diskoteker fokuserer mer på sikkerhet, i hvert fall i en periode etterpå. Dette ville i så fall føre til at forutsetningen om uavhengighet mellom hendelser i ikke-overlappende tidsintervaller sprekker. Hvis avskrekningseffekten er sterk, vil således poisson-modellen også være dårlig for X. Oppg. 5.0 Tidsenheten i denne oppgaven er måned (se merknad i slutten av oppgaven). La X være antall døde av hjerte- og karsykdommer i et gitt år. De tre forutsetningene for poissonfordelingen synes rimelige her. (Er du enig? Sjekk selv). Vi antar derfor at X er poissonfordelt, X pois(1 λ ) der lambda ( λ ) er forventet dødsrate pr. mnd (dvs. λ = E( X 1)), som i oppgaven antas å være kjent lik Betingelsen for tilnærming til normalfordelingen er klart oppfylt siden v ar( X ) = er godt over 5. Det er heller ikke aktuelt med noen heltallskorreksjon som i eksempel 5.18 for å forbedre tilnærmingen siden vi ligger så langt over grensen (5) for akseptabel tilnærming. Vi har dermed ( ( ), var( ) ) = ( 1 λ, 1λ) = ( ; 189,737) X N E X X N N Vi finner (idet vi ignorerer ytterligere tilnærmelser som skyldes avrunding) PX ( < ) = PX ( ) G = G( 1,06) = 0, ,737 For å finne hvor mange dødsfall vi kan forvente pr. dag, er det lurt å definere en stokastisk variabel, Y = antall dødsfall en vilkårlig dag i løpet av det aktuelle året. Vi er

6 6 altså ute etter E( Y ). Siden (en dag) = (et år)/365 og poisson-modellen er antatt å gjelde i det aktuelle året, følger at 1 Y pois 1λ 365 [Merk at dette uttrykket fortsatt har formen pois( tλ 1) der λ1 = 1λ nå er forventet dødsrate pr. år, og t = 1/365.] Dermed følger av egenskapene for poissonfordelingen (jfr. Definisjon 5.8 i Løvås) at 1 EY ( ) = λ = 1183,6 365 Merknad. Tidsenheten måned er åpenbart upresis i og med at antall dager i en måned varierer litt. I oppgaven regner vi imidlertid som om hver måned består av et fast antall dager, 365/1 = 30,4 dager. I praksis er det ikke bryet verdt å presisere dette siden månedslengden varierer så lite. Oppg Regel 5.14 følger av definisjon Denne definisjonen inneholder bl.a. en regel (setning), som kan bevises, og burde vært formulert som en egen regel (se notat til kapittel 5), nemlig: X μ X N E( X), var( X) = N( μσ, ) N(0,1) σ (*) ( ) Kall den stokastiske variabelen X μ for Z. I følge (*) er altså Z N(0,1). σ La de kumulative fordelingsfunksjonene for X og Z være gitt ved Da har vi fra F( x) = P( X x) og G( z) = P( Z z) (*) X μ x μ x μ x μ F( x) = P( X x) = P = P Z = G σ σ σ σ som var det vi skulle vise.

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20). Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. 1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. 1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

onsdag_19_09_2018_poisson_eksponential_normalfordelng_vikartime_bygg_v2.notebook

onsdag_19_09_2018_poisson_eksponential_normalfordelng_vikartime_bygg_v2.notebook September 19, The story so far Kap. 3: Diskrete stokastiske variable variablene er "diskrete", dvs. tellevariable som kun har verdier X = 0, X = 1, X = 2,... beregne forventningsverdi og varians for variabel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller ÅMA0 Sannsnlighetsregning med statistikk, våren 008 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) Hpergeometrisk modell

Detaljer

Bernoulli forsøksrekke og binomisk fordeling

Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sannsnlighetsregning med statistikk, våren 007 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) (kp. 3.7) (notater)

Detaljer

Løsning eksamen desember 2016

Løsning eksamen desember 2016 Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Løsningsforslag, eksamen statistikk, juni 2015

Løsningsforslag, eksamen statistikk, juni 2015 Løsningsforslag, eksamen statistikk, juni 0 Oppgave 1 Siden det spørres om tall fra et intervall, som oppgaven viser kan være et reelle, er det tydelig at tallene er tatt fra en kontinuerlig fordeling.

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Midtveiseksamen i STK1100 våren 2017

Midtveiseksamen i STK1100 våren 2017 Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Løsning eksamen desember 2017

Løsning eksamen desember 2017 Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Hypergeometrisk modell

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Hypergeometrisk modell ÅMA Sannsnlighetsregning med statistikk, våren 6 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) Hpergeometrisk modell

Detaljer

Løsningsforslag statistikkeksamen desember 2014

Løsningsforslag statistikkeksamen desember 2014 Løsningsforslag statistikkeksamen desember 2014 Oppgave 1 a i. To hendelser er disjunke hvis det er intet overlapp mellom hendelsene, altså hvis A B = Ø. Siden vi har en sannsynlighet for å finne A B som

Detaljer

Diskrete sannsynlighetsfordelinger.

Diskrete sannsynlighetsfordelinger. Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f(x) er punktsannsynligheten til en diskret X dersom: 1. f(x) 0 2. x f(x) =1 3. f(x) =P (X = x) Vi skal nå sepå situasjoner der

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

SFB LØSNING PÅ EKSAMEN HØSTEN 2018

SFB LØSNING PÅ EKSAMEN HØSTEN 2018 SFB107111 - LØSNING PÅ EKSAMEN HØSTEN 018 Eksamen høsten 018 Oppgave 1 Anta at 70% av studentene spiller fotball og at 0% ikke spiller fotball. Anta at av de som spiller fotball så er det 40% som spiller

Detaljer

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.

Detaljer

Hypergeometrisk modell

Hypergeometrisk modell Hpergeometrisk modell Tilnærming til binomisk fordeling - enklere å beregne binomiske sannsnligheter Dersom n er liten i forhold til N, er det tilnærmet uavhengighet mellom resultatene i ulike trekninger/

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

Diskrete sannsynlighetsfordelinger.

Diskrete sannsynlighetsfordelinger. Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f() er punktsannsynligheten til en diskret X dersom: 1. f() 0 2. f() =1 3. f() =P (X = ) Vi skal nå sepå situasjoner der vi har

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform Onsdag Normal Onsdag Eksponensial I dag Gamma I dag Kji-kvadrat I dag Student-T (Kap

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 5 blokk I Løsningsskisse Oppgave 1 X N(18,2.5 2 ) P(X < 15) = P ( X 18 < 15 18 ) = P(Z < 1.2)

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig fra en boks som inneholder 10 lapper nummerert fra 1 til 10.

Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig fra en boks som inneholder 10 lapper nummerert fra 1 til 10. TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk I Løsningsskisse Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.

Detaljer

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

Kap. 7 - Sannsynlighetsfordelinger

Kap. 7 - Sannsynlighetsfordelinger Oppgaver: Kap. 7 - Sannsynlighetsfordelinger Oppgaver fra kapitlet Lærebok: 7.0-0-0-,7.--7, 7.-, 7., 7., 7.7 Oppgavesamling: 7.00, 7.0, 7.09, 7., 7.9, 7., 7.0, 7.0, 7.0 7.0-0-0-0- Stokastisk variabel:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Poissonprosesser og levetidsfordelinger

Poissonprosesser og levetidsfordelinger Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien

Detaljer