~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "~/stat230/teori/bonus08.tex TN. V2008 Introduksjon til bonus og overskudd"

Transkript

1 ~/sa23/eori/bonus8.ex TN STAT 23 V28 Inrodukson il bonus og overskudd Bankinnskudd Ana a vi ønsker å see e viss beløp y i banken ved id = for å ha y n ved id = n. Med en reneinensie δ må vi see inn y = yne δ n ved id =. Vår bankinnskudd vil med denne reneinensieen uvikle seg eer dy d = δ y, og blir som funkson av iden y = y e δ = y ne δ n e δ = y ne δ (n ) La oss nå ana a vi får en høyere reneinensie δ, δ > δ, enn de som vi forusae da vi beregne y. Med den nye reneinensieen vil innesående uvikle seg eer dy = δy d, og vi vil ha y = y e δ og dermed y y = y (e δ e δ ) > En annen måe er se den nye siuasonen på er å enke oss a vi syrer uviklingen på konoen ved å appe den for e beløp c d i idsinervalle (, +d) på en slik måe a konoen uvikler seg som y selv om reneinensieen er δ. Sammenlikner vi så de o likningene ser vi a dy d dy d = δ y c = δ y, c = (δ δ ) y Hva vi gør med overskudde kan være så ymse. Vi kan spise de opp (fr. olkningene i oppgavene 3.4 og 3.6), eller vi kan see de il forrenning på en annen kono som også har reneinensie δ. esående akkumuler på denne konoen ved id blir S = e δ( τ) c τ dτ = e δ( τ) (δ δ ) y e δ τ dτ = y (e δ e δ ) = y y Vi har splie formuen opp i o deler: de vi rodde den skulle bli da vi regne med vår grunnlag opprinnelige grunnlag δ, y, pluss de overskyende som vi hele iden har sa på en egen kono S. Vi ser a y = y + S. Denne fremgangsmåen er basis for begrepene overskudd og bonus i Livsforsikring. Vi må da a hensyn il mulighe for dødsfall. 1

2 Ren opplevelsesforsikring med engangspremie Vi anar a de egnes en n-års ren opplevelsesforsikring med engangspremie for (x). Thiele: δ d U V+d(1 µ x+ d) som gir dierensialikning med grenseingelser: d d = (δ + µ x+) V = S n E x V n = S. De ekniske grunnlage (δ, µ ) velges på den sikre side. De beyr a mes rolig vil erfaringsgrunnlage (δ, µ) være gunsigere for selskape. Vi ser a dersom δ > δ og µ x > µ, vil løsningen V av den ilsvarende Thiele-likningen dv = (δ + µ d x+ )V vokse hurigere enn V dersom de har samme sarverdi for =. Siden vi ikke renger å ha sørre reserve enn de som beregnes fra de ekniske grunnlage, beyr de a vi kan appe e viss overskudd c d i idsromme (, + d) og fremdeles få reserven i middel il å vokse som. Dee overskudde kalles sikkerhesbidrage. Dersom vi bruker erfaringsparamerene (δ, µ) og ar vekk overskudde, kan vi see opp, siden vi med c syrer de hele slik a reserven il ehver idspunk blir. U +d(1 µ x+ d) δ d c d apping av overskudde Dee gir dierensiallikningen: d d = (δ + µ x+ ) c Sammenlikne med likningen baser på de ekniske grunnlage gir dee: c = (δ δ + µ x+ µ x+) som viser a når δ > δ og µ x+ > µ x+, er c > slik a i samsvar med inuisonen er de overskudd. Dee gir penger ved idspunke. Vi kan så akkumulere/diskonere dem il de akuelle idspunke med erfaringsgrunnlage (δ, µ) slik a midlere akkumuler overskudd for hele porefølen ved vil være: S() = e δ( τ) τp x c τ dτ 2

3 Dødsrisikoforsikring Vi ser så på en dødsrisikoforsikring for (x) med ubealing av S ved død innen n år. Premie beales med konsan inensie π. Thiele: som gir dierensiallikningen U δ d Sµ x+ d π d +d(1 µ x+ d) d d = (δ + µ x+) + π Sµ x+ V = V n =. Regning med erfaringsgrunnlage (δ, µ) og sikkerhesbidrag c gir ilsvarende d d = (δ + µ x+ ) + π Sµ x+ c V = V n = og sammenlikning av disse gir c = (δ δ ) + (µ x+ µ x+)( S) som krever a dødsinensieen µ x+ i de ekniske grunnlage er sørre enn i erfaringsgrunnlage µ x+, på grunn av a V < S for en dødsrisikoforsikring, Dee er den mosae av relasonen mellom de o dødsinensieene il siuasonen for opplevelsesforsikringen i forrige avsni. Samenlikning disse eksemplene og Norberg 8.3.B. Vi har o ilsander levende() og død(1). V 1 =, µ 1 =, µ 1 = µ x+ V =, µ 1 =, µ 1 = µ x+ Opplevelsesforsikringen Her er b 1 = b 1 = som gir R 1 = b 1 + V 1 V = V R 1 = 3

4 slik a c () = (δ δ ) + R1(µ 1 µ 1 ) (8.9) = (δ δ + µ 1 µ 1) V c 1 () = Dødsrisikoforsikringen Her er b 1 = S mens b 1 = som gir slik a her er R 1 = b 1 + V 1 V = S V R 1 = c () = (δ δ ) V + (µ µ ) (S V ()) c 1 () = Vi har alså i begge eksemplene idenikasonen c = c () og vi har S() = = e δ( τ) p (, τ) c (τ) dτ e δ( τ) p x (, τ) c (τ) dτ (8.1) Generel går hel analog: V () δ V d U ( + d)(1 µ. d) k k µ k d b d b < beyr premie b k µ k d k som gir Thieles dierensiallikning for de ekniske grunnlage: d d = (δ + µ ) (b k + Vk )µ k b k 4

5 For erfaringsgrunnlage blir de hel analog når vi ar med sikkerhesbidrage fra ilsand : d d = (δ + µ ) (b k + Vk )µ k b c k Sammenlikning av disse gir c = (δ δ ) + (b k + Vk V )(µ k µ k ) k = (δ δ ) + k R k(µ k µ k ) som er likning (8.9). Med vår heurisiske måe skriver vi sraks opp urykk for porefølens midlere akkumulere overskudd ved id dvs likning (8.1) og de ilsvarende på dierensiell form. S = e δ( τ) c (τ) p, (τ) dτ ds = S δ d + c () d p, () Leddene i de sise urykke genkenner vi som rene på de midlere akkumulere overskudd i (, + d) og midlere ny bidrag il overskudd fra de samme idsinervalle. Dividender og bonus På grunn av a premier beregnes med eknisk grunnlag, vil vi med sor sannsynlighe ha overskudd. I følge loven ilhører dee kunden og skal ilbakebeales i sin helhe. Dee beløpe, som skal ilbakebeales, kalles dividende. De sår ikke i konraken. De avhenger hel hva erfarings grunnlage blir. De kan ikke besemmes ved id =. De er sor grad av vilkårlighe angående behandling av dividenden, dvs når den skal godskrives kunden. Den skal hele iden akkumuleres eer erfaringsgrunnlages rene. Dersom den er godskreve kunden, er den ikke ilgengelig for selskape i fall de skulle bli dårlig forrening en gang i fremiden. De o enklese skemaene for føring av dividende er conribuion scheme dvs. sikkerhesbidrage godskrives som dividende sraks de kommer inn, og erminal dividend dvs. al kredieres kunden førs ved konrakens opphør. Bonus er de akuelle ubealingene av dividenden. Her er de da også mange muligheer med yerpunkene cash bonus dvs. alloker dividende beales u sraks og erminal bonus en vener il konrakens opphør. 5

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

SNF-rapport nr. 21/04

SNF-rapport nr. 21/04 SNF-rappor nr. /04 PRISIN V FORSIKRINSKONRKER MED RENERNI av Roger F. Peersen Eirik M. Samnøy SNF-Prosjek nr. 7000 SMFUNNS- O NÆRINSLIVSFORSKNIN S Bergen, November 004 Dee eksemplar er fremsil eer avale

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

Obligatorisk oppgave ECON 1310 høsten 2014

Obligatorisk oppgave ECON 1310 høsten 2014 Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige

Detaljer

Løsningsforslag for regneøving 3

Løsningsforslag for regneøving 3 Ulever: 3.mars 7 Løsningsforslag for regneøving 3 Oppgave : a Se opp ligning for spenningen over som funksjon av id, for. R v + - Kres Løsning: Beraker kresen førs: I iden før null vil spenningen over

Detaljer

Levetid og restverdi i samfunnsøkonomisk analyse

Levetid og restverdi i samfunnsøkonomisk analyse Visa Analyse AS Rappor 35/11 Leveid og resverdi i samfunnsøkonomisk analyse Haakon Vennemo Visa Analyse 5. januar 2012 Dokumendealjer Visa Analyse AS Rapporiel Rappor nummer xxxx/xx Leveid og resverdi

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 . Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er

Detaljer

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24 Oppgave. Vis hvordan vi finner likeveksløsningen for Y. Hin: Se forelesningsnoa 4 Økonomisk akivie på kor sik, side 23-24 2. Gi en begrunnelse for hvorfor de er rimelig å ana a eksporen er eksogen i denne

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 12 1 %UXN DY UHDNVMRQVWUXVWHUH Reaksjonsrusere benyes ved banekorreksjoner, for dumping av spinn og il akiv regulering

Detaljer

Løsningsforslag øving 6, ST1301

Løsningsforslag øving 6, ST1301 Løsningsforslag øving 6, ST1301 Oppgave 1 Løse Euler-Loka ligningen ved ruk av Newon's meode. Ana a vi har en organisme med maksimal alder lik n år. Vi ser kun på hunnene i populasjonen. La m i være anall

Detaljer

Bankers utlånspolitikk over konjunkturene

Bankers utlånspolitikk over konjunkturene Bankers ulånspoliikk over konjunkurene en analyse av opimalie fra e foreaksøkonomisk synspunk av irik Fjellså Hærem Maseroppgave Maseroppgaven er lever for å fullføre graden Maser i samfunnsøkonomi (Profesjonssudium

Detaljer

Skjulte Markov Modeller

Skjulte Markov Modeller CpG øy Skjule Markov Modeller år CG er eer hverandre i en DA sekvens vil C ofe muere il T ved meylase. (kalles ofe CpG for å ikke forveksles med pare C-G i o DA råder). CpG dinukleoiden forekommer mye

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

MAT1030 Forelesning 26

MAT1030 Forelesning 26 MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon

Detaljer

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser.

Ved opp -og utladning av kondensatorer varierer strøm og spenning. Det er vanlig å bruke små bokstaver for å angi øyeblikksverdier av størrelser. 4.4 INNE- OG TKOPLING AV EN KONDENSATO 1 4.4 INN- OG TKOPLING AV EN KONDENSATO Ved opp -og uladning av kondensaorer varierer srøm og spenning. De er vanlig å bruke små boksaver for å angi øyeblikksverdier

Detaljer

Eksempel på beregning av satser for tilskudd til driftskostnader etter 4

Eksempel på beregning av satser for tilskudd til driftskostnader etter 4 Regneeksempel - ilskudd il privae barnehager 2013 Eksempel på beregning av ilskuddssaser. ARTIKKEL SIST ENDRET: 08.04.2014 Eksempel på beregning av saser for ilskudd il drifskosnader eer 4 Kommunens budsjeere

Detaljer

Sensorveiledning ECON2200 Våren 2014

Sensorveiledning ECON2200 Våren 2014 Oppgave a) Sensorveiledning ECON00 Våren 04 f( ) + ln f ( ) 6 b) ( ) ( ) f( ) + f ( ) + + + De er ikke krav om å forenkle il en besem form, alle svar er ree. c) f( ) ln g ( ) g ( ) f ( ) g ( ) d) e) f)

Detaljer

(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t

(x 0,y 0,0) α. Oppgave 3. Ved tiden t har vi følgende situasjon: α = ω1t β = ω2t Oppgave 3 Ve ien har vi følgene siuasjon: oer vinkel om aksen parallell me -aksen: oer vinkel om aksen l: β l,, Punkes koorinaer ve ien kan besemmes ve hjelp av følgene serie av basisransformasjoner. ransformasjonene

Detaljer

CDO-er: Nye muligheter for å investere i kredittmarkedet

CDO-er: Nye muligheter for å investere i kredittmarkedet CDO-er: Nye muligheer for å invesere i kredimarkede Keil Johan Rakkesad og Sindre Weme rådgiver og spesialrådgiver i Finansmarkedsavdelingen i Norges Bank 1 Omseelige insrumener for overføring av og handel

Detaljer

System 2000 HLK-Relais-Einsatz Bruksanvisning

System 2000 HLK-Relais-Einsatz Bruksanvisning Sysem 2000 HLK-Relais-Einsaz Sysem 2000 HLK-Relais-Einsaz Ar. Nr.: 0303 00 Innholdsforegnelse 1. rmasjon om farer 2 2. Funksjonsprinsipp 2 3. onasje 3 4. Elekrisk ilkopling 3 4.1 Korsluningsvern 3 4.2

Detaljer

Harald Bjørnestad: Variasjonsregning en enkel innføring.

Harald Bjørnestad: Variasjonsregning en enkel innføring. Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens

Detaljer

Løsningsforslag eksamen TFY des 2013

Løsningsforslag eksamen TFY des 2013 Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske

Detaljer

Påvirker flytting boligprisene?

Påvirker flytting boligprisene? Påvirker flying boligprisene? Trond-Arne Borgersen Jørund Greibrokk Dag Einar Sommervoll Høgskolen i Øsfold Arbeidsrappor 2008:3 Online-versjon (pdf) Ugivelsessed: Halden De må ikke kopieres fra rapporen

Detaljer

Et samarbeid mellom kollektivtrafikkforeningen og NHO Transport. Indeksveileder 2014. Indeksregulering av busskontrakter. Indeksgruppe 05.08.

Et samarbeid mellom kollektivtrafikkforeningen og NHO Transport. Indeksveileder 2014. Indeksregulering av busskontrakter. Indeksgruppe 05.08. E samarbeid mellom kollekivrafikkforeningen og NHO Transpor Indeksveileder 2014 Indeksregulering av busskonraker Indeksgruppe 05.08.2015 Innhold 1. Innledning...2 1.1 Bakgrunn...2 2 Anbefal reguleringsmodell

Detaljer

Vedlegg 1. Utledning av utbyttebrøken Eksempler på egenkapitaltransaksjoner med utbyttebrøk Tilbakeholdelse av overskudd

Vedlegg 1. Utledning av utbyttebrøken Eksempler på egenkapitaltransaksjoner med utbyttebrøk Tilbakeholdelse av overskudd Vedlegg. ledning av ubyebrøken...2 2. Eksempler på egenkapialransaksjoner med ubyebrøk...5 2. Tilbakeholdelse av overskudd...7 2.2 Emisjon...2 2.3 Erverv av egne grunnfondsbevis...6 2.4 Donasjon il grunnfonde

Detaljer

BNkreditt AS. Årsrapport 2011

BNkreditt AS. Årsrapport 2011 BNkredi AS Årsrappor 2011 Innhold Nøkkelall...3 Syres berening...4 Resularegnskap... 10 Balanse pr. 31.12... 11 Endring i egenkapial i 2010 og 2011... 12 Konansrømoppsilling... 13 Noer... 14 Noe 1. Regnskapsprinsipper

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig konak under eksamen: Jon Andreas Søvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK

Detaljer

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller

Betydning av feilspesifisert underliggende hasard for estimering av regresjonskoeffisienter og avhengighet i frailty-modeller Beydning av feilspesifiser underliggende hasard for esimering av regresjonskoeffisiener og avhengighe i fraily-modeller Bjørnar Tumanjan Morensen Maser i fysikk og maemaikk Oppgaven lever: Mai 2007 Hovedveileder:

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på

Detaljer

Løsningsforslag. Fag 6027 VVS-teknikk. Oppgave 1 (10%) Oppgave 2 (15%)

Løsningsforslag. Fag 6027 VVS-teknikk. Oppgave 1 (10%) Oppgave 2 (15%) Fag 67 VVS-eknikk Eksamen 8. mai 998 Løsningsforslag Oppgave (%) (NR = Normalreglemene, ekniske besemmelser,.ugave, 99) Nødvendig akareal som skal dreneres pr. aksluk faslegges, ofe avhengig av akes fallforhold.

Detaljer

Øving 1: Bevegelse. Vektorer. Enheter.

Øving 1: Bevegelse. Vektorer. Enheter. Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar

Detaljer

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,

Detaljer

Rundskriv EØ 1/2011 - Om beregning av inntektsrammer og kostnadsnorm i vedtak om inntektsramme for 2010

Rundskriv EØ 1/2011 - Om beregning av inntektsrammer og kostnadsnorm i vedtak om inntektsramme for 2010 Noa Til: Fra: Ansvarlig: Omseningskonsesjonærer med inneksramme NVE - Seksjon for økonomisk regulering Tore Langse Dao: 1.2.2011 Vår ref.: NVE Arkiv: 200904925 Kopi: Rundskriv EØ 1/2011 - Om beregning

Detaljer

RAPPORT. Kalkulasjonsrenten 2012/44. Michael Hoel og Steinar Strøm

RAPPORT. Kalkulasjonsrenten 2012/44. Michael Hoel og Steinar Strøm RAPPORT 01/44 Kalkulasjonsrenen Michael Hoel og Seinar Srøm Dokumendealjer Visa Analyse AS Rappornummer 01/44 Rapporiel Kalkulasjonsrenen ISBN 978-8-816-093-1 Forfaer Michael Hoel og Seinar Srøm Dao for

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Eksamensoppgave høsten 2011

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Eksamensoppgave høsten 2011 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Eksamensoppgave høsen 2 Ved sensuren illegges alle oppgavene lik vek For å beså eksamen, må besvarelsen i hver fall: gi mins re rikige svar

Detaljer

Løsningsforslag øving 9 Betongkonstruksjoner 2-2010

Løsningsforslag øving 9 Betongkonstruksjoner 2-2010 Norges eknisk- Naurvienskaplige universie Insiu for konsruksjonseknikk side 1 Løsningsforslag øving 9 Beongkonsruksjoner - 010 Deformasjonsberegning av hulldekkelemen i messanineasje L = 1,0 10,0 mm m

Detaljer

Newtons lover i to og tre dimensjoner 09.02.2015

Newtons lover i to og tre dimensjoner 09.02.2015 Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars

Detaljer

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management

og ledelse av forsyningskjeder Kapittel 4 Del A - Prognoser SCM200 Innføring i Supply Chain Management Logisikk og ledelse av forsyningskjeder Kapiel 4 Del A - Prognoser M200 Innføring i Suin Man Rasmus Rasmussen PREDIKSJON En prediksjon (forecas forecas) er en prognose over hva som vil skje i framiden.

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Dato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008

Dato: 15.september Seksjonssjef studier og etter utdanning Arkivnr 375/2008 S TYRES AK Syremøe 07 23.sepember Syresak 53/2008 MÅLTALL framidig uvikling av sudenall og sudieprogrammer KONTAKTINFORMASJON POSTBOKS 6853, ST. OLAVS PLASS NO-0130 OSLO TLF: (+47) 22 99 55 00 FAKS: (+47)

Detaljer

Funksjonslære Derivasjon Matematikk 2

Funksjonslære Derivasjon Matematikk 2 Funksjonslære Derivasjon Maemaikk 2 Avdeling for lærerudanning, Høgskolen i Vesfold 19 mars 2009 1 Innledning La f(x) være en funksjon, alså, en sørrelse som er avhengig av x De kan ofe være hensiksmessig

Detaljer

Kredittilbudseffekter i boligettespørselen

Kredittilbudseffekter i boligettespørselen Krediilbudseffeker i boligeespørselen Trond Arne orgersen Karl Robersen Høgskolen i Øsfold Arbeidsrappor 2007:6 Online-versjon (pdf) Ugivelsessed: Halden De må ikke kopieres fra rapporen i srid med åndsverkloven

Detaljer

Working Paper 1996:3. Kortere arbeidstid og miljøproblemer - noen regneeksempler for å illustrere mulige kortsiktige og langsiktige sammenhenger

Working Paper 1996:3. Kortere arbeidstid og miljøproblemer - noen regneeksempler for å illustrere mulige kortsiktige og langsiktige sammenhenger Working Paper 1996:3 Korere arbeidsid og miljøproblemer - noen regneeksempler for å illusrere mulige korsikige og langsikige sammenhenger av Bjar Holsmark Sepember 1996 ISSN: 84-452X 1 2 sammendrag De

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

SNF-arbeidsnotat nr. 06/11. Verdsetting av langsiktige infrastrukturprosjekter. Kåre P. Hagen

SNF-arbeidsnotat nr. 06/11. Verdsetting av langsiktige infrastrukturprosjekter. Kåre P. Hagen SNF-arbeidsnoa nr. 06/11 Verdseing av langsikige infrasrukurprosjeker av Kåre P. Hagen SNF Prosjek nr. 2437 Prinsipiell vurdering av mernye av sore infrasrukurilak Prosjeke er finansier av Kysverke SAMFUNNS-

Detaljer

INF april 2017

INF april 2017 IN 310 19. april 017 Segmenering ved erskling Global erskling Kap 10.3 Generelle hisogramfordelinger og klassifikasjonsfeil To populære ersklingsalgorimer ruken av kaner, og effeken av søy og glaing Lokal

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011. c) Hva er kritisk verdi for testen dersom vi hadde valgt et signifikansnivå på 10%?

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011. c) Hva er kritisk verdi for testen dersom vi hadde valgt et signifikansnivå på 10%? Forelesning 4 og 5 MET59 Økonomeri ved David Kreiberg Vår 011 Diverse oppgaver Oppgave 1. Ana modellen: Y β + β X + β X + β X + u i 1 i i 4 4 i i Du esimerer modellen og oppnår følgende resulaer ( n 6

Detaljer

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,

Detaljer

Om muligheten for å predikere norsk inflasjon ved hjelp av ARIMA-modeller

Om muligheten for å predikere norsk inflasjon ved hjelp av ARIMA-modeller Om muligheen for å predikere norsk inflasjon ved hjelp av ARIMA-modeller av Kjell-Arild Rein Hovedfagsoppgave i samfunnsøkonomi Våren Insiu for økonomi Universiee i Bergen . INNLEDNING.. LITTERATUR 3.

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

Produksjonsgapet i Norge en sammenlikning av beregningsmetoder

Produksjonsgapet i Norge en sammenlikning av beregningsmetoder Produksjonsgape i Norge en sammenlikning av beregningsmeoder Hilde C. Bjørnland, posdokor ved Økonomisk Insiu, Universiee i Oslo, Leif Brubakk og Anne Sofie Jore, seniorrådgivere i Økonomisk avdeling,

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Pengemengdevekst og inflasjon

Pengemengdevekst og inflasjon Pengemengdeveks og inflasjon - en empirisk analyse og eoreiske berakninger Hovedfagsoppgave i samfunnsøkonomi av Sian Brundland Berge Insiu for økonomi Universiee i Bergen Våren 2004 KAPITTEL 1 INNLEDNING...

Detaljer

Prising av Kraftderivater SIS 1101

Prising av Kraftderivater SIS 1101 Prising av Krafderivaer SIS 1101 I Prising av Krafderivaer SIS 1101 Forord Denne prosekoppgaven er uarbeide av o sudener fra Insiu for indusriell økonomi og eknologiledelse høssemesere år 001. Rapporen

Detaljer

OPPSUMMERING FORELESNINGER UKE 35

OPPSUMMERING FORELESNINGER UKE 35 OPPSUMMERIG FORELESIGER UKE 35 Kromaografis separasjon bygger på soffers (lieves-)fordeling mellom en sasjonær fase og en mobil fase. Reensjonen besemmes primær av: Mobilfasens egensaper, sasjonærfasens

Detaljer

Dokumentasjon av en ny relasjon for rammelånsrenten i KVARTS og MODAG

Dokumentasjon av en ny relasjon for rammelånsrenten i KVARTS og MODAG Noaer Documens 65/2012 Håvard Hungnes Dokumenasjon av en ny relasjon for rammelånsrenen i KVARTS og MODAG Noaer 65/2012 Håvard Hungnes Dokumenasjon av en ny relasjon for rammelånsrenen i KVARTS og MODAG

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboraorieøvelse i FY3-Elekrisie og magneisme år 7 Fysisk Insiu, NTNU Enkle kreser med kapasians og spole- bruk av daalogging. Laboraorieoppgaver Oppgave -Spenning i kres a: Mål inngangsspenningen og spenningsfalle

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Fakor - en eksamensavis ugi av ECONnec Pensumsammendrag: FIN3005 Makrofinans Forfaer: Marin Frøland E-pos: marinom@sud.nnu.no Skreve: Høsen 009 Anall sider: 41 FIN3005 - Pensumsammendrag Om ECONnec: ECONnec

Detaljer

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1.

2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1. Beegelse Side - Beegelse Vi skal nå a for oss beegelse Vi skal definere de grunnleggende begrepene posisjon, hasighe (og far), og akselerasjon Dee er begrep som du benyer il daglig, men i må presisere

Detaljer

Infoskriv ETØ-1/2016 Om beregning av inntektsrammer og kostnadsnorm for 2015

Infoskriv ETØ-1/2016 Om beregning av inntektsrammer og kostnadsnorm for 2015 Infoskriv Til: Fra: Ansvarlig: Omseningskonsesjonærer med inneksramme Seksjon for økonomisk regulering Tore Langse Dao: 1.2.2016 Vår ref.: 201403906 Arkiv: Kopi: Infoskriv ETØ-1/2016 Om beregning av inneksrammer

Detaljer

Vedteke forprosjekt i Hallingdal

Vedteke forprosjekt i Hallingdal Vedeke forprosjek i Hallingdal Hallingdal lokalmedisinske sener Samhandlingsreformen uvikling og organisering i Hallingdal Prosjekplan Flå, Nes, Gol, Hemsedal, Ål og Hol kommune Ringerike sykehus, Vesre

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 )

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 ) UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320/INF4320 Meoder i grask daabehandling og diskre geomeri Eksamensdag: 7. desember 2007 Tid for eksamen: 14:30 17:30 Oppgavesee

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon

Detaljer

Infoskriv ETØ-4/2015 Om beregning av inntektsrammer og kostnadsnorm for 2016

Infoskriv ETØ-4/2015 Om beregning av inntektsrammer og kostnadsnorm for 2016 Infoskriv Til: Fra: Ansvarlig: Omseningskonsesjonærer med inneksramme Seksjon for økonomisk regulering Tore Langse Dao: 4.12.2015 Vår ref.: NVE 201500380-10 Arkiv: Kopi: Infoskriv ETØ-4/2015 Om beregning

Detaljer

Hovedtema: Virkninger av offentlige inngrep (S & W kapittel 5 og 10 i 3. utgave og kapittel 4 og 10 i 4. utgave)

Hovedtema: Virkninger av offentlige inngrep (S & W kapittel 5 og 10 i 3. utgave og kapittel 4 og 10 i 4. utgave) Økonomisk Insiu, okober 2006 Rober G. Hansen, rom 207 Osummering av forelesningen 06.0 Hovedema: Virkninger av offenlige inngre (S & W kaiel 5 og 0 i 3. ugave og kaiel 4 og 0 i 4. ugave) Virkninger av

Detaljer

SÅ ENKEL OG HENDIG Å BRUKE

SÅ ENKEL OG HENDIG Å BRUKE YTELSE OG UTVIKLING 50 ÅRS ERFARING Trovac Indusries ble grunnlag i 1960, og er kjen for sin høye kvalie, høye yelser og lave søynivå, i e elegan burgunder design. Cyclo Vac er i dag en av verdens sørse

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside

Detaljer

Oppgaveverksted 3, ECON 1310, h14

Oppgaveverksted 3, ECON 1310, h14 Oppgaveverksed 3, ECON 30, h4 Oppgave I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men de er ikke men a du skal bruke id på å forklare modellen uover de som blir spur

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Insiu for fysikk Eksamensoppgave i TFY49 Insrumenering Faglig konak under eksamen: Seinar Raaen Tlf.: 482 96 758 Eksamensdao: 6. mai 27 Eksamensid (fra-il): 9: 3: Hjelpemiddelkode/Tillae hjelpemidler:

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

Eksamen i STK4060/STK9060 Tidsrekker, våren 2006

Eksamen i STK4060/STK9060 Tidsrekker, våren 2006 Eksamen i STK4060/STK9060 Tidsrekker, våren 2006 Besvarelsen av oppgavene nedenfor vil ugjøre de vesenlige grunnlage for karakergivningen, og ugangspunke for den munlige eksaminasjonen. De er meningen

Detaljer

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06

Løsningsforslag til obligatorisk øvelsesoppgave i ECON 1210 høsten 06 Løsningsforslag il obligaorisk øvelsesoppgave i ECON 0 høsen 06 Oppgave (vek 50%) (a) Definisjon komparaive forrinn: Den ene yrkesgruppen produserer e gode relaiv mer effekiv enn den andre yrkesgruppen.

Detaljer

Kromatografisk separasjon bygger på stoffers likevektsfordeling mellom en stasjonær fase og en mobil fase. A MP A SP. Likevektskoeffisienten er:

Kromatografisk separasjon bygger på stoffers likevektsfordeling mellom en stasjonær fase og en mobil fase. A MP A SP. Likevektskoeffisienten er: OPPSUEING FOELESNINGE UKE 35 Kromaografisk separasjon bygger på soffers likeveksfordeling mellom en sasjonær fase og en mobil fase. A P Likevekskoeffisienen er: A SP K = [ A] [ ] SP A Likeveksfordelingen

Detaljer

Realkostnadsvekst i Forsvaret betydningen av innsatsfaktorenes substitusjonsmulighet

Realkostnadsvekst i Forsvaret betydningen av innsatsfaktorenes substitusjonsmulighet FFI-rappor 2011/02404 Realkosnadsveks i Forsvare beydningen av innsasfakorenes subsiusjonsmulighe Seinar Gulichsen og Karl R. Pedersen (SNF) Forsvares forskningsinsiu (FFI) 1. mars 2012 FFI-rappor 2011/02404

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer

Detaljer

SNF-rapport nr. 12/05. Identifisering av realopsjonselementer innen UMTS markedet og irreversible investeringer under asymmetrisk duopol

SNF-rapport nr. 12/05. Identifisering av realopsjonselementer innen UMTS markedet og irreversible investeringer under asymmetrisk duopol Idenifisering av realopsjonselemener innen UMTS markede og irreversible inveseringer under asymmerisk duopol av Tor Olav Gabrielsen Eivind Thorseinsen SN-prosjek nr. 730 Verdseing med realopsjoner POGAMOMÅDET

Detaljer

En sammenligning av økonomiske teorier for regional vekst

En sammenligning av økonomiske teorier for regional vekst En sammenligning av økonomiske eorier for regional veks av Grehe Lunde Masergradsoppgave i samfunnsøkonomi 30 sudiepoeng Insiu for økonomi Norges fiskerihøgskole Universiee i Tromsø Mai 2008 I Forord Arbeide

Detaljer

Subsidier til klimavennlige teknologier.

Subsidier til klimavennlige teknologier. Subsidier il klimavennlige eknologier. En sudie av opimale yper og baner. Beae Ellingsen Maseroppgave i samfunnsøkonomi Økonomisk insiu UNIVERSITETET I OSLO 04.05.2009 I Forord Denne oppgaven er skreve

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK45 Livsforsikring og nans. Eksamensdag: Mandag 8. juni 215 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

SAKSFRAMLEGG. Saksbehandler: Anne Marie Lobben Arkiv: 040 H40 Arkivsaksnr.: 12/422

SAKSFRAMLEGG. Saksbehandler: Anne Marie Lobben Arkiv: 040 H40 Arkivsaksnr.: 12/422 SAKSFRAMLEGG Saksbehandler: Anne Marie Lobben Arkiv: 040 H40 Arkivsaksnr.: 12/422 OMSORGSBOLIGER I PRESTFOSS Rådmannens forslag il vedak: Budsjerammen il prosjek 030030 Omsorgsboliger i Presfoss økes.

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13

Detaljer

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1

1 Trigonometriske Funksjoner Vekt: 1. 2 Trigonometriske Funksjoner Vekt: 1 OPPGAVER TIL FORELESNINGSUKE NUMMER Ukeoppgavene skal leveres som selvsendige arbeider. De forvenes a alle har sa seg inn i insiues krav il innlevere oppgaver: Norsk versjon: hp://www.ifi.uio.no/sudinf/skjemaer/erklaring.pdf

Detaljer

Distriktsrådsmøte nr 2/10-11

Distriktsrådsmøte nr 2/10-11 1 klc Ledermøe - Roarydisrik 2260 Disriksrådsmøe nr 2/10-11 18.11.2010 kl 1700-21.00 Sed: Ignarbakke, Enebakk Innkal av: DG J. Mjerskaug Ordsyrer: DG J. Mjerskaug Delakere: Forfall: Referen: Jan Eddie

Detaljer

Konsekvenser ved utsettelse av klimatiltak

Konsekvenser ved utsettelse av klimatiltak Konsekvenser ved useelse av klimailak av Cecilie Skjellevik Maseroppgave Maseroppgaven er lever for å fullføre graden Maser i samfunnsøkonomi Universiee i Bergen, Insiu for økonomi Juni 2008 0BForord Forord

Detaljer

Faktorer bak bankenes problemlån

Faktorer bak bankenes problemlån Fakorer bak bankenes problemlån Tor Oddvar Berge, seniorrådgiver, og Karine Godding Boye, konsulen, begge i Finansmarkedsavdelingen i Norges Bank 1 I denne analysen ser vi på hvilke makroøkonomiske fakorer

Detaljer

Rundskriv 1/ Om beregning av inntektsrammer og kostnadsnorm til vedtak om inntektsramme 2011

Rundskriv 1/ Om beregning av inntektsrammer og kostnadsnorm til vedtak om inntektsramme 2011 Rundskriv 1/2012 bokmål Til: Omseningskonsesjonærer med inneksramme Fra: Seksjon for økonomisk regulering Ansvarlig: Tore Langse Dao: 1.2.2012 Saksnr.: NVE 201004797-13 Arkiv: Kopi: Middelhuns gae 29 Posboks

Detaljer

Boligprisvekst og markedsstruktur i Danmark og Norge

Boligprisvekst og markedsstruktur i Danmark og Norge NORGES HANDELSHØYSKOLE Bergen, våren 2007 Boligprisveks og markedssrukur i Danmark og Norge Philip Harreschou og Sig Økland Veiledere: Frode Seen og Guorm Schjelderup Maseruredning ved foreaks- og samfunnsøkonomisk

Detaljer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer Iveseriger og ska Løsomhe av fiasiveseriger før og eer ska Løsomhe av realiveseriger eer ska Avhedelse (salg) av aleggsmidler Egekapialavkasig eer ska Joh-Erik Adreasse 1 Høgskole i Øsfold Skaesaser med

Detaljer

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning H Ø G S K O L E N I B E R G E N Avdeling for lærerudanning Eksamensoppgave Ny/usa eksamen høs 004 Eksamensdao: 07--004 Fag: NAT0-FY Naur og miljøfag 60sp. ALN modul fysikk 5 sp. Klasse/gruppe: UTS/NY/ALN

Detaljer

Klimaendringer gir lavere elektrisitetspriser og høyere forbruk i Norden Karina Gabrielsen og Torstein Bye

Klimaendringer gir lavere elektrisitetspriser og høyere forbruk i Norden Karina Gabrielsen og Torstein Bye Økonomiske analyser 3/2005 Klimaendringer gir lavere elekrisiespriser og høyere forbruk Klimaendringer gir lavere elekrisiespriser og høyere forbruk i Norden Karina Gabrielsen og Torsein Bye Bruk av fossil

Detaljer

Prospekt. ETN ("Exchange Traded Notes") med Marine Harvest ASA, Brent og Gull. som underliggende

Prospekt. ETN (Exchange Traded Notes) med Marine Harvest ASA, Brent og Gull. som underliggende Prospek for ETN ("Exchange Traded Noes") med Marine Harves ASA, Bren og Gull som underliggende ugjør sammen med Grunnprospek for DNB Bank ASA daer 27. mai 2015 og Tillegg nr 1 il Grunnprospeke av 25. juni

Detaljer

SNF-RAPPORT NR. 24/02. Strukturfond, strukturavgift og verdsetting av fartøy. Torbjørn Lorentzen Stein Ivar Steinshamn

SNF-RAPPORT NR. 24/02. Strukturfond, strukturavgift og verdsetting av fartøy. Torbjørn Lorentzen Stein Ivar Steinshamn SNF-RAPPORT NR. 24/2 Srukurfond, srukuravgif og verdseing av farøy av Torbjørn Lorenzen Sein Ivar Seinshamn SNF prosjek nr. 5638: Uredning av srukuravgif for fiskeflåen Prosjeke er finansier av Fiskerideparemene

Detaljer

ARBEIDSGIVERPOLITISK PLATTFORM ÅS KOMMUNE

ARBEIDSGIVERPOLITISK PLATTFORM ÅS KOMMUNE RBEIDSGIVERPOLITISK PLTTFORM ÅS KOMMUNE MÅL, VERDIER OG STSNINGSOMRÅDER I ÅS KOMMUNES RBEIDSGIVERPOLITIKK 200 3 200 6 Dok ID Side av dminisrer av Godkjen av Dao Versjon 1 13 Brynhild Hovde Kommunesyre

Detaljer