1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på?

Størrelse: px
Begynne med side:

Download "1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på?"

Transkript

1 Prøve i kryptografi Navn: Karakter: Poeng: /30 Lykke til! Hjelpemidler: Viskelær og skrivesaker Teknologi i praksis, fre. 23. september Del 1 Flervalgsoppgaver Sett ring rundt alternativ A, B, C eller D. Hvis du satte ring rundt feil alternativ, sett kryss over det gale svaret, og sett ring rundt det andre alternativet. Poengsystem for del 1: Riktig svar gir 2 poeng. Ingen svar/galt svar gir 0 poeng. 1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på? A. Speile om bokstavene B. Erstatte bokstaver med andre bokstaver i alfabetet med definert avstand C. Finne kursiverte bokstaver i en tekst og sette dem sammen til en bokstavrekke D. Alle de ovennevnte 2. Hvilken av disse er eksempler på kryptografi? I PGP (Pretty Good Privacy) II TLS (Transport Layer Standard) III RSA A. Kun I B. Kun II C. Kun I og III D. I, II og III Teknologi i praksis / Prøve i kryptografi / / Side 1 av 6

2 3. Hva kan man finne med modulo? A. En algoritme som krypterer og dekrypterer B. Variabel til en funksjon C. Resten av et tall etter divisjon D. En utskiftbar funksjonalitet 4. Hvilken av disse moduloene er lik 3? A. 6 mod 5 B. -4 mod 7 C. 4 mod 7 D. -16 mod Hva er forskjellen mellom en chiffer (cipher) og en kode? (Hint: Forskjellen mellom A E og A ե) A. Chiffere er lagd for kryptering, koder er lagd for dekryptering B. Chiffere er skrevet i maskiner, koder er håndskrevne C. Chiffere kan «knekkes» gitt tilstrekkelig tid og regnekraft, koder kan aldri «knekkes» D. Chiffere må være basert på matematikk (algoritmer), koder kan være basert på hva som helst (kodeord) Teknologi i praksis / Prøve i kryptografi / / Side 2 av 6

3 Del 2 Blandet oppgavetype 6. Definer kryptografi. 7. Forklar forskjellen mellom kryptering og kryptografi. 8. Oversett denne binærkoden til vanlig tekst: t= , a= , o= , n= , y= , d= , p= , r= , f= , s= , h= , i= Husk mellomrom mellom ord. Teknologi i praksis / Prøve i kryptografi / / Side 3 av 6

4 9. Et skolenettverk kobles opp mot Internett. Foreslå to mulige sikkerhetstrusler som kan oppstå som følge av Internett-bruk. (Forklar også hvorfor disse truslene kan være farlige.) (maks 4 poeng) 10. En rekke nettjenester bruker totrinns-autentisering som et ekstra sikkerhetsnivå for innlogging. Hva er en engangsnøkkel (one-time password)? 11. RSA-kryptering er en av de mest utbredte av de moderne krypteringsteknikkene. (a) Hva er en trapdoor-funksjon (enveisfunksjon)? (b) Det er vanskelig å dekryptere en trapdoor-funksjon, med mindre man har... (c) Hvem oppfant phi-funksjonen? Teknologi i praksis / Prøve i kryptografi / / Side 4 av 6

5 (d) Hva er Φ( )? (Tallet er et primtall.) 12. Forklar kort hva frekvensanalyse er, og en måte man kan best kan unngå frekvensanalyse. (Hint: Cæsarchiffer) 13. Faktorisering av primtall er en god krypteringsmetode, men kan bli så vanskelig (les: tidkrevende) for andre å «knekke». Forklar hvorfor det er tidkrevende å finne primtallfaktorene i store tall. (maks 3 poeng) Teknologi i praksis / Prøve i kryptografi / / Side 5 av 6

6 Bonusspørsmål: Svarer du rett på alle de foregående spørsmålene + bonusspørsmålene, kan du få mer enn full pott! A. Manuel og Hào har akkurat blitt venner med William, og de vil gjerne vite når han har bursdag. William gir dem en liste med 10 mulige datoer: 15. mai 19. mai 20. mai 17. juni 18. juni 14. juli 20. juli 14. august 15. august 17. august Manuel får vite hvilken måned han har bursdag, mens Hào får vite hvilken dag. De begynner å snakke sammen. Manuel: «Jeg vet ikke når William har bursdag, men jeg vet at Hào heller ikke vet det.» Hào: «Først visste jeg ikke når William har bursdag, men det vet jeg nå.» Manuel: «Da vet jeg også når William har bursdag.» Når har William bursdag? Begrunnelse nødvendig for full pott. Skriv på baksiden av arket. (maks 10 poeng) B. Her er en liste med måneder og en kode for hver av dem: Januar: 6110 Februar: 726 Mars: 4313 April: 541 Mai: 3513 Juni: 4610 Juli: 4710 (a) Hva er koden for august? (b) Hva er mønsteret? (maks 4 poeng) Lever inn prøven når du er ferdig, eller når tiden er ute. Teknologi i praksis / Prøve i kryptografi / / Side 6 av 6

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006

Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006 i kryptering 9. Mars 2006 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

Kryptogra og elliptiske kurver

Kryptogra og elliptiske kurver Kryptogra og elliptiske kurver Eivind Eriksen Høgskolen i Oslo Gjesteforelesning, 7. november 2007 Eivind Eriksen (Høgskolen i Oslo) Kryptogra og elliptiske kurver 1 / 23 Plan: 1 Generelt om kryptogra

Detaljer

Elektroniske spor. Innsynsrett, anonymitet. Personvernutfordringer. Innsynsrett. Informasjonsplikt og innsynsrett

Elektroniske spor. Innsynsrett, anonymitet. Personvernutfordringer. Innsynsrett. Informasjonsplikt og innsynsrett Elektroniske spor Innsynsrett, anonymitet Kirsten Ribu Kilde: Identity Management Systems (IMS): Identification and Comparison Study Independent Centre for Privacy Protection and Studio Notarile Genghini

Detaljer

INF1040 Oppgavesett 14: Kryptering og steganografi

INF1040 Oppgavesett 14: Kryptering og steganografi INF1040 Oppgavesett 14: Kryptering og steganografi (Kapittel 19) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv - og Prøv selv - oppgavene. Fasitoppgaver 1. Krypter følgende strenger ved

Detaljer

Oppgaver til kapittel 19 - Kryptering og steganografi

Oppgaver til kapittel 19 - Kryptering og steganografi Oppgaver til kapittel 19 - Kryptering og steganografi Oppgave 1 - Cæsars kode (plenum) I symmetrisk kryptering brukes samme nøkkel både for å kryptere og dekryptere. Avhengig av hvordan nøkkelen utformes

Detaljer

Grafisk kryptografi (hemmelig koding av bilder)

Grafisk kryptografi (hemmelig koding av bilder) Grafisk kryptografi (hemmelig koding av bilder) Legg den løse platen nøyaktig den faste og se hva som skjer. Hvordan kan det brukes? Grete skal til Australia, og mens hun er der kan hun få behov for å

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

1. Krypteringsteknikker

1. Krypteringsteknikker Krypteringsteknikker Olav Skundberg Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget 1. Krypteringsteknikker 1.1. Fire formål med sikker kommunikasjon Aller først, pålitelig

Detaljer

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER Euklids algoritme Euklid s setning 1, divisjonslemmaet, fra Bok 7 Gitt to ulike tall. Det minste trekkes så fra det største så mange ganger dette

Detaljer

KODER I KLASSEROMMET

KODER I KLASSEROMMET KODER I KLASSEROMMET Kristian Ranestad 28.02.2001 Dette heftet er utarbeidet til klasseromsprosjektet ved Matematisk institutt, UiO. I dette prosjektet inngår det halvdags kurs for lærere i forskjellige

Detaljer

Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software)

Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software) 1 Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software) Mich ael Morten sen m ich aelm @ii.u ib.n o 10/ 10/ 05 INF329 Utviklin g av sikre ap p likasjon er 2 Elementær kryptografi

Detaljer

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

Teknologien: Fra digitale signaturer til offentlig-nøkkel infrastruktur

Teknologien: Fra digitale signaturer til offentlig-nøkkel infrastruktur Teknologien: Fra digitale signaturer til offentlig-nøkkel infrastruktur Jon Ølnes (NR) Jon.Olnes@nr.no Seminar om elektronisk kommunikasjon med digitale signaturer Statskonsult, 4/4 2000 Innhold Hva kan

Detaljer

Hemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon

Hemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon Hemmelige koder Nybegynner Python Introduksjon Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder! Kodeklubb-koden Et chiffer er et system for å gjøre om vanlig tekst

Detaljer

Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196)

Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196) Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196) Sammendrag Oppgaven går ut på å implementere RSA-krypteringen. Deloppgaver for denne krypteringen er å implementere

Detaljer

Teori om sikkerhetsteknologier

Teori om sikkerhetsteknologier Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Tomas Holt 22.8.2007 Lærestoffet er utviklet for faget LN479D/LV473D Nettverksikkerhet Innhold 1 1 1.1 Introduksjon til faget............................

Detaljer

Sikkerhet i GSM mobilteleforsystem

Sikkerhet i GSM mobilteleforsystem Sikkerhet i GSM mobilteleforsystem Sikkerhet i GSM mobilteleforsystem... 1 En enkel krypteringsmetode... 1 Oversikt over GSM... 2 Autentisering av telefon og SIM-kort... 3 IMEI og sjekksum... 3 IMSI og

Detaljer

GigaCampus Mobilitetskurs Del 2. Sesjon 4. Torsdag 20.04.2006 Jardar.Leira@uninett.no

GigaCampus Mobilitetskurs Del 2. Sesjon 4. Torsdag 20.04.2006 Jardar.Leira@uninett.no GigaCampus Mobilitetskurs Del 2 Sesjon 4 Torsdag 20.04.2006 Jardar.Leira@uninett.no IEEE 802.1X En relativt gammel standard (godkjent 14. juni 2001) Definerer en standard for portbasert nettverks aksesskontroll

Detaljer

Prosesslogg Hvordan klassen kom frem til problemstillingen November 2005 Desember 2005 Hvordan brukes kryptering.

Prosesslogg Hvordan klassen kom frem til problemstillingen November 2005 Desember 2005 Hvordan brukes kryptering. Samfundets Skole Kristiansand april 2006 Prosesslogg Hvordan klassen kom frem til problemstillingen November 2005 På høsten brukte vi mye tid for å komme frem til en god problemformulering. Vi startet

Detaljer

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Richard Williamson 3. desember 2014 Oppgave 1 La n være et naturlig tall. Bevis at det finnes et primtall p slik at p >

Detaljer

KRYPTOGRAFI, KRIMINALITET OG PERSONVERN

KRYPTOGRAFI, KRIMINALITET OG PERSONVERN KRYPTOGRAFI, KRIMINALITET OG PERSONVERN Copyright Bjørn Remseth og Thomas Gramstad Dette dokumentet er tilgjengelig under GNU Free Documentation License. 1. HVA ER KRYPTERING? 2. 'SVAK' KRYPTOGRAFI 3.

Detaljer

Den mobile arbeidshverdagen

Den mobile arbeidshverdagen Den mobile arbeidshverdagen - Sikkerhetsutfordringer og løsninger Siv Hilde Houmb & Øystein Hermansen Kort om Secure-NOK AS Inkubatorbedrift ipark Stavanger Sikkerhetsspesialister Fokusområder Strategisk

Detaljer

Falske Basestasjoner Hvordan er det mulig?

Falske Basestasjoner Hvordan er det mulig? Sikkerhetskonferansen 2015 Falske Basestasjoner Hvordan er det mulig? Martin Gilje Jaatun 1 SINTEF IKT Hvem er vi? SINTEF er Skandinavias største uavhengige forskningsinstitusjon Anvendt forskning FoU-partner

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Likning- bingo ark 1

Likning- bingo ark 1 ark 1 x 4 1 60 4x 30 = 5x 3 + = 18 + x + = + 4 5 3 3 x x x 9= 0 ( ) x x 0 = 0 x + 39x+ 380 = 0 x+ 8y 5x+ 9y x+ 1y = x 4y x y = 5 x 5y = + x ark x 1 0 1 4 1 3x+ 31 = x+ 19 + x = + + = + 3 5 3 x x 6 x 36

Detaljer

OFFENTLIG-NØKKELKRYPTOGRAFI

OFFENTLIG-NØKKELKRYPTOGRAFI OFFENTLIG-NØKKELKRYPTOGRAFI S. O. SMALØ Abstract. I dette notatet, som skal inngå som pensum i etterog viderutdanningskurs i datasikkerhet, vil vi gi en kort innføring i oentlig-nøkkel-kryptogra med illustrasjoner

Detaljer

Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder!

Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder! Level 1 Hemmelige koder All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Legg

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Nasjonal sikkerhetsmyndighet

Nasjonal sikkerhetsmyndighet Nasjonal sikkerhetsmyndighet IT-veiledning for ugradert nr 2 (U-02) Oppdatert: 2014-02-03 E-post Kryptering av e-postoverføring Beskrivelse av grunnleggende tiltak for sikring av overføring av e-post mellom

Detaljer

INF100/INF100-F - INNLEVERING 2 HØSTEN 2005

INF100/INF100-F - INNLEVERING 2 HØSTEN 2005 INF100/INF100-F - INNLEVERING 2 HØSTEN 2005 Krav til innlevering For at innleveringen skal godkjennes må følgende leveres: Oversikt Et dokument som inneholder en oversikt over innleveringen. Den skal inneholde

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519 Eksamen 2. desember 2014 Eksamenstid 4 timar IR201712 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1.......................................................................................

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Database security. Kapittel 14 Building Secure Software. Inf329, Høst 2005 Isabel Maldonado st10900@student.uib.no

Database security. Kapittel 14 Building Secure Software. Inf329, Høst 2005 Isabel Maldonado st10900@student.uib.no Database security Kapittel 14 Building Secure Software Inf329, Høst 2005 Isabel Maldonado st10900@student.uib.no Kort introduksjon Database er en organisert samling av data. SQL(Structured Query Language)

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

BEDRE KRYPTERING AV WEB-TRAFIKK OG E-POST (TLS)

BEDRE KRYPTERING AV WEB-TRAFIKK OG E-POST (TLS) BEDRE KRYPTERING AV WEB-TRAFIKK OG E-POST (TLS) Olav Ligaarden Nasjonal sikkerhetsmyndighet Sikkerhetskonferansen 2015 Oslo Kongressenter 17 18.03.2015 SLIDE 1 INNHOLD Kryptering av web-trafikk Kryptering

Detaljer

IT Grunnkurs. Nettverk. Foiler av Bjørn J. Villa, Førsteamanuensis II bv@item.ntnu.no. Presentert av Rune Sætre, Førstelektor satre@idi.ntnu.

IT Grunnkurs. Nettverk. Foiler av Bjørn J. Villa, Førsteamanuensis II bv@item.ntnu.no. Presentert av Rune Sætre, Førstelektor satre@idi.ntnu. 1 IT Grunnkurs Nettverk Foiler av Bjørn J. Villa, Førsteamanuensis II bv@item.ntnu.no Presentert av Rune Sætre, Førstelektor satre@idi.ntnu.no 2 Innhold Del 1 Motivasjon, Analog/Digital Meldingskomponenter,

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Eksamen 20.05.2015. Del 1. MAT0010 Matematikk. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler)

Eksamen 20.05.2015. Del 1. MAT0010 Matematikk. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Eksamen 20.05.2015 MAT0010 Matematikk Del 1 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin: Graftegner Regneark Skole:

Detaljer

Prøveinformasjon. Våren 2015 Bokmål

Prøveinformasjon. Våren 2015 Bokmål Våren 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2

Detaljer

Nasjonale prøver 2005. Matematikk 7. trinn

Nasjonale prøver 2005. Matematikk 7. trinn Nasjonale prøver 2005 Matematikk 7. trinn Skolenr.... Elevnr.... Gutt Jente Bokmål 9. februar 2005 TIL ELEVEN Slik svarer du på matematikkoppgavene I dette heftet finner du noen oppgaver i matematikk.

Detaljer

FAKTORISERING FRA A TIL Å

FAKTORISERING FRA A TIL Å FAKTORISERING FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til faktorisering F - 2 2 Grunnleggende om faktorisering F - 2 3 Fremgangsmåter F - 3 3.1 Den grunnleggende

Detaljer

Jan Erik Gulbrandsen Randi Løchsen. nye MEGA 8. Terminprøve høst. matematikk. Bokmål CAPPELEN DAMM AS. Terminprøver høst for 8. trinn 2012 nye MEGA 1

Jan Erik Gulbrandsen Randi Løchsen. nye MEGA 8. Terminprøve høst. matematikk. Bokmål CAPPELEN DAMM AS. Terminprøver høst for 8. trinn 2012 nye MEGA 1 Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve høst matematikk 2012 Bokmål CAPPELEN DAMM AS Terminprøver høst for 8. trinn 2012 nye MEGA 1 Terminprøver høst 2012 nye MEGA Høstens terminprøver

Detaljer

Eksamen MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark.

Eksamen MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark. Eksamen 05.12.2012 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 1 Kandidatnummer: Skole: Del 1 + innleverte ark Bokmål Eksamensinformasjon for Del 1 Eksamenstid Hjelpemidler til Del 1

Detaljer

Standardisering av krypto i offentlig sektor

Standardisering av krypto i offentlig sektor Direktoratet for forvaltning og IKT (Difi) Standardisering av krypto i offentlig sektor Vedlegg - Kryptografi og bruksområder Versjon 1.0 2011-07-22 Innhold 1 Teoretisk grunnlag 3 1.1 Kryptografi 3 1.2

Detaljer

Eksempeloppgave 1 2008

Eksempeloppgave 1 2008 Eksempeloppgave 1 2008 MAT0010 Matematikk Elever i grunnskolen (10. årstrinn) Eksamen våren 2009 DEL 1 Skole: Elevnummer: Del 1 + ark fra del 2 Bokmål Bokmål Eksamensinformasjon for del 1 Eksamenstid:

Detaljer

Metoder for sikring av kommunikasjon, data og autentisering.

Metoder for sikring av kommunikasjon, data og autentisering. Metoder for sikring av kommunikasjon, data og autentisering. Gorm Andersen Master i informatikk Oppgaven levert: Mai 2006 Hovedveileder: Arvid Staupe, IDI Norges teknisk-naturvitenskapelige universitet

Detaljer

Kryptering og steganografi

Kryptering og steganografi Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19 14. november 2007 INF1040-kryptering-1 HUSK Neste uke: Ingen forelesning.

Detaljer

Terminprøve vår matematikk

Terminprøve vår matematikk Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve vår matematikk 2014 Bokmål CAPPELEN DAMM AS Terminprøver vår for 8. trinn 2014 nye MEGA 1 Terminprøver vår 2014 nye MEGA 8 Vårens terminprøve er

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring Målform: Bokmål Eksamensdato: 16. mai 2012 Varighet/eksamenstid: 0900-1200 Emnekode: Emnenavn: LN513D/LO513D Webdesign Klasse(r): Studiepoeng:

Detaljer

Terminprøve høst matematikk

Terminprøve høst matematikk Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve høst matematikk 2013 Bokmål CAPPELEN DAMM AS Terminprøver høst for 8. trinn 2013 nye MEGA 1 Terminprøver høst 2013 nye MEGA Høstens terminprøver

Detaljer

blir enda viktigere en før fordi tjenestene bllir meget tilgjengelige på Internett

blir enda viktigere en før fordi tjenestene bllir meget tilgjengelige på Internett " %$ # " >9 : B D 1. Åpne og lukkede nettverk - Internett og sikkerhet 2. Krav til sikre tjenester på Internett 3. Kryptografi 4. Kommunikasjonssikkerhet og meldingssikkerhet 5. Elektronisk legitimasjon

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark Eksamen 20.05.2011 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 1 Kandidatnummer: Skole: Del 1 + innleverte ark Bokmål Eksamensinformasjon for Del 1 Eksamenstid Hjelpemidler

Detaljer

Læringsmål kryptering og steganografi

Læringsmål kryptering og steganografi Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19 12. november 2008 Læringsmål kryptering og steganografi Forstå ulike

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4

Detaljer

Eksamen 20.05.2015. Del 1. MAT0010 Matematikk. Ny eksamensordning. http://eksamensarkiv.net/ Del 1: 2 timer (uten hjelpemidler)

Eksamen 20.05.2015. Del 1. MAT0010 Matematikk. Ny eksamensordning. http://eksamensarkiv.net/ Del 1: 2 timer (uten hjelpemidler) Eksamen 20.05.2015 MAT0010 Matematikk Del 1 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin: Graftegner Regneark Skole:

Detaljer

Offentlig nøkkel kryptografi og RSA

Offentlig nøkkel kryptografi og RSA Offentlig nøkkel kryptografi og RSA Jens Otto Hatlevold Jan Magne Tjensvold Oktober 2006 Sammendrag Utgangspunktet for prosjektet er offentlig nøkkel kryptografi og hvordan denne teknikken benyttes i praksis.

Detaljer

Prøveinformasjon. Høsten 2014 Bokmål

Prøveinformasjon. Høsten 2014 Bokmål Høsten 2014 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter. Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Kryptering og steganografi

Kryptering og steganografi Hemmeligholdelse av budskap Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Vi er ofte interessert i å gjøre data uleselig for uvedkommende, eller å gjemme dem slik at uvedkommende ikke

Detaljer

Selmersenteret. ACT - Prosjektet. Kryptografer lærer å tenke som kriminelle. Oversikt

Selmersenteret. ACT - Prosjektet. Kryptografer lærer å tenke som kriminelle. Oversikt Kryptografer lærer å tenke som kriminelle - Litt om kappløpet i kryptografi - Rapport fra IKT - SOS prosjektet Advanced Cryptographic Techniques (ACT) ACT - Prosjektet Forskningsprosjekt under IKT - SOS

Detaljer

Transportsikring av e-post rfc 3207 - STARTTLS

Transportsikring av e-post rfc 3207 - STARTTLS Transportsikring av e-post rfc 3207 - STARTTLS Innhold 1 Innledning... 1 1.1 Formål... 1 1.2 Bakgrunn... 1 1.3 Avgrensninger... 2 2 Behov... 2 3 Mål... 2 4 Om rfc 3207 - STARTTLS... 3 4.1 Bruksområder...

Detaljer

TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND

TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND 1. UTSTYR 1.1. Brett. Det brukes scrabblebrett av vanlig størrelse. Dersom det brukes et dreibart brett, eller et vanlig brett utstyrt med en dreiemekanisme, skal

Detaljer

KAPITTEL 3 Litt logikk og noen andre småting

KAPITTEL 3 Litt logikk og noen andre småting KAPITTEL 3 Litt logikk og noen andre småting Logikk er sentralt både i matematikk og programmering, og en innføring i de enkleste delene av logikken er hovedtema i dette kapitlet I tillegg ser vi litt

Detaljer

Terminprøve vår matematikk

Terminprøve vår matematikk Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve vår matematikk 2013 Bokmål CAPPELEN DAMM AS Terminprøver vår for 8. trinn 2013 nye MEGA 1 Terminprøver vår 2013 nye MEGA 8 Vårens terminprøve er

Detaljer

EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH. Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19

EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH. Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19 Kryptering og steganografi EJHJUBM SFQSFTFOUBTKPO FS FU LVMU GBH Jeg avlytter viktig informasjon, sa smarte Tor. Læreboka kapittel 19 12. november 2008 Læringsmål kryptering og steganografi Forstå ulike

Detaljer

1 Primtall og divisorer

1 Primtall og divisorer Oppgaver 1 Primtall og divisorer KATEGORI 1 1.1 Primtallsfaktorisering Oppgave 1.110 Bruk lommeregneren til å finne ut om tallet er et primtall. a) 47 b) 61 c) 143 Oppgave 1.111 Finn ut ved hjelp av tverrsummen

Detaljer

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Tema: Sannsynlighet og origami

Tema: Sannsynlighet og origami Tema: Sannsynlighet og origami Aktiviteter: Møbiusbånd Håndtrykk Hotell uendelig Papirbretting Tidsbruk: 2 timer Utstyr: Papirstrimler Saks Papir og blyant Origamipapir, eller farga A4-ark Anskaffelse

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Våren 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Vedlegg - om anvendelser og standarder Forprosjektrapport - Standarder for anvendelse av elektronisk ID med og i offentlig sektor

Vedlegg - om anvendelser og standarder Forprosjektrapport - Standarder for anvendelse av elektronisk ID med og i offentlig sektor Vedlegg - om anvendelser og standarder Forprosjektrapport - Standarder for anvendelse av elektronisk ID med og i offentlig sektor Versjon 1.01 13. oktober 2011 Innhold 1 Innledning 2 2 Om anvendelser av

Detaljer

Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng

Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng Del 1 Skal leveres seinest etter 2 timer. Maks: 50 poeng Hjelpemidler: Skrivesaker, passer, linjal og gradskive (vinkelmåler) 1 p Oppgave 1.1 Regn ut. a) = b) 5 + 5 + 5 + 5 = 2 p Oppgave 1.2 Regn ut. Skriv

Detaljer

TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND

TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND 1. UTSTYR 1.1. Brett. Det brukes scrabblebrett av vanlig størrelse. Dersom det brukes et dreibart brett, eller et vanlig brett utstyrt med en dreiemekanisme, skal

Detaljer

KRYPTO OG AKTUELLE PROBLEMSTILLINGER

KRYPTO OG AKTUELLE PROBLEMSTILLINGER KRYPTO OG AKTUELLE PROBLEMSTILLINGER Kunnskapsbyens Hus 2015 SLIDE 1 INNHOLD NSM og vår rolle Kryptosystemer i Forsvaret Moderne krypto SLIDE 2 SIKKERHETSLOVEN 14, KRYPTOSIKKERHET Bare krypto godkjent

Detaljer

Risikovurdering av sikkert- nettskjema TSD 2.0

Risikovurdering av sikkert- nettskjema TSD 2.0 Risikovurdering av sikkert- nettskjema TSD 2.0 Version 1.0 2014-01- 28 Espen Grøndahl IT- sikkerhetssjef UiO ... 1 1. Innledning... 3 2. Bakgrunn... 3 3. Avgrensing... 3 4. Løsningsbeskrivelse... 4 Fig

Detaljer

3.1. Formodninger om primtall.

3.1. Formodninger om primtall. 15 Mai 2000 Kap 3.1 Formodninger om primtall 1 3.1. Formodninger om primtall. (3.1.1) Mersenne, Godbach og primtallstvillinger. Vi skal her forklare noen av de mest kjente formodningene om primtall. (3.1.2)

Detaljer

TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND

TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND TURNERINGSREGLEMENT NORSK SCRABBLEFORBUND FORORD Dette reglementet er til bruk under turneringer som arrangeres av Norsk scrabbleforbund. Reglene er stort sett basert på regelverkene til World English-Language

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Kryptering og steganografi

Kryptering og steganografi Læringsmål kryptering og steganografi Kryptering og steganografi Forstå ulike krypteringsprinsipper Kunne sentrale begreper innen kryptering Kjenne til en del sentrale krypteringsteknikker Kjenne til steganografi

Detaljer

Sikkert valgsystem over Internett

Sikkert valgsystem over Internett Sikkert valgsystem over Internett Hovedoppgave ved sivilingeniørutdanning i informasjons- og kommunikasjonsteknologi av Magne Hopland Rune Jensen Grimstad, mai 2001 Sammendrag Det har i de siste årene

Detaljer

KONTINUASJONSEKSAMEN I EMNE. TDT4136 Logikk og resonnerende systemer. Onsdag 6. august 2008 Tid: kl. 09.00 13.00

KONTINUASJONSEKSAMEN I EMNE. TDT4136 Logikk og resonnerende systemer. Onsdag 6. august 2008 Tid: kl. 09.00 13.00 Side 1 av 6 Faglig kontakt under eksamen: Tore Amble (94451) BOKMÅL KONTINUASJONSEKSAMEN I EMNE TDT4136 Logikk og resonnerende systemer Onsdag 6. august 2008 Tid: kl. 09.00 13.00 Hjelpemidler D: Ingen

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksamen i fag TDT4140 Systemutvikling. 6. juni, 2006 kl 0900-1300

Eksamen i fag TDT4140 Systemutvikling. 6. juni, 2006 kl 0900-1300 Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap Sensurfrist: 27. juni, 2006 Eksamen

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høsten 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksamen REA3028 S2, Høsten 2011

Eksamen REA3028 S2, Høsten 2011 Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Løsningsforslag for Eksamen i TDT4190 Distribuerte systemer. Onsdag 23. mai 2012 9.00 13.00

Løsningsforslag for Eksamen i TDT4190 Distribuerte systemer. Onsdag 23. mai 2012 9.00 13.00 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap Sensurfrist: 13. juni 2012

Detaljer