Partieltderiverte og gradient

Størrelse: px
Begynne med side:

Download "Partieltderiverte og gradient"

Transkript

1 Partieltderiverte og gradient Kap 2 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009

2 Framstilling Kommentarer, relasjon til andre kurs Struktur Mye er repitisjon fra MAT1100, litt fra MAT-INF1100. En del temaer behandelses parallelt i MAT1110. I MEK1100 legger vi vekt på geometriske tolkninger * Indikerer eksempel el. på tavle 1 Utgangspunkt: vanlig derivert 2 Definisjon av differensial, Taylorpolynom, feilledd 3 Partieltderiverte, retningsderiverte 4 Gradienten 5 Geometriske anvendelser av gradienten 6 Taylorutvikling i flere variabler 7 Vektorfelt, strømlinjer

3 Gode gamle f Derivert* f er endringsraten: f (x) = lim x 0 f (x + x) f (x). x f = f (x + x) f (x) f (x) x, (1) Endring av f tilnærmet f ganger endring av x. Mer presist betyr dette f = f (x + x) f (x) = f (x) x + E(x, x), (2) der E/ x 0 når x 0

4 Differensial Fysikere skriver ofte der de mener (2), dvs. df = f (x)dx. (3) f = f (x + x) f (x) = f (x) x + E(x, x), slik at E er neglisjerbar i forhold til f x for små x. (2) og (3) kan sees på som lineære Taylorutviklinger. E svarer da til feilleddet.

5 Taylorutvikling av f (x) (MAT-INF1100) f (x) = f (x 0 ) + f (x 0 )(x x 0 ) f (n) (x 0 ) (x x 0 ) n + R n, (4) n! Feilledd R n = f (n+1) (c) (n + 1)! (x x 0) n+1, der c er mellom x 0 og x. Omsatt til vår notasjon (x x 0 ) x, x x + x og x 0 x Oftest godt nok f = f (x + x) f (x) = f (x) x + f (c) ( x) 2 2 E f (x) ( x) 2 = () x 2 2

6 Lineært Taylorpolynom

7 Partieltderiverte Skalarfelt β(x, y). Fra punkt (x, y) har β ulik endring i ulike retninger. Først: endring i akseretningene Partieltderiverte Endringsrate i x-retning og i y retning β(x, y) x β(x, y) y β(x + x, y) β(x, y) = lim x 0 x β(x, y + y) β(x, y) = lim y 0 y

8 Grafisk framstilling som flate F: z = β(x, y) K x : z = β(x, y 0 ). T 1 tangent i x 0, y 0 med stigningstall β(x 0,y 0 ) x. *

9 Retningsderivert Betrakter variasjon langs linje r + sa, for a = 1 og s R. Oppfatter g(s) β(r + sa) som ordinær funksjon* Retningsderivert β β(r + a s) β(r) (r,a) = lim s 0 s = dg(0). (5) ds avhenger av retningen på a. Differensialform dβ = β (r,a)ds, (6) NB: dβ endringen av β når dr = ads. ds = dr er lengde av dr.

10 ... Oppdeling: endring=endring med x + endring med y * β (r,a) = lim s 0 = lim s 0 β(r + a s) β(r). s ( β(x + ax s, y) β(x, y) s + β(x + a x s, y + a y s) β(x + a x s, y) s Skriver om ved å innføre x og y r = a x si + a y sj = xi + yj ).

11 ... s 0 x, y 0 β β(x + x, y) β(x, y) (r,a) = a x lim x 0 x Grenseovergang + a y lim x, y 0 β(x + x, y + y) β(x + x, y). y (7) β (r,a) = β(x, y) a x + x β(x, y) a y. (8) y

12 Gradienten Gradienten til β β β x i + β y j Retningsderivert kan da skrives β (r,a) = β x a x + β y a y = β a = a β Bruk av dr = a s og dβ = β (r,a)ds Gradient definert ved differensialform dβ = β dr. (9) Endringen i β (tilnærmet) lik gradient prikket med posisjonsendring.

13 y dr dβ = dβ 1 + dβ 2 = β dr dx dβ 1 = β x dx dy dβ2 = β y dy x Forhold mellom retningsdifferensialer. *

14 Geometriske tolkninger av gradienten * θ: vinkel mellom dr og β. dβ = β dr = β dr cosθ. Egenskaper ved gradienten 1) β normalt på ekviskalarflatene (β =konstant) 2) β peker ut retningen der β endrer seg raskest 3) β angir maksimal økning i β pr. lengdeenhet

15 Normal til ekviskalarflater Flate definert som β(x, y, z) = β 0 Enhetsnormal n = β β.

16 Gradienten i R 3 Gradienten til β(x, y, z) Anvendelse β = β x i + β y j + β z k Flatenormal til σ: z = η(x, y)* Knep: Flaten σ er en nivåflate for β(x, y, z) = z η(x, y), nemlig β = 0. Derved n σ = β β = η k x i η 1 + ( η x y j ) 2 + ( η y ) 2

17 Topografisk eksempel Sirkulær fjelltopp h = Utregning av gradient Addering h = h x i + h h x2 +y 2 R 2 = h 0 (1 + x2 + y 2 R 2 ) 1 h x = h 0 (1 + x2 + y 2 ) 2 2x R 2 R 2, h y = h 0 (1 + x2 + y 2 ) 2 2y R 2 R 2. y j = 2h 0(xi + yj) 2h 0 r R 2( 1 + x2 +y ) 2 2 = R 2( ) 1 + r2 2. R 2 R 2

18 ... Konturlinjer h h. Akser: km h 0 = 2277 m R = 4000 m. Observasjoner?

19 Taylorpolynom i flere variabler Funksjon g = g(x, y) dg = β dr = β β x dx + y dy tilsvarer også her et linært Taylorpolynom. Andre ordens Taylorpolynom ( ) ( ) g(x, y) g g = g(x0, y 0 ) + (x x 0 ) + (y y 0 ) + x x 0,y 0 y x 0,y 0 ( 1 2 ) g 2 x 2 (x x 0 ) ( 2 ) g x 0,y 0 2 y 2 (y y 0 ) 2 + x 0,y 0 ( 2 ) g (x x 0 )(y y 0 ). x y x 0,y 0 *

20 Strømfelt

21 Partikkelbaner Hastighetsfelt v = v x (x, y, t)i + v y (x, y, t)j. Partikkel, posisjon x p (t), y p (t), som følger med strømmen. dx p dt dy p dt = v x (x p (t), y p (t), t), = v y (x p (t), y p (t), t). (10) Differensiallikninger for x p, y p Kan løses (?) med x p (0) = a, y p (0) = b

22 Strømlinjer Stasjonær strøm v = v x (x, y)i + v y (x, y)j. Serie partikler følger samme linje strømlinje* Divisjon av komponenter i (10) dy p dt dx p dt = dy p dx p = v y(x p, y p ) v x (x p, y p ) v xdy p = v y dx p Alternativt, dr liten bit av strømlinje v dr = 0 v x dy = v y dx NB Generelt feil: antiderivert av v x mhp. y = antiderivert av v y mhp. x

23 Strømlinje

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Kapittel 2 Gradientvektoren, vektorfelt, strømlinjer, feltlinjer I dette kapitlet skal vi blant annet innføre gradientvektoren for skalarfelter og diskutere viktige egenskaper ved denne. Gradientvektoren

Detaljer

Alternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning

Alternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning Forelesning / 8 Finne skalarfunksjon når gradienten er kjent. Se GF kap..3.4. Ta som eksempel β = yi + xj + k. Vi vet at β = x i + j + z k og følgelig ser vi at vi må løse et system av tre likninger som

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

Feltteori og vektoranalyse. Forelesningsnotater

Feltteori og vektoranalyse. Forelesningsnotater Feltteori og vektoranalyse Forelesningsnotater av Geir Pedersen og Bjørn Gjevik Avdeling for mekanikk Matematisk institutt Universitetet i Oslo 2009 Forord Dette dokumentet er utfyllende forelesningsnotater

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Kurveintegraler, fluks, sirkulasjon, divergens, virvling

Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kap 4 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE Eksempler Framstilling Kommentarer, relasjon til andre kurs Kurveintegraler

Detaljer

1 I mengdeteori er kontinuumshypotesen en antakelse om at det ikke eksisterer en mengde som

1 I mengdeteori er kontinuumshypotesen en antakelse om at det ikke eksisterer en mengde som Forelesning 12/3 2019 ved Karsten Trulsen Fluid- og kontinuumsmekanikk Som eksempel på anvendelse av vektor feltteori og flervariabel kalkulus, og som illustrasjon av begrepene vi har gått igjennom så

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Kurveintegraler, fluks, sirkulasjon, divergens, virvling

Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kap 4 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Kurveintegraler

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Feltlikninger for fluider

Feltlikninger for fluider Kapittel 10 Feltlikninger for fluider Oppgave 1 Gitt et to-dimensjonalt strømfelt v = ωyi+ωxj. a) Den konvektive akselerasjonen for et to-dimensjonalt felt er gitt ved b) Bevegelseslikninga (Euler-likninga):

Detaljer

Kurveintegraler, fluks, sirkulasjon, divergens, virvling

Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kap 4 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE Eksempler Framstilling Kommentarer, relasjon til andre kurs Kurveintegraler

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Kapittel 2 Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Oppgave Gitt funksjonen f(x,y,z) = x 2 y+z 2 x. Vi regner først ut de partielt deriverte med hensyn på x, y og z: f x = 2xy f +z2, = f x2,

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Kapittel 2 Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Oppgave Gitt funksjonen f(x,y,z) = x 2 y + z 2 x. Vi regner først ut de partielt deriverte med hensyn på x, y og z: De dobbeltderiverte

Detaljer

TMA4105. Notat om skalarfelt. Ulrik Skre Fjordholm 15. april 2016

TMA4105. Notat om skalarfelt. Ulrik Skre Fjordholm 15. april 2016 TMA4105 Notat om skalarfelt Ulrik Skre Fjordholm 15. april 2016 Innhold 1 Grenseverdier og kontinuitet 2 2 Derivasjon av skalarfelt 5 2.1 Partiellderivert og gradient..................................

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

Kap. 16: Kontinuerlige systemer

Kap. 16: Kontinuerlige systemer Kap. 16: Kontinuerlige systemer Har betraktet systemer med én frihetsgrad (avhengig av tiden) Partikler (med føringer) Stive legemer (med føringer) Ordinære differensiallikninger (ODE) Deformerbare legemer

Detaljer

Kjerneregelen. variabelbytte. Retningsderivert MA1103. gradienter 7/2 2013

Kjerneregelen. variabelbytte. Retningsderivert MA1103. gradienter 7/2 2013 MA1103 7/2 2013 U R n åpen V R m åpen g : U R n R m g : V R m R p g(u) V (dermed er f g = f (g) definert) U R n åpen V R m åpen g : U R n R m g : V R m R p g(u) V (dermed er f g = f (g) definert) x 0 U

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). 28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter

Detaljer

Oppgavehefte for Mek 1100

Oppgavehefte for Mek 1100 Oppgavehefte for Mek 1100 Geir Pedersen Høst 2009 Oppg. 1 Normal til bane i planet. Vi har gitt en posisjonsvektor som funksjon av t på dimensjonsløs form r(t) = (5 + t)i + t 2 j. a) Finn hastigheten,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Fredag 29 mai 2009. Tid for eksamen: 14:30 17:30. Oppgavesettet er på 6 sider.

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

Flervariable funksjoner: Kjerneregel og retningsderiverte

Flervariable funksjoner: Kjerneregel og retningsderiverte Flervariable funksjoner: Kjerneregel og retningsderiverte Forelest: 5. Nov, 2004 Først skal vi ta for oss kjerneregelen for funksjoner av flere variable. Se metodeark 7 og 8 for flervariable funksjoner.

Detaljer

Virvelfrihet, potensialer, Laplacelikningen

Virvelfrihet, potensialer, Laplacelikningen Virvelfrihet, potensialer, Laplacelikningen Kap 10 og 9 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE Forelesninger NYTT TEMA Hvorfor snakker vi om virvelfri bevegelse? Forelesninger Todimensjonal

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MEK1100 Differensiallikninger Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning i formel 3-4 spesielle

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v v x i+v y j er virvlingen gitt ved

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

Velkommen til MEK1100

Velkommen til MEK1100 Velkommen til MEK1100 Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Våren 2016 Foreleser: Karsten Trulsen Øvingslærere: Susanne Støle Hentschel (2 grupper), Lars Magnus Valnes (2 grupper),

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

11. FUNKSJONER AV FLERE VARIABLER

11. FUNKSJONER AV FLERE VARIABLER 11. FUNKSJONER AV FLERE VARIABLER FREDRIK THOMMESEN Contents 1. Funksjoner av flere variabler 1 1.1. Funksjoner av to variabler 1 1.2. Partielle deriverte med to variabler 2 1.3. Geometrisk representasjon

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

Velkommen til MEK1100

Velkommen til MEK1100 Velkommen til MEK1100 Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE våren 2015 Foreleser: Karsten Trulsen Øvingslærere: Diako Darian og Tormod Landet MEKANIKK = LÆREN OM BEVEGELSE OG KREFTER

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

Velkommen til MEK1100

Velkommen til MEK1100 Velkommen til MEK1100 Seksjon for Mekanikk, Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Våren 2018 Foreleser: Karsten Trulsen Gruppelærere: Susanne Støle Hentschel, Lars Magnus Valnes,

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

Velkommen til MEK1100

Velkommen til MEK1100 Velkommen til MEK1100 Seksjon for Mekanikk, Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Vår 2017 Foreleser: Karsten Trulsen Gruppelærere: Susanne Støle Hentschel, Lars Magnus Valnes, Diako

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av

Detaljer

Feltteori og vektoranalyse. Forelesninger og oppgaver i MEK1100

Feltteori og vektoranalyse. Forelesninger og oppgaver i MEK1100 Feltteori og vektoranalyse Forelesninger og oppgaver i MEK11 av Bjørn Gjevik og Morten Wang Fagerland Avdeling for mekanikk Matematisk institutt Universitetet i Oslo 214 Forord Dette kompendiet er utarbeidet

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Repitisjon av Diverse Emner

Repitisjon av Diverse Emner NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv

Detaljer

Oppsummering MA1101. Kristian Seip. 23. november 2017

Oppsummering MA1101. Kristian Seip. 23. november 2017 Oppsummering MA1101 Kristian Seip 23. november 2017 Forelesningen 23. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i MA1101 noen tips for eksamensperioden

Detaljer

Feltteori og vektoranalyse. Forelesninger og oppgaver i MEK1100

Feltteori og vektoranalyse. Forelesninger og oppgaver i MEK1100 Feltteori og vektoranalyse Forelesninger og oppgaver i MEK11 av Bjørn Gjevik og Morten Wang Fagerland Avdeling for mekanikk Matematisk institutt Universitetet i Oslo 27 Forord Dette kompendiet er utarbeidet

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

MAT mars mars mars 2010 MAT Våren 2010

MAT mars mars mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag Forelesning Vi har tidligere integrert funksjoner langs x-aksen, og vi har integrert funksjoner i flere variable over begrensede områder i xy-planet. I denne forelesningen skal

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

Oblig 1 - vår 2015 MAT1012

Oblig 1 - vår 2015 MAT1012 Oblig 1 - vår 15 MAT11 MARI RØYSHEIM University of Oslo, Department of Physics 17. februar 15 Med forbehold om trykkfeil og andre feil! Oppgave 1 a) Vi skal finne det bestemte integralet, og bruker substitusjon.

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 1.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

OPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11

OPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11 OPPGAVESETT MAT111-H16 UKE 46 (Tall i blått angir utgave 6.) Avsn. 6.2(6.3): 9, 20 Avsn. 6.3(6.2): 3, 19, 51(45). Avsn. 6.5: 13, 19, 31 Oppgaver til seminaret 18/11 Oppgaver til gruppene uke 47 Løs disse

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v = v x i+v y j er virvlingen gitt ved

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt Divergensen til v er definert som v = ui+vj +wk. v = u x + v y + w og virvlingen er gitt ved determinanten

Detaljer

Kapittel 10: Funksjoner av flere variable

Kapittel 10: Funksjoner av flere variable 0.. Introduksjon til funksjoner av flere variable 95 Kapittel 0: Funksjoner av flere variable 0.. Introduksjon til funksjoner av flere variable. Oppgave 0..: a) Den naturlige definisjonsmengden for f(x,

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2.

MEK1100, vår Obligatorisk oppgave 1 av 2. 9. februar 2017 Innleveringsfrist MEK1100, vår 2017 Obligatorisk oppgave 1 av 2 Torsdag 2. mars 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels

Detaljer

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten:

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: HAVBØLGER Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: Airy teori, også kalt lineær bølgeteori eller bølger av første orden Fremstillingen her vil temmelig nøyaktig følge kompendiet

Detaljer

Eksamensoppgaver og Matematikk 1B

Eksamensoppgaver og Matematikk 1B Eksamensoppgaver 7500 og 750 Matematikk B Samlet for SIF5005 Matematikk våren 00 Samlingen inneholder utvalgte oppgaver gitt i 7500 og 750 Matematikk B ved NTH/NTNU i tiden 993 997. Oppgaver eller punkter

Detaljer

TFY4115: Løsningsforslag til oppgaver gitt

TFY4115: Løsningsforslag til oppgaver gitt Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x

Detaljer

Vektoranalyse TFE4120 Elektromagnetisme

Vektoranalyse TFE4120 Elektromagnetisme Vektoranalyse TFE4120 Elektromagnetisme Johannes kaar, NTNU 4. januar 2010 1 Integraler og notasjon Linjeintegral Et linjeintegral a et ektorfelt A oer en kure C skrier i C A d l. Når kuren er lukket tegner

Detaljer

Velkommen til MEK1100

Velkommen til MEK1100 Velkommen til MEK1100 Seksjon for Mekanikk, Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Våren 2019 Foreleser: Karsten Trulsen Gruppelærere: Susanne Støle Hentschel, Lars Magnus Valnes,

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer