Rekker (eng: series, summations)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Rekker (eng: series, summations)"

Transkript

1 Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks. Vi kan gjerne bruke andre bokstaver på denne indeksen, f.eks. i, j, k, osv. Aritmetiske rekker Gitt den aritmetiske følgen 1,, 3, 4,, 100 Den tilsvarende aritmetiske rekken blir da =? Hvordan finne summen av en aritmetisk rekke? Summen av en aritmetisk rekke er lik summen av første og siste ledd ganget med antall og delt på : 100 n = n=1 ( ) 100 = = 5050 Kort fortalt tar vi gjennomsnittet av første og siste ledd og ganger det med antall ledd i rekken. 1

2 Formel for summen av en aritmetisk rekke. La a være første ledd, b siste ledd og n antall ledd. Da er summen gitt ved: (a + b) n For å bruke formelen over trenger vi å vite hvor mange ledd rekken inneholder. Antall ledd i en aritmetisk rekke. La a være første ledd, b siste ledd og d den faste differensen mellom et vilkårlig ledd og det foregående leddet i rekken. Da er antall ledd n gitt ved n = (b a) d + 1 NB! Vi må legge til 1 for å få med begge endepunktene i rekken. Eksempel 1: Hva blir summen ? Første ledd a = 1 Siste ledd b = 4 Differensen d = 5 Antall ledd n = = 7 5 Summen = (a+b) n = (1+4)7 = 189 Eksempel : Hva blir summen ?

3 a = 10, b = 94, d = 3 Antall ledd n = = 9 3 Summen = (10+94)9 = 1508 Javakode for eksempel. Bestemmer først summen med en for-løkke og så ved hjelp av formelen: 3

4 Geometriske rekker Gitt den geometriske rekken: Tallene kan skrives som Gitt en generell geometrisk rekke: ar 0, ar 1, ar, ar 3,.., ar N Husk! r 0 = 1 og r 1 = r Den tilsvarende geometriske rekken blir da a + ar + ar + ar ar N = N n=0 a r n Formel for summen av en geometrisk rekke N a r j a(r N+1 1) = { r 1, r 1 a(n + 1), r = 1 Antall ledd i rekken blir her N + 1 fordi vi starter med n = 0. Eksempel 1. Hva blir summen av tallene ? Tallene kan skrives som Her er a = 1, r = og største indeks N = 7. 4

5 7 j = = 8 1 = 56 1 = 55 Bevis av formelen: La S N = N a r j være summen av en geometrisk rekke der N er høyeste indeks (antall ledd blir N + 1). a er første ledd og r er det konstante forholdet mellom et vilkårlig ledd og det foregående. S N = a + ar + ar + ar ar N Ganger med r på begge sider: r S N = ar + ar + ar ar N + ar N+1 Trekker fra S n på begge sider: r S N S N = ar + ar + ar ar N + ar N+1 - S N r S N S N = ar + ar + ar ar N + ar N+1 - a - ar - ar - ar ar N Sitter igjen med ar N+1 - a på høyre siden etter at de andre leddene på høyresiden faller bort. Setter S N utenfor parentesen på venstresidene og a utenfor parentesen på høyresiden: S N (r 1) = a(r N+1 1) Deler til slutt med r- 1 på begge sider: S N = a(rn+1 1) r 1 der r 1 NB! Formelen gjelder ikke når r = 1, men da ser rekka slik ut: S N = a + a+ a + + a = a(n+1) NB! Her er N største indeks og N+1 antall ledd i rekken. 5

6 Eksempel. Hva blir summen Dette kan skrives som ( 1 )0 + ( 1 )1 + ( 1 ) + ( 1 )3 + ( 1 )4 + ( 1 )5 Dermed får vi 5 ( 1 )j = ( 1 ) = = 1 3 Tester eksempel i Java: 6

7 Eksempel 3: Hva blir summen ? a = 16, r = Rekken kan skrives som Summen blir da: 5 16 j = 16(5+1 1) 1 = = 1008 Prøv å teste eksempel 3 i Java også! Eksempel 4. Binære tall. Datatypen int i Java har 3 binære siffer (4 byte). Det første av disse kalles fortegnsiffer. Dette bestemmer om tallet er positivt eller negativt. Hvis det er 1 er tallet negativt og hvis det er 0 er tallet ikke-negativt dvs. 0 eller positivt. Java-kode: Det største mulige (positive) heltallet ser slik ut: ; 7

8 Tallet har 31 1 ere! Hvilket tall er det? Vi kan se på tallet som en geometrisk rekke: Nå kan vi ved hjelp av formelen finne tallet: 30 j = (30+1 1) 1 = = Svaret kan vi teste i Java: Hva tror du utskriften blir hvis vi legger til 1? Kjør programmet og test svaret! 8

9 Til slutt litt om div og mod. I den obligatoriske oppgaven møter dere funksjonen mod. mod står for modulus og kalles også for rest-funksjonen. x mod y gir oss resten vi får når x heltallsdivideres med y. Eksempel: 1 : 3 = 4 kan skrives som 1 div 3 = 4. Fordi 3 går opp i 1 er resten her lik 0. Da blir 1 mod 3 = : 3 = 4, men her får vi 1 i rest. Da blir 13 mod 3 = 1. Vi har at 0 x mod y < y Det betyr at resten alltid vil ligge i intervallet fra og med 0 opp til y, men vil aldri kunne bli lik y eller større. 9

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

Del 1 En oversikt over C-programmering

Del 1 En oversikt over C-programmering Del 1 En oversikt over C-programmering 1 RR 2016 Starten C ble utviklet mellom 1969 og 1973 for å re-implementere Unix operativsystemet. Er et strukturert programmeringsspråk, hvor program bygges opp av

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Programmering Høst 2017

Programmering Høst 2017 Programmering Høst 2017 Tommy Abelsen Ingeniørfag - Data Innledning Dette er et dokument med litt informasjon og eksempler om kontrollstrukturer, samt oppgaver til forskjellige kontrollstrukturer. Spør

Detaljer

INF1000 undervisningen INF 1000 høsten 2011 Uke september

INF1000 undervisningen INF 1000 høsten 2011 Uke september INF1000 undervisningen INF 1000 høsten 2011 Uke 2 30. september Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Siri Moe Jensen og Arne Maus Forelesningene: Første

Detaljer

INF 1000 høsten 2011 Uke september

INF 1000 høsten 2011 Uke september INF 1000 høsten 2011 Uke 2 30. september Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Siri Moe Jensen og Arne Maus 1 INF1000 undervisningen Forelesningene: Første

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

Løsningsforslag til eksamen høst 2016

Løsningsforslag til eksamen høst 2016 Løsningsforslag til eksamen høst 2016 Hver oppgave tildeles maksimalt 10 poeng. Høyeste poengsum er 100 Karaterer: 90 A 75 B < 90 60 C < 75 50 D < 60 0 E < 50 F < 40 Oppgave 1 a) 3 poeng Ingen av de tre

Detaljer

Oppgaver med et odde nummer har fasit bakerst i læreboken. Her er løsningsforslag med mellomregninger for de gitte øvingsoppgavene.

Oppgaver med et odde nummer har fasit bakerst i læreboken. Her er løsningsforslag med mellomregninger for de gitte øvingsoppgavene. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Oppgaver med et odde nummer har fasit bakerst i

Detaljer

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 13. september 2004 En viktig del av den første obligatoriske oppgaven er å få erfaring med hvordan Java håndterer tall. Til å begynne med kan dette

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2016

Løsningsforslag til eksamenen i MAT103, våren 2016 Løsningsforslag til eksamenen i MAT103, våren 2016 Oppgave 1 (vekt 10%) a) Sjekk om følgende tall er delelig med 9: 654, 45231, 1236546 Løsning: Et tall er delelig med 9 hvis og bare hvis tverrsummen er

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut

Detaljer

Leksjon 2. Setninger og uttrykk

Leksjon 2. Setninger og uttrykk 6108 Programmering i Java Leksjon 2 Setninger og uttrykk Del 2 Roy M. Istad 2015 Uttrykk, operatorer og verdier int tall = 3; int x = 1 + tall; // x er 4 Uttrykk: Variabler, verdier, konstanter og metodekall

Detaljer

Leksjon 2. Setninger og uttrykk

Leksjon 2. Setninger og uttrykk 6108 Programmering i Java Leksjon 2 Setninger og uttrykk Del 2 Roy M. Istad 2015 Uttrykk, operatorer og verdier int tall = 3; int x = 1 + tall; // x er 4 Uttrykk: Variabler, verdier, konstanter og metodekall

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Tirsdag 3. desember 2002, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

Leksjon 3. Kontrollstrukturer

Leksjon 3. Kontrollstrukturer 6108 Programmering i Java Leksjon 3 Kontrollstrukturer Del 1: Valg Roy M. Istad 2015 Utfør av et program Programflyt så langt: start setning setning setning setning slutt Sekvensielt: Alle setninger utføres,

Detaljer

Del 4 Noen spesielle C-elementer

Del 4 Noen spesielle C-elementer Del 4 Noen spesielle C-elementer 1 RR 2016 Header-filer inneholder Prototypene til funksjonene i standard biblioteket Verdier og definisjoner som disse funksjonene bruker #include #include

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1000 Grunnkurs i objektorientert programmering Eksamensdag: 11. juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 8

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag til oppgave 7, 8, og 9 mangler Klasser og objekter (kap. 8.1-8.14 i "Rett på Java" 3. utg.) NB! Legg merke til at disse

Detaljer

Diskret matematikk tirsdag 15. september 2015

Diskret matematikk tirsdag 15. september 2015 Avsnitt 2.2 fra læreboka Mengdeoperasjoner Tema for forelesningen: Snittet av to mengder Disjunkte mengder Union av to mengder Eksklusiv union (symmetrisk differens) av to mengder Differensen mellom to

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

ToPlayer. Steg 1: Kom i gang med metodene setup og draw. Gjør dette: Introduksjon:

ToPlayer. Steg 1: Kom i gang med metodene setup og draw. Gjør dette: Introduksjon: ToPlayer Introduksjon Processing Introduksjon: Nå skal vi lage et spill som to personer kan spille mot hverandre. Vi har kalt det ToPlayer, men du kan kalle det hva du vil. Målet er å dytte en figur, eller

Detaljer

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p Ekvivalente utsagn Definisjoner: Et sammensatt utsagn som ALLTID er SANT kalles for en TAUTOLOGI. Et sammensatt utsagn som ALLTID er USANT kalles for en SELVMOTIGELSE eller en KONTRADIKSJON (eng. contradiction).

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2015

TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 3 Frist: 2014-02-07 Mål for denne øvinga:

Detaljer

datatyper Hva er programmering? Variabler og Informasjonsteknologi 2 Kompetansesemål

datatyper Hva er programmering? Variabler og Informasjonsteknologi 2 Kompetansesemål Variabler og datatyper Gløer Olav Langslet Sandvika VGS Høst 2012 Informasjonsteknologi 2 Hva er programmering? Når du skal bake en kake følger du gjerne en oppskrift. Først er det beskrevet hva kaken

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Notat 2, ST Sammensatte uttrykk. 27. januar 2006

Notat 2, ST Sammensatte uttrykk. 27. januar 2006 Notat 2, ST1301 27. januar 2006 1 Sammensatte uttrykk Vi har sett at funksjoner ikke trenger å bestå av annet enn ett enkeltuttrykk som angir hva funksjonen skal returnere uttrykkt ved de variable funksjonen

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet ut? Variabler,

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til Auditorieøving 1 1 Teori 1. Hvilket tall kan IKKE lagres

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 2 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.02.14 Den andre obligatoriske oppgaven tar for seg forelesning 5, 6, og 7 som dreier seg om

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde

Norsk informatikkolympiade 2014 2015 1. runde Norsk informatikkolympiade 2014 2015 1. runde Sponset av Uke 46, 2014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Diofantiske likninger Peer Andersen

Diofantiske likninger Peer Andersen Diofantiske likninger av Peer Andersen Peer Andersen 2013 Innhold Når en diofantisk likning har løsning... 3 Generell løsning av den diofantiske likningen... 4 Løsningsmetode når vi kjenner en spesiell

Detaljer

Hashfunksjoner. Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter

Hashfunksjoner. Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter Hashfunksjoner Hashfunksjoner Hashfunksjonen beregner en indeks i hashtabellen basert på nøkkelverdien som vi søker etter Hash: «Kutte opp i biter og blande sammen» Perfekt hashfunksjon: Lager aldri kollisjoner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

Vi skal nå lære hvordan vi kan finne en formel for å bestemme det n te elementet i en tallfølge av 2. grad.

Vi skal nå lære hvordan vi kan finne en formel for å bestemme det n te elementet i en tallfølge av 2. grad. Differensligninger Vi startet med en repetisjon om løsning av. ordens differensligninger.. ordens differensligning. a n = c 1 a n-1 + c a n-, der c 1 og c er konstanter. Vi ser her at neste ledd i følgen

Detaljer

Algoritmer og datastrukturer Vedlegg A.2 BitOutputStream

Algoritmer og datastrukturer Vedlegg A.2 BitOutputStream Vedlegg A.2 BitOutputStream Side 1 av 6 Algoritmer og datastrukturer Vedlegg A.2 BitOutputStream A.2 BitOutputStream A.2.1 Instansiering og skriving BitOutputStream har fire konstruktører og to konstruksjonsmetoder

Detaljer

INF1000 (Uke 15) Eksamen V 04

INF1000 (Uke 15) Eksamen V 04 INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a

Detaljer

INF1000 (Uke 15) Eksamen V 04

INF1000 (Uke 15) Eksamen V 04 INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3

TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 Terje Rydland - IDI/NTNU 2 if (be): else (not_to_be): 3 Læringsmål og pensum

Detaljer

Plan for fagdag 1. Plan: Viktig å få gjort arbeidsoppgavene! Differanse- og summefølger. Bruk av kurvetilpasning. Fagdag R

Plan for fagdag 1. Plan: Viktig å få gjort arbeidsoppgavene! Differanse- og summefølger. Bruk av kurvetilpasning. Fagdag R Plan for fagdag 1 R2-04.09.2014 Plan: Teori: Litt om de vanlige teknikkene for å finne ut av følger og rekker: - Differanse- og summefølger. - Bruk av kurvetilpasning. (Regresjon.) - Figur-tall. - Sammenhengen:

Detaljer

if (be): else (not_to_be): TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap.

if (be): else (not_to_be): TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 Terje Rydland - IDI/NTNU 2 if (be): else (not_to_be): 3 Læringsmål og pensum

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015

MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015 MAT-INF1100 Oblig 1 Teodor Spæren, brukernavn teodors September 1, 015 1 Oppgave 1 I de oppgavene som krever at man gjør om et rasjonalt tall i intervallet (0, 1) om til en binærsifferutvikling, fant jeg

Detaljer

MA1301 Uke 1: In(tro)duksjon

MA1301 Uke 1: In(tro)duksjon MA1301 Uke 1: In(tro)duksjon Magnus Bakke Botnan 21. august 2012 Magnus Bakke Botnan () MA1301 Uke 1: In(tro)duksjon 21. august 2012 1 / 14 Introduksjon Praktisk Praktisk Faglærer Magnus B. Landstad: magnus.landstad@math.ntnu.no

Detaljer

Kodetime for Nordstrand barneskole

Kodetime for Nordstrand barneskole Kodetime for Nordstrand barneskole av Veronika Heimsbakk og Lars Erik Realfsen 1 Hva er Processing? Processing er et programmeringsspråk som er gratis, og tilgjengelig for alle! Man kan programmere i Processing

Detaljer

Programmeringsspråket C

Programmeringsspråket C Programmeringsspråket C Bakgrunn Implementasjon av Unix ved AT&Ts laboratorium i Palo Alto 1960 75. Navnet kommer fra BCPL B C. Opphavsmannnen heter Dennis Ritchie. ANSI standard i 1988; omtrent alle følger

Detaljer

Statisk semantisk analyse - Kap. 6

Statisk semantisk analyse - Kap. 6 Statisk semantisk analyse - Kap. 6 Generelt om statisk semantisk analyse Attributt-grammatikker Symboltabell Datatyper og typesjekking 3/15/11 1 Generelt om semantisk analyse Oppgave: Sjekke alle krav

Detaljer

Simulering - Sannsynlighet

Simulering - Sannsynlighet Simulering - Sannsynlighet Når regnearket skal brukes til simulering, er det et par grunninnstillinger som må endres i Excel. Hvis du får feilmelding om 'sirkulær programmering', betyr det vanligvis at

Detaljer

Tillegg til kapittel 2 Grunntall 9

Tillegg til kapittel 2 Grunntall 9 18.09.2013 Kvadratsetningene Tillegg til kapittel 2 Grunntall 9 Nytt læringsmål i revidert læreplan 2013 Mål for det du skal lære: kunne bruke kvadratsetningene til å multiplisere to parentesuttrykk Bjørn

Detaljer

Det du skal gjøre i denne oppgava er først å sette opp bakgrunnen til spillet og så rett og slett å få firkanter til å falle over skjermen.

Det du skal gjøre i denne oppgava er først å sette opp bakgrunnen til spillet og så rett og slett å få firkanter til å falle over skjermen. Tetris Introduksjon Processing Introduksjon Lag starten på ditt eget tetris spill! Det du skal gjøre i denne oppgava er først å sette opp bakgrunnen til spillet og så rett og slett å få firkanter til å

Detaljer

Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000

Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000 Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000 Leveringsfrist Oppgaven må leveres senest fredag 30. september kl 16.00. Viktig: les slutten av oppgaven for detaljerte leveringskrav. Formål Formålet

Detaljer

Statisk semantisk analyse - Kap. 6

Statisk semantisk analyse - Kap. 6 Statisk semantisk analyse - Kap. 6 Generelt om statisk semantisk analyse Attributt-grammatikker Symboltabell Datatyper og typesjekking 3110/4110-2004 5110-2009 3/3/2009 1 Generelt om semantisk analyse

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

Læringsmål og pensum. if (be): else (not_to_be):

Læringsmål og pensum. if (be): else (not_to_be): 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og

Detaljer

Velkommen til. INF våren 2016

Velkommen til. INF våren 2016 Velkommen til INF1010 - våren 2016 Denne uken (onsdag og torsdag): Om INF1010 Java datastrukturer Klasser med parametre i Java Stein Gjessing Institutt for informatikk Universitetet i Oslo 1 1 INF1010

Detaljer

Programmeringsspråket C Del 2

Programmeringsspråket C Del 2 Programmeringsspråket C Del 2 Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no 30.08.2005 inf1060 H05 1 Et eksempel Dette er lite eksempel som ber om et tall, leser det og så teller fra det ned til 0. 30.08.2005

Detaljer

Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000

Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000 Oblig2 - obligatorisk oppgave nr 2 (av 4) i INF1000 Leveringsfrist Oppgaven må leveres senest fredag 29 september kl 1600 Viktig: les slutten av oppgaven for detaljerte leveringskrav Formål Formålet med

Detaljer

Bakgrunnen for INF2100. Velkommen til INF2100. Prosjektet. Hva gjør en kompilator?

Bakgrunnen for INF2100. Velkommen til INF2100. Prosjektet. Hva gjør en kompilator? Kursopplegg Velkommen til INF2100 Bakgrunnen Bakgrunnen for INF2100 Jeg er Dag Langmyhr (dag@ifi.uio.no). Dagens tema: Hva går kurset ut på? Bakgrunn for kurset Hvordan gjennomføres kurset? Hvordan får

Detaljer

Eksempel: Body Mass Index (BMI)

Eksempel: Body Mass Index (BMI) Ole Chr. Lingjærde 1 Forelesning inf1000 - Java 3 Tema: Forgreninger Løkker Arrayer Ole Christian Lingjærde, 5. september 2013 1 Eksempel: Body Mass Index (BMI) Vi skal lage et program som beregner BMI

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon:

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon: EKSAMENSOPPGAVE Eksamen i: INF-1100 Innføring i programmering og datamaskiners virkemåte Dato: Tirsdag 8. desember 2015 Tid: Kl 09:00 13:00 Sted: Teorifagbygget, Hus 1 Tillatte hjelpemidler: Ingen Oppgavesettet

Detaljer

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3.

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3. Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl 6.. Viktig: les slutten av oppgaven

Detaljer

Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000 v2009

Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000 v2009 Oblig2 - obligatorisk oppgave nr. 2 (av 4) i INF1000 v2009 Leveringsfrist Oppgaven må løses individuelt og leveres senest fredag 20. februar kl 16.00 via Joly. Viktig: les slutten av oppgaven for detaljerte

Detaljer

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til

Detaljer

Viktig. Rettet i koden. Oppgaven. Obligatorisk oppgave 2 - Kort om oppgaven og litt informasjon. Fredrik Sørensen OMS-gruppen, IfI

Viktig. Rettet i koden. Oppgaven. Obligatorisk oppgave 2 - Kort om oppgaven og litt informasjon. Fredrik Sørensen OMS-gruppen, IfI Viktig Obligatorisk oppgave 2 - Kort om oppgaven og litt informasjon Fredrik Sørensen OMS-gruppen, IfI Ny patch (patch_oblig2.zip) legges ut på kurssiden i dag. Oblig 1 vil bli rettet denne uken Sjekk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

INF1000 : Forelesning 1 (del 2)

INF1000 : Forelesning 1 (del 2) INF1000 : Forelesning 1 (del 2) Java Variable og tilordninger Heltall, desimaltall og sannhetsverdier Utskrift på skjerm Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet

Detaljer

Datastrukturer for rask søking

Datastrukturer for rask søking Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer