Nivå 1: Formelspråket. Formelle bevis: språk-nivåer 2: Sekventer, P 1,P 2,...,P Nivå n Q, n 0, omtaler formler. En - er en påstand om logisk konsekven

Størrelse: px
Begynne med side:

Download "Nivå 1: Formelspråket. Formelle bevis: språk-nivåer 2: Sekventer, P 1,P 2,...,P Nivå n Q, n 0, omtaler formler. En - er en påstand om logisk konsekven"

Transkript

1 DERFOR: i i<k A[i]=0 Av og A[k]=0 og j<k j =k følger A[j]=0 DERFOR: A[i]=0 og A[k]=0 Av og følger A[j]=0 i i<k j k DERFOR: A[i]=0 og A[k]=0 Av følger A[j]=0 i i<k j k DERFOR: A[i]=0 og A[k]=0 Av følger A[i]=0 i i<k i i k DERFOR: i i<k A[i]=0 A[k]=0 Av følger i i k A[i]=0 DERFOR: ( i i<k A[i]=0) A[k]=0 i i k A[i]=0 Teorem Ferdiglaget formelt bevis Av i i<k A[i]=0 og j<k følger j<k A[j]=0 og A[j]=0 1: Av A[k]= 0 og j = k følger A[j]= 0 2: 1

2 Nivå 1: Formelspråket. Formelle bevis: språk-nivåer 2: Sekventer, P 1,P 2,...,P Nivå n Q, n 0, omtaler formler. En - er en påstand om logisk konsekvens: at teoremdelen, sekvent formelen Q, følger logisk av antagelsene, formlene P 1,...,P n. S deduksjonsregler) omtaler Bevisregler (inferensregler, 1;S 2 ;...;S m T, m 0, beskriver en type Bevisregelen sekventer. Nivå 3: bevisskritt: at konklusjonen, en sekvent av formen T, formelle anses som bevist dersom hver av premissene, sekventer av kan formene S 1,...,S m, er bevist. - P Q; - P - Q Eksempel: Modus ponens kan uttrykkes slik: 4: Naturlig språk, ispedd matematiske notasjoner, blant Nivå metavariable, brukes til å omtale alt det andre. annet 2

3 Sekvent-kalkyle (SC) : P - P TRN : RFL 1 - P,, 1, 2 - P, 1 - P ;, 2,P - Q, 1, 2 - Q, - P, x t - P x t AI : VI : hver, angir en mengde antagelser listet opp i vilkårlig hvor Reglene uttrykker egenskapene til logisk konsekvens. rekkefølge. (Reeksivitet): P følger av P (for veldenert formel P ). RFL (Transitivitet): Hvis P følger av antagelser, 1, og Q følger TRN P (og antagelser, 2 ), da følger Q av, 1 (og, 2 ). av (Introduksjon av Antagelse): En logisk konsekvens ødelegges AI av ekstra antagelser. ikke (Variabel-Instansiering): En fri variabel x av type T står for VI en vilkårlig T -verdi. Den kan derfor erstattes av vilkårlig (veldenert) T -uttrykk. Alle frie x-forekomster i sekventen står for samme verdi. 3

4 er her underforstått at hver premiss kan ha (ekstra) antagelser. x meng- Det Isåfall skal de nedarves til konklusjonen., er av som har fri forekomster av variabelen x. (Antagelseden antagelser fri x i VI nedarves på vanlig måte, dvs. uforandret.) uten Symbolene P, Q,,,x,t er å forstå som metavariable, Merknad: variable på et språknivå høyere enn formelspråket. P, Q står dvs. formler,, for en formelmengde, metavariabelen x står for en for i formelspråket (som ikke behøver å hete x), og t står variabel Forkortede deduksjonsregler - P ; P - Q - Q P - - P,, x - P (, x ) x t - P x t TRN : AI : VI : for et uttrykk (underforstått av samme type som variabelen x). 4

5 Bevis i predikatkalkylen av funksjoner som opptrer i formelspråket kan fastlegges Betydningen dels ved aksiomer, dels ved bevisregler. Det er tradisjon å uttrykke betydningen av de logiske operatorene ved bevisregler, for mens andre funksjoner blir beskrevet ved aksiomer. deduksjon, ND, (se neste foil) er et slikt sett av bevisregler. Naturlig Det består av regler for introduksjon (I) og eliminasjon (E) av logiske operatorer i teoremdelen av sekventer. Reglene til elementære tankeskritt ved resonnement om formler i svarer ordens predikatkalkyle. 1. uten aksiomer i tillegg er et bevissystem for predikatkalkylen ND sådan. De bevisbare teoremer kalles her tautologier. En som er en formel som er sann for alle kombinasjoner av tautologi for fri variable og for alle tolkninger av funksjoner andre verdier enn logiske operatorer. 5

6 Naturlig deduksjon (ND) P ; - Q - P Q - - P Q - P - P Q - Q og I : E : P - P Q og - Q - - P Q - P Q; P - R; Q - R - R E : I : P - Q - P Q - P Q; - P - Q E : I : P - x P - x P - P x t - ( ) E : I : P x t - - x P - x P ; P - Q - Q ( ) I : E : - P ; - P - f P - f - P fe : fi : E : - P - P ( ): Bare P og evt. antagelser for første premiss i E kan ha fri x. 6

7 Bevis for (A B C) (A C) A - A A B C - A B C I A B A - E A B - C, A C I A B - C A C I - (A B C) (A C) er en trestruktur av sekventer, hvor hver bladnode er Beviset trivial-sekvent (en sekvent av formen P - P ), og hvor hver en node fremkommer som konklusjonen i (en instans av) en indre Rotnoden er selve teorem-sekventen. ND-regel. 7

8 for Bevis P) P) P P P P (P (P P P I - P P P I - P P P fi fi P, P) - (P f P, P) - (P f fe P) - (P P fe P) - (P P fi (P P) - f fe - (P P) E - P P 8

9 system S er sunt hvis alle formler bevisbare i S er gyldige. S Et komplett hvis alle gyldige formler i formelspråket er bevisbare er Bevisbarhet og gyldighet logisk system (sett av bevisregler og evt aksiomer) S bør svare Et korrekt logisk tenkning basert på den matematiske betydnin- til av formler i formelspråket. En formel F er bevisbar i S om gen nnes et S-bevis for sekventen - F. F er gyldig om den har det t for alle verdikombinasjoner av fri variable, og for alle verdien av andre funksjoner enn de logiske operatorene, som tolkninger tilfredsstiller alle aksiomer. i S. kan vises at ND-systemet, utvidet med sekvent-regelen RFL, Det er sunt og komplett for selve predikatkalkylen, dvs. for tau- både tologier. 9

10 intet konsistent aksiomsett er sterkt nok til at alle gyldige at om de aktuelle funksjonene kan bevises formelt. Det setninger altså si at intet formelt system kan være komplett for slike vil strukturer. naturlige tall med addisjon, multiplikasjon og likhet er Allerede nok til at intet komplett system kan nnes. komplisert har dette få konsekvenser for resonnementer relevante Heldigvis programutvikling. for Gödel's ufullstendighetsteorem Et aksiomsett uten selvmotsigelser sies å være konsistent. sats avslører en fundamental svakhet ved formallogiske Gödel's Den sier at det nnes matematiske strukturer slik systemer. 10

11 er systematiske og rimelig enkle. Systematikken består ND-bevis at uttrykk som stammer fra antagelser, brytes ned til mindre i Konstruksjon av bevis ved hjelp av E-regler; som deretter settes sammen til enheter ønskede teoremet ved hjelp av I-regler, samtidig med at an- det tagelsene (som regel alle) blir kastet av. å lage slike bevis møter vi vansker av særlig to slag: For Hvordan ser trivialsekventene ut som det lønner seg å starte med? Det hender at bevis ved selvmotsigelse, dvs. fi fulgt av fe, må benyttes på lite naturlige måter (se beviset for P P ). 11

12 konstrueres baklengs, der hvor hovedoperatoren i teoremdelebevis bestemmer den I-regel som kan brukes. Bakoverkonstruksjon I-regel introduserer hovedoperatoren i teoremdelen av en Hver Dermed blir strukturen i et ND-bevis i noen grad sekvent. bestemt av strukturen til teoremet. Et stykke på vei kan ND- I-regler bestemmer også premissene entydig ut fra konklusjonen. Noen Det gjelder bl.a. I, I og I. Her er også premissene hvis konklusjonen er det, slik at man ikke ledes inn bevisbare blindgater. (Det siste gjelder ikke for I, som derfor er lite i brukbar til bakoverkonstruksjon.) denerer et system BPC med bevisregler analoge med NDreglene, Vi men bedre egnet for bakoverkonstruksjon. BPC in- T-regler og A-regler som svarer til operatorintroduksjon neholder teoremdelen av en sekvent hhv. i en valgt antagelse. i 12

13 - P. 13 T : Bakover-konstruksjon: BPC P ; - Q - P Q - A : P,Q - R P Q - R T : P - Q - P Q Q - P - P Q A : - R; P - Q R P - Q R og P - Q - P Q - R; P - Q R P - Q R T : A : T : P - Q Q - P A : Q - P P - Q T : P x x - x P - x ny A : P x t, x - P Q x - P Q T : P x x t P - - x P A : P x x - Q x P - Q x ny er en metaoperator som negerer ved å sette til eller fjerne, Overstrekning at aldri oppstår, hhv. bytte t og f. t svarer til en tom antagelse som slik alltid kan underforståes. Dermed har f.eks. T spesialtilfellet P - f

14 Bruk av BPC alle reglene i BPC er konstruktive, i den forstand at premissene Nesten er bestemt tekstlig av konklusjonen. Unntakene er T A, hvor uttrykket t ikke fremgår direkte. (Det er imidlertid og å forsøke uttrykk som bygger på variable og funksjoner som nok i konklusjonen og evt. aksiomer, pluss i noen tilfeller forekommer konstanter, høyst en pr. type som opptrer.) ekstra at noen av reglene i BPC introduserer nye antagelser i Merk Ved mekanisk bruk av BPC-regel til bakoverkon- premissen(e). må antagelser i konklusjonen generelt videreføres til struksjon regelens premisser. Dette leder ofte til sekventer med logisk alle redundante antagelser og dermed mindre oversiktlige bevis. beskytter mot blindgater, men ikke mot dumme, BPC-reglene unyttige bakoverskritt, f.eks. operasjon på redundant antag- dvs. else, dårlig valg for t i T eller A, eller operasjon på en P i P -P. 14

15 AI, A R(x, y) - R(x, y) Bevis konstruert baklengs R(x, y), R(x, y) - R(y, y) T R(x, y) - R(x, y) R(y, y) A y) (R(x, - y)) y) R(y, R(x, AI, T AI, T (R(x, y) R(y, y)) - R(x, x) R(x, y) (R(x, y) R(y, y)) - (R(x, x) R(x, y)) z: T R(x, z) R(z, y) T T (R(x, y) R(y, y)) - z : T R(x, z) R(z, y) T - (R(x, y) R(y, y)) z: T R(x, z) R(z, y) - z : T R(x, z) R(z, y) 15

16 Generaliserte bevis bakoverkonstruksjon med BPC er det naturlig å generalisere Ved trivialsekvent til å være av formen, - P, hvor enten begrepet Pɛ, eller Q, Qɛ, for en formel Q. å vise andre teoremer enn tautologier trengs aksiomer om For (andre enn logiske operatorer) som inngår. Aksiomer, funksjoner A, er legale bladnoder i et bevis. For å vise en (ny) bevisregel - regelens premisser legale bladnoder. er er tidligere viste teorem-sekventer legale bladnoder, og Generelt ihht. bevist inferensregel er legale. bevisskritt manuell bevisføring anbefales det å benytte BPC til bakoverkonstruksjon Ved et stykke på vei, mens ND benyttes til å trekke slut- fra aksiomer og avleirede antagelser. (Ved å ta aksiomene ninger antagelser for teoremet kan BPC evt. benyttes hele veien.) som 16

17 kan håndteres formelt v.hj.a. regel for substitusjon, en spesialregel for Likhet over Bool, samt aksiomer om reeksivitet, et for hver type som opptrer. likhet Predikatlogikk med likhet EQ :,α t - P α t ; - t=t, α t - P α t B= : P -Q; Q -P -P=Q α i EQ er en hjelpevariabel som peker ut de forekomstene av t i konklusjonen EAX T : - x:t x=x som skal erstattes av t ved bakoverkonstruksjon. - x:t x=x y =z - y =z x=y - x=y Vi viser at likhetsrelasjonen er symmetrisk og transitiv. E y =y x=y - x=y - EQ, : P t: y=α, x, t y : - x=y y =x T x=y y =x - EQ, : P t: α=z, x, t y : x=y, - y=z x=z A x=y - y=z x=z T x=y y=z x=z - 17

18 i i<k A[i]=0 - i i<k A[i]=0 (triviell) 1. j<k -j<k (triviell) 2. i i<k A[i]=0 -j<k A[j]=0 (1, E) 3. i i<k A[i]=0, j<k - A[j]=0 (3,2, E) 4. A[k]=0 -A[k]=0 (triviell) 5. j =k - j =k (triviell) 6. A[k]=0, j=k - A[j]=0 (5,6,EQ) 7. i i<k A[i]=0, A[k]=0, j<k j=k - A[j]=0 (4,7, A ) 8. m n (m n)=(m<n m=n) (aksiom) 9. - n (j n)=(j<n j=n) (9, E) (j k)=(j<k j=k) (10, E) i i<k A[i]=0, A[k]=0, j k - A[j]=0 (8,11,EQ) 12. i i<k A[i]=0, A[k]=0 -j k A[j]=0 (12, T ) 13. i i<k A[i]=0, A[k]=0 - i i k A[i]=0 (13, T ) 14. ( i i<k A[i]=0) A[k]=0 - i i k A[i]=0 (14, A ) 15. ( i i<k A[i]=0) A[k]=0 i i k A[i]=0 (15, T ) Hovedeksempel, formelt 18

19 T, EQ (Aksiom - j, k :Int j k j<k j=k) : T, j<k j=k Vis A[j]=0 Anta av antagelser som en LIFO stakk, er det tilstrekkelig å skrive opp hver listen én gang og angi dens skop ved innrykk. Vi benytter antagelser antagelse ved delbevis forover, uten å bry oss med å skrive opp de tilsvarende direkte trivialsekventene. å føre baklengsskritt nedover arket og forlengs bevis mot høyre oppnår vi Ved skrive detaljene ned i den rekkefølge de opptrer under beviskonstruksjonen. å Forslag til bedre notasjoner Hovedeksempel, ( i i<k A[i]=0) A[k]=0 i i k A[i]=0 Vis A : T, A1: i i<k A[i]=0 og A2: A[k]=0 Anta i i k A[i]=0 Vis A : : E A[j]=0 Anta A1 A[j]=0 j<k = j<k = j : A2 =k = A[j]=0 j=k,eq Anta T/A-regler: bruk av BCP {EQ} baklengs, mens A = B,R C angir angir Her - A; - B et R-skritt forover (R ɛnd {EQ}):. Hvis det er mulig å bruke - C 19

20 Likhetslogikk likhetslogikk er alle aksiomer kvantorfrie ligninger, evt. av formen I P =t. Formalsystemet har 2 regler, EQ og en regel for å instansiere variable (som svarer til I fulgt av E). Vis m<m+1. Eksempel: A1: - t x t Aksiomer: - x=x t A2: Bevis: - x<y. A3: x<y+1 x=y m =m m<m t m<m t A1 A2 A3 m<m+1 at beviset konstrueres ved å anvende EQ baklengs: teoremet Merk er utgangspunktet, og sluttresultatet svarer til trivialsekventen t - t. Instansiering av aksiomer er derimot forlengs bevisskritt. Bevismåten kalles termomskriving. 20

v : T, kan bare ha verdi av typen T. n =0 slyfes alltid parentesene. Typet uttrykkssprak type representerer en verdimengde. variabel, deklarert funksjon, herunder karakteriseres syntaktisk ved a angi navn

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo INF4170 { Logikk Forelesning 1: Utsagnslogikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 20. august 2013 Dagens plan 1 Utsagnslogikk 2 Sekventkalkyle 3 Sunnhet 4 Kompletthet Institutt

Detaljer

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2.

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2. Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet 1 Mengdelære III 1.1 Multimengder Multimengder Mengder der antall forekomster av hvert element teller Definisjon (Multimengde). En

Detaljer

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007 Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å

Detaljer

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.

Detaljer

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo 9. februar 2010 (Sist oppdatert: 2010-02-09 15:10) Utsagnslogikk INF3170

Detaljer

Logiske symboler. Ikke-logiske symboler. Konnektiver Kvantorer Har fast tolking

Logiske symboler. Ikke-logiske symboler. Konnektiver Kvantorer Har fast tolking Inf 3170 Logiske symboler Konnektiver Kvantorer Har fast tolking Ikke-logiske symboler Relasjonssymboler Funksjonssymboler Ariteten er alltid gitt Tolkningen kan variere Vi får formelspråket Start med

Detaljer

INF1800 Forelesning 15

INF1800 Forelesning 15 INF1800 Forelesning 15 Utsagnslogikk Roger Antonsen - 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk Introduksjonseksempel Hvordan finne ut om en gitt formel er en

Detaljer

INF3140 Modeller for parallellitet INF3140/4140: Programanalyse

INF3140 Modeller for parallellitet INF3140/4140: Programanalyse INF3140/4140: Programanalyse Uke 4, side 1. Hvordan sjekke egenskaper ved programmer? Testing eller debugging øker tilliten til programmet ved prøving, men gir ingen garanti for korrekthet Operasjonell

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Sekventkalkyle for utsagnslogikk Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59)

Detaljer

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 1 Sekventkalkyle 1.1 Semantikk for sekventer Semantikk for sekventer Definisjon 1.1 (Gyldig

Detaljer

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet Forelesning 4-13. februar 2006 Intuisjonistisk logikk 1 Intuisjonistisk logikk 1.1 Innledning Til na i kurset Det utsagnslogiske spraket: konnektiver og formler Bevissystem: sekventkalkylen LK for klassisk

Detaljer

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig. Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar

Detaljer

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken Forelesning 4: Intuisjonistisk logikk Arild Waaler - 11. februar 2008 1 Intuisjonistisk logikk 1.1 Innledning Til nå i kurset Det utsagnslogiske språket: konnektiver og formler Bevissystem:LK og DPLL for

Detaljer

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170.

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170. Forelesning 4: Repetisjon og førsteordens logikk Christian Mahesh Hansen - 12. februar 2007 1 Repetisjon Motivasjon Er utsagnene sanne? Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170,

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 1 Førsteordens sekventkalkyle 1.1 Introduksjon Vi har til nå sett sekventkalkyle for utsagnslogikk. Vi

Detaljer

var y :{x :T R}; S endvar y

var y :{x :T R}; S endvar y uttrykk av formen some x : T R selekterer ikke-deterministisk Et T -verdi som tilfredsstiller R, det vil si en verdi av subtypen en skal regnes med i den applikative delen av programmeringsspråket, some-uttrykk

Detaljer

INF3170 Forelesning 11

INF3170 Forelesning 11 INF3170 Forelesning 11 Intuisjonistisk logikk Roger Antonsen - 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Innhold Intuisjonistisk logikk 1 Innledning........................................... 1

Detaljer

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008 Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler - 21. januar 2008 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: Martin Giese (martingi@ifi.uio.no) Arild Waaler

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF3170 Logikk Forelesning 7: Sekventkalkyle for førsteordens logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Førsteordens sekventkalkyle 16. mars 2010 (Sist oppdatert: 2010-04-06

Detaljer

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon INF3170 Logikk Dagens plan Forelesning 4: og førsteordens logikk Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 12. februar 2007 3 Institutt for informatikk (UiO) INF3170 Logikk

Detaljer

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel.

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel. INF3170 Logikk Dagens plan Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet 1 Sekventkalkyle Christian Mahesh Hansen 2 Institutt for informatikk, Universitetet i Oslo 3 5. februar 2007

Detaljer

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere! Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:

Detaljer

Intuisjonistisk logikk

Intuisjonistisk logikk INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Intuisjonistisk logikk 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) INF3170 Logikk

Detaljer

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Intuisjonistisk logikk INF3170 Logikk

Detaljer

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk.

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk. INF3170 Logikk Dagens plan Forelesning 9: Arild Waaler 1 Institutt for informatikk, Universitetet i Oslo 2 Konsistens 19. mars 2007 Institutt for informatikk (UiO) INF3170 Logikk 19.03.2007 2 / 28 Innledning

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5. INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen 1 Institutt for informatikk, Universitetet i Oslo 2 5. mars 2007 Institutt for informatikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21. INF3170 Logikk Dagens plan Forelesning 1: Introduksjon. og sekventkalkyle Arild Waaler Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 21. januar 2008 3 Institutt for informatikk

Detaljer

En formel er gyldig hviss den sann i alle tolkninger. Kan dette sjekkes automatisk?

En formel er gyldig hviss den sann i alle tolkninger. Kan dette sjekkes automatisk? Utsagnslogikk En formel er gyldig hviss den sann i alle tolkninger Tolkning = linje i sannhetsverditabell Altså: En formel er gyldig hviss den har T i alle linjene i sin sannhetsverditabell. Dette kan

Detaljer

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet.

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet. INF4170 Logikk Dagens plan Forelesning 10: fri-variabel sekventkalkyle og sunnhet Martin iese 1 Institutt for informatikk, Universitetet i Oslo 14. april 2008 Institutt for informatikk (UiO) INF4170 Logikk

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28 16:50) Førsteordens sekventkalkyle

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Førsteordens sekventkalkyle Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 30. april 2008 Oppsummering Mandag så vi på hvordan vi kan finne uttrykk og termer på infiks form,

Detaljer

Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon.

Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon. INF3170 / INF4171 Predikatlogikk: Semantikk og naturlig deduksjon Andreas Nakkerud 3. september 2015 Eksempel Gitt en similaritetstype 0, 2; 1; 2 bygger vi en struktur (modell) hvor A = {c 1, c 2, a, b},

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Sekventkalkyle for første ordens predikatlogikk uten likhet

Sekventkalkyle for første ordens predikatlogikk uten likhet Sekventkalkyle for første ordens predikatlogikk uten likhet Tilleggslitteratur til INF1800 Versjon 29/9 07 Vi definerer sekventer for predikatlogikk på samme måte som i utsagnslogikk. En sekvent består

Detaljer

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning. Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,

Detaljer

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens)

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens) INF4170 Logikk Dagens plan Forelesning 11: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 31. april 2008 Institutt

Detaljer

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11 Forelesning 33 Repetisjon Dag Normann - 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske repetisjonen av MAT1030. Det som gjensto var kapitlene 11 om trær og

Detaljer

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006 Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Repetisjonsforelesning

Repetisjonsforelesning Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk

Detaljer

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar. Forelesning 16: Repetisjon Christian Mahesh Hansen - 4. juni 2007 1 Kompletthet 1.1 Introduksjon Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Detaljer

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden.

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden. Forelesning 15: Oppgaveløsing Christian Mahesh Hansen - 21. mai 2007 1 Generelle eksamenstips 1.1 Disponér tiden! Sett opp et grovt tidsbudsjett. En tre timers eksamen har 3 * 60 = 180 minutter. Oppgavene

Detaljer

Dagens plan. INF3170 Logikk. Sekventkalkyle Gerhard Gentzen ( ) Innhold. Forelesning 12: Snitteliminasjon. Herman Ruge Jervell. 8.

Dagens plan. INF3170 Logikk. Sekventkalkyle Gerhard Gentzen ( ) Innhold. Forelesning 12: Snitteliminasjon. Herman Ruge Jervell. 8. INF3170 Logikk Dagens plan Forelesning 12: Herman Ruge Jervell 1 Institutt for informatikk, Universitetet i Oslo 2 8. mai 2006 Institutt for informatikk (UiO) INF3170 Logikk 08.05.2006 2 / 27 Regler Innhold

Detaljer

INF3170 Forelesning 4

INF3170 Forelesning 4 INF3170 Forelesning 4 Sunnhet og kompletthet - 16. februar 2010 (Sist oppdatert: 2010-02-09 17:43) Dagens plan Innhold Sunnhet 1 Introduksjon.......................................... 1 Bevaring av falsifiserbarhet..................................

Detaljer

: set T, add : set T T set T

: set T, add : set T T set T 1 Likhet over en vilkårlig type T Likhet ^=^ : T T Bool er en relasjon over GU T som skal tilfredsstille følgende krav: - x = x (reeksivitet) E1: - x = y y = x (symmetri) E2: E3: - x = y y = z x = z (transitivitet)

Detaljer

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk

Detaljer

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen INF3170 Logikk Forelesning 14: Avanserte emner Dagens plan 1 Christian Mahesh Hansen 2 Dualiteter Institutt for informatikk, Universitetet i Oslo 3 14. mai 2007 4 5 Teorier, aksiomer og ufullstendighet

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Metode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon.

Metode for a avgjre gyldighet av formler. En av verdens raskeste teorembevisere, Vampire, bruker resolusjon. Forelesning 15: Avanserte emner Roger Antonsen - 29. mai 2006 1 Resolusjon 1.1 Overblikk John Alan Robinson, 1965. Metode for a avgjre gyldighet av formler. Populr, eektiv og enkel a implementere. En av

Detaljer

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn Forelesning 26 Trær Dag Normann - 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot barn barn barnebarn barnebarn barn blad Her er noen

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 7

INF3170 Logikk. Ukeoppgaver oppgavesett 7 INF3170 Logikk Ukeoppgaver oppgavesett 7 Unifisering I forelesning 10 så vi på en unifiseringsalgoritme som finner en mest generell unifikator for to termer. I automatisk bevissøk har vi imidlertid bruk

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 1 Repetisjon: Førsteordens syntaks og semantikk Et førsteordens språk L består av: 1. Logiske symboler

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 26: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk

Detaljer

Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005

Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005 Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005 Oppgave 1 La L være førsteordens språket {a,b,f,r} hvor a og b er konstantsymbol, f er et funksjonsymbol med aritet 2 og

Detaljer

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fortsettelse 6. april 2010 (Sist oppdatert: 2010-04-06 14:24) INF3170 Logikk 6.

Detaljer

x A e x = x e = x. (2)

x A e x = x e = x. (2) Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,

Detaljer

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo 6. april 2010 (Sist oppdatert: 2010-04-06 14:23) Fortsettelse INF3170 Logikk 6.

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk

Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk Sunnhet og kompletthet av sekventkalkyle for utsagnslogikk Sekventkalkyle System for å bevise sekventer fra aksiomer ved hjelp av regler Bevis er oppstilling som viser hvordan nye sekventer kan avledes

Detaljer

INF1800 Forelesning 17

INF1800 Forelesning 17 INF1800 Forelesning 17 Førsteordens logikk Roger Antonsen - 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon og kommentarer Vi skal nå kunne Utsagnslogikk: syntaks og semantikk

Detaljer

Karakteriseringen av like mengder. Mengder definert ved en egenskap.

Karakteriseringen av like mengder. Mengder definert ved en egenskap. Notat 2 for MAT1140 2 Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor

Detaljer

1 Utsagnslogikk (10 %)

1 Utsagnslogikk (10 %) 1 Utsagnslogikk (10 %) a1) A A, C A A C A B A B (A C) B, C B B C B B, C A, C B, C A C B C A C B C B (A C) A (B C) B (A C) Utledningen lukkes ikke og vi får følgende valuasjon v som falsifiserer formelen:

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 17: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon

Detaljer

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen

Forelesning januar 2006 Introduksjon, mengdelre og utsagnslogikk. 1 Praktisk informasjon. 1.1 Forelesere og tid/sted. 1.2 Obliger og eksamen Forelesning 1-23. januar 2006 Introduksjon, mengdelre og utsagnslogikk 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: { Christian Mahesh Hansen (chrisha@ifi.uio.no) { Roger Antonsen (rantonse@ifi.uio.no)

Detaljer

Kapittel 4: Logikk. MAT1030 Diskret Matematikk. Oppsummering. En digresjon. Forelesning 6: Utsagnslogikk og predikatlogikk.

Kapittel 4: Logikk. MAT1030 Diskret Matematikk. Oppsummering. En digresjon. Forelesning 6: Utsagnslogikk og predikatlogikk. MAT1030 Diskret Matematikk Forelesning 6: Utsagnslogikk og predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 4: Logikk 3. februar 2010 (Sist oppdatert: 2010-02-03 12:49) MAT1030

Detaljer

INF1800 Forelesning 20

INF1800 Forelesning 20 INF1800 Forelesning 20 Førsteordens logikk Roger Antonsen - 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:51) Mer om førsteordens logikk Tillukninger Vi har definert semantikk kun for lukkede formler.

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21.

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21. INF3170 Logikk Dagens plan Forelesning 15: Oppgaveløsing Christian Mahesh Hansen 1 Generelle eksamenstips Institutt for informatikk, Universitetet i Oslo 2 21. mai 2007 Institutt for informatikk (UiO)

Detaljer

FOL: syntaks og representasjon. 15. og 16. forelesning

FOL: syntaks og representasjon. 15. og 16. forelesning FOL: syntaks og representasjon 15. og 16. forelesning Førsteordens logikk Førsteordens logikk: et formelt system som man bruker til å representere og studere argumenter. Som utsagnslogikk, men mer uttrykkskraftig,

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:50) Mer om førsteordens

Detaljer

Mer om førsteordens logikk

Mer om førsteordens logikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Mer om førsteordens logikk Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22

Detaljer

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8.

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8. INF3170 / INF4171 Predikatlogikk: kompletthet, kompakthet Andreas Nakkerud 8. september 2015 Forberedelse Theorem La x være en variabel som ikke forekommer i Γ eller i φ. (i) Γ φ Γ[x/c] Γ[x/c]. (ii) Hvis

Detaljer

Forelesning 31: Repetisjon

Forelesning 31: Repetisjon MAT1030 Diskret Matematikk Forelesning 31: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 31: Repetisjon 18. mai 2010 (Sist oppdatert: 2010-05-18 14:11) MAT1030 Diskret Matematikk

Detaljer

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L:

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L: INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Repetisjon: Førsteordens syntaks og semantikk

Detaljer

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens)

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens) INF3170 Logikk Dagens plan Forelesning 16: Repetisjon Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 4. juni 2007 3 Institutt for informatikk (UiO) INF3170 Logikk 04.06.2007

Detaljer

7 Ordnede ringer, hele tall, induksjon

7 Ordnede ringer, hele tall, induksjon Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 10. februar 2009 (Sist oppdatert: 2009-02-11 01:52) Kapittel 4: Logikk (predikatlogikk)

Detaljer

Deduksjon i utsagnslogikk

Deduksjon i utsagnslogikk Deduksjon i utsagnslogikk Lars Reinholdtsen, Universitetet i Oslo Merknad Dette notatet om deduksjon er ikke pensum, og den behandlingen som Goldfarb gir av emnet fra 33 og utover dekker fullt ut det som

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

Slides til 1.6 og 1.7. Andreas Leopold Knutsen

Slides til 1.6 og 1.7. Andreas Leopold Knutsen Slides til 1.6 og 1.7 Andreas Leopold Knutsen January 17, 2010 Begreper Matematiske resultater/utsagn som er sanne kalles gjerne: Teorem = viktig utsagn Proposisjon/Sats/Setning = litt mindre viktig utsagn

Detaljer

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring Kvantorer MAT1030 Diskret matematikk Forelesning 8: Predikatlogikk, bevisføring Dag Normann Matematisk Institutt, Universitetet i Oslo 6. februar 008 Mandag 04.0.008 introduserte vi predikatlogikk Vi innførte

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 8: Predikatlogikk, bevisføring Dag Normann Matematisk Institutt, Universitetet i Oslo 6. februar 2008 Kvantorer Mandag 04.02.2008 introduserte vi predikatlogikk Vi

Detaljer

MAT1030 Forelesning 6

MAT1030 Forelesning 6 MAT1030 Forelesning 6 Logikk, predikatlogikk Roger Antonsen - 28. januar 2009 (Sist oppdatert: 2009-01-28 12:23) Kapittel 4: Logikk (utsagnslogikk) Mer om parenteser Eksempel. (p q r) (p r) (q r) Her mangler

Detaljer

LØSNINGSFORSLAG EKSAMEN V06, MA0301

LØSNINGSFORSLAG EKSAMEN V06, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket

Detaljer

Det betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F.

Det betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F. Forelesning 7 Dag Normann - 4. februar 2008 Oppsummering Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel og de utsagnslogiske bindeordene,,, og. Vi har sett hvordan vi kan undersøke egenskapene

Detaljer