50 AR.

Størrelse: px
Begynne med side:

Download "50 AR. www.romfart.no"

Transkript

1 O 50 AR

2 INNHOLD ROMFART NORSK ASTRONAUTISK 1951 Utgiver: Norsk Astronautisk Forening Postboks 52 Blindern 0313 Oslo Redaktør: Øyvind Guldbrandsen Sideutlegg: Øyvind Guldbrandsen Per Arne Marthinsen eromfart / Erik Tronstad Kontakt: Telefon: e-post: (flexinummer) naf@romfart.no redaksjonen@romfart.no Bankkontonr.: Organisasjonsnr.: Trykk: FORENING Tøyen Trykk A/S Tvetenveien 162, 0671 Oslo Utgivelsesfrekvens: 4 nummer per år Opplag: 950 ISSN Årgang 38 - Nr. 143 (Nr ) Omslaget: 4. oktober 2007 var det 50 år siden Sovjetunionens oppskyting av Sputnik 1 innledet romalderen og sjokkerte verden, særlig USA, som kastet seg i gang med et utviklingsrace uten like i historien. Bare tolv år senere hadde de en mann på Månen. Forsiden viser en av de to første, Buzz Aldrin, som for øvrig kommer til Oslo på Astrofestivalen den 18. november i år. Det innmonterte bildet av Jorden er tatt av Japans asteroidesonde Hajabusa. Baksiden er fra den siste måneferden, Apollo 17, i Innfelt er Sojuz-versjonen av Sovjetunionens bærerakett R-7, som har vært en rød tråd gjennom hele romalderen. Varianter har skutt opp Sputnik 1 (baksiden, øverst t.h.), et meget stort antall andre satellitter, samt mange romsonder og alle Sovjets/Russlands bemannede romfartøy. Dette inkluderer Vostok 1 med historiens første romfarer Jurij Gagarin, og Sojuz-romfartøyene som idag benyttes til den internasjonale romstasjonen ISS (baksiden, t.h.). ROMFART nr år siden Sputnik 1 Side 3 Andre romjubiléer Side 10 Romdagen 2007 Side 11 Kinas romprogram - del 3 Side 12 India i rommet Side 18 STS-118 til ISS Side 20 Phoenix på vei mot Mars Side 32 Dawn mot Ceres og Vesta Side 44 Nytt fra Saturn: Iapetus Side 52 Oppskytingsoversikt Side 56 Opphavsrett: Hele eller deler av artikler eller bilder fra Norsk Astronautisk Forenings publikasjoner kan kun gjengis etter tillatelse fra redaktøren og/eller artikkelforfatteren/fotografen og dersom navn på kilde (Romfart nr. XX) forfatter/fotograf og Norsk Astronautisk Forening oppgis. Abonnement på Romfart / medlemskap i Norsk Astronautisk Forening ( Abonnement på Romfart følger med medlemskap i Norsk Astronautisk Forening, som også inkluderer nyhetsbulletinen Romfart Ekspress, nyhetsmeldingene eromfart (pr. e-post) og innbydelser til foreningens møter, foredrag, arrangementer og ekskursjoner. Priser: Personlige medlemmer: Kr 195,- pr. år. Gruppemedlemmer (info i tre eks.): Kr 370,- Jorden, fotografert fra den europeiske meteorologiske satellitten MSG-1 den 27. mars Romfart ROMFART

3 romhistorie 50 år siden Sputnik 1 4. oktober 2007 var det 50 år siden Sovjetunionen skjøt opp historiens første satellitt, Sputnik 1. Begivenheten regnes som starten på romalderen. Av Erik Tronstad Oppskytingen av Sputnik 1 Oppskytingen av Sputnik 1 skjedde fra det vi i dag kjenner som Bajkonur-kosmodromen i Kasakhstan. Den gang en av mange republikker i Sovjetunionen, i dag et selvstendig land. Oppskytingen startet klokken Moskva-tid ( norsk tid) 4. oktober På oppskytingsstedet i Kasakhstan var det allerede blitt 5. oktober da Sputnik 1 ble skutt opp og gikk inn i bane. Bæreraketten var en modifisert utgave av langdistanseraketten R-7. R-7 var utviklet for å frakte kjernefysiske våpen mot USA. Noen modifikasjoner var gjort for at den skulle fungere som bærerakett for en satellittoppskyting. Noen minutter etter oppskytingsstart var Sputnik 1 i en jordbane på 228 km x 947 km med en inklinasjon på 65,6 og en omløpstid på 1 time, 36 minutter og 10 sekunder. For første gang var en gjenstand laget av mennesker plassert i bane rundt Jorden. Sputnik 1 var en metallkule med 58 cm diameter som veide 83,6 kg. Fire metallantenner gikk ut fra kulen, to av dem 2,9 m lange og to 2,4 m lange. Om bord var en radiosender som sendte på frekvensene 20,005 MHz og 40,002 MHz. På begge frekvensene kom signalene støtvis med varigheter på 0,2-0,6 sekunder. Det var opphavet til de berømte «pip-pip»-radiosignalene fra satellitten. Strømkilden i Sputnik 1 var batterier, ikke solcellepaneler. Etter tre uker var batteriene oppbrukt, og radiosignalene fra satellitten opphørte. Stor oppmerksomhet Om morgenen 5. oktober 1957 offentliggjorde det sovjetiske nyhetsbyrået Tass en melding som ble gjengitt i morgenutgaven av avisen 3

4 romhistorie Slik så Sputnik 1 ut innvendig. Til venstre og til høyre er de to metallhalvkulene som omsluttet utstyret i satellitten. Slik omtalte ærverdige The New York Times nyheten om Sputnik 1. Pravda. Meldingen var holdt i svært nøkterne, formelle og omstendelige ordelag og var ikke Pravdas hovedoppslag denne morgenen: «I flere år har det i Sovjetunionen vært utført vitenskapelig forskning og eksperimentelt konstruksjonsarbeid på byggingen av kunstige satellitter. Som det allerede har vært rapportert om i pressen, har man i Sovjetunionen planlagt den første oppskytingen av satellitter for realisering med det vitenskapelige forskningsprogrammet til Det internasjonale geofysiske år. Som et resultat av et meget intenst arbeid av vitenskapelige forskningsinstitutter og konstruksjonsbyråer er verdens første kunstige satellitt blitt laget. Den 4. oktober ble denne første satellitten vellykket skutt opp i Sovjetunionen. Ifølge foreløpige data har bæreraketten gitt satellitten den påkrevde hastigheten på omtrent 8000 meter per sekund. I dette øyeblikk går satellitten i en elliptisk bane rundt Jorden. Ferden dens kan observeres i strålingen fra den oppstigende og nedsynkende Solen, ved hjelp av meget enkle optiske

5 romhistorie Mikhail Tikhonravov. Han var en av de fremste drivkreftene bak idéen om å skyte opp en sovjetisk satellitt, og lederen for den såkalte satellittgruppen, som i utredet muligheten for dette. Sergei P. Koroljov, sjefskonstruktør i OKB-1, konstruksjonsbyrået som i dag er kjent som RKK Energia. Frem til sin død i 1966 var han den mest sentrale personen i Sovjetunionens romprogram. instrumenter (kikkerter, teleskoper, osv.).» Dette var langt fra å være noen triumferende tone i retningen: «Vi var først!» eller «Hurra! Vi greide Sputnik 1 under bygging. det!» Begge deler hadde vært høyst berettiget og velfortjent. Reaksjonene i Vesten og i andre deler av verden var helt annerledes. Oppskytingen var en sensasjon, fikk kjempeoppslag på forsiden av alle aviser 5. oktober 1957 og var blant hovedoppslagene i nyhetssendinger på radio og fjernsyn. Slik omtalte ærverdige The New York Times nyheten om Sputnik 1. Først da man i Sovjetunionen så disse reaksjonene, begynte landet selv å forstå at dette hadde gjort langt større inntrykk utenfor landet enn de fleste der hadde tenkt seg. Derfor ble det 6. oktober før Pravda gjorde Sputnik 1 til en stor sak. Sovjeterne selv kalte ikke satellitten for Sputnik 1, men «Jordens kunstige satellitt». I Vesten ble den kalt for Sputnik, det russiske ordet for «satellitt» eller «reisefølge». I dag kaller vi den i Vesten for Sputnik 1, mens russerne fortsatt omtaler den som «den første sovjetiske kunstige satellitten til Jorden». sputnik 1 ikke første satellitt Strengt tatt var Sputnik 1 ikke den første, men den andre satellitten som ble plassert i jordbane. På denne oppskytingen ble både R-7-bærerakettens mye større og tyngre kjernetrinn, Sputnik 1 og nyttelastdekselet over Sputnik 1 plassert i jordbane. Etter at hele denne kombinasjonen var i bane, ble først nyttelastdekselet koblet

6 romhistorie fra. Strengt tatt var derfor nyttelastdekselet historiens første satellitt. Pravda rapporterte 9. oktober 1957 at også nyttelastdekselet var gått inn i bane. Like etterpå ble historiske Sputnik 1 koblet fra kjernetrinnet og begynte å kretse rundt Jorden som et eget, selvstendig legeme. Med denne oppskytingen plasserte altså Sovjetunionen faktisk tre satellitter i jordbane, ikke bare én. All oppmerksomhet ble imidlertid gitt til Sputnik 1. En av flere grunner til det er at det var Sputnik 1 som var nyttelasten for oppskytingen. Viktigst er nok at Sputnik 1 var utstyrt for å fungere som en aktiv satellitt. Ingen har rapportert om sikre observasjoner av nyttelastdekselet, selv om det må ha vært like lyssterkt på himmelen som Sputnik 1. Fordi det hadde mye mindre masse, var det mer utsatt for den lille luftmotstanden i banen det gikk i enn Sputnik 1. Derfor må det ha falt ned i atmosfæren og brent opp lenge før Sputnik 1. Kjernetrinnet var heller ikke en aktiv satellitt i den betydningen vi i dag legger i en satellitt, bare en stor «død» gjenstand i jordbane. Trinnet hadde et telemetrisystem som man lot være på. Signaler fra trinnet ble oppfanget på trinnets andre omløp. Likevel er dette ikke nok til at trinnet normalt regnes som en satellitt. Innvendig var Sputnik 1 fylt med nitrogen med et trykk på 1,3 atmosfærer. Et viftesystem sørget for å utjevne temperaturforskjeller inni satellitten. Den hadde batterier med lang levetid, og den sendte signaler til bakken. Om bord var det dessuten følere som registrerte trykk og temperatur inni satellitten og sendte dataene til bakken. Alle disse egenskapene ved Sputnik 1 skilte den fra nyttelastdekselet og kjernetrinnet og gjorde Sputnik 1 til en mer «ekte» satellitt. Folk over hele verden så og fulgte satellittens bevegelser over nattehimmelen - trodde de. De aller fleste så mest sannsynlig det store kjernetrinnet til R-7-raketten. Lille Sputnik 1 var for liten og lyssvak til lett å kunne ses med det blotte øye. Kjernetrinnet til R-7-raketten Modell av Sputnik 1. hadde en lysstyrke tilsvarende det astronomene angir som størrelsesklasse 1. Tilsvarende for Sputnik 1 var størrelsesklasse 6. Siden banen var så langstrakt, må størrelsesklassen ha variert en del. Det er ukjent om de tallene som her er oppgitt, er størrelsesklasse når objektene var nærmest Jorden, men det er sannsynlig. Et objekt av størrelsesklasse 6 regnes normalt som det svakeste et menneske kan se fra bakken med det blotte øye, det vil si uten noen optiske hjelpemidler. Sputnik 1 kom inn i jordatmosfæren og brant opp 4. januar R-7s kjernetrinn brant opp tidlig i desember Mikhail Tikhonravovs berømte «satellittgruppe» fotografert i De lagde en fremragende rapport som banet veien for et sovjetisk satellittprogram. Sittende fra venstre: Vladimir Galkovskij, Gleb Maksimov, Lidia Soldatova, Tikhonravov og Igor Jatsunskij. Stående fra venstre mot høyre: Grigorij Moskalenko, Oleg Gurko og Igor Bazhinov. Bakgrunnen for R-7 og Sputnik 1 Etter den andre verdenskrig hadde både Sovjetunionen og USA aktive utviklingsprogrammer av rakettvåpen. Sovjetunionen utviklet flere stadig mer avanserte ballistiske raketter for frakt av våpen. Den 20. mai 1954 vedtok den sovjetiske regjeringen formelt å utvikle en interkontinental langdistanserakett, som fikk betegnelsen R-7. Hovedkontraktør for utviklingen ble et konstruksjonsbyrå kjent som «Eksperimentelt kon-

7 romhistorie struksjonsbyrå 1» (OKB-1). Det ble ledet av Sergei Pavlovitsj Koroljov. OKB-1 hadde hundrevis av underkontraktører og fabrikker over hele Sovjetunionen. R-7 var et rent militært prosjekt med ett eneste formål: sende et kjernefysisk stridshode («atombombe») til USA. At små modifikasjoner kunne gjøre den samme raketten til en bærerakett for frakt av gjenstander ut i rommet, var selvsagt noe romentusiaster som Koroljov var meget klar over. Nøyaktig en uke etter at det var gitt klarsignal til Sputnik 1, sendte Koroljov 27. mai 1954 et brev til høytstående ledere i landets militærindustrielle kompleks. Der ba han om å få et formelt klarsignal til Den modifiserte versjonen av R-7 brukt til Sputnik 1. å starte et satellittprogram. En drivkraft bak tanken om et sovjetisk satellittprogram var Mikhail Tikhonravov, en som Koroljov hadde kjent siden 1920-årene. På en vitenskapelig konferanse i mars 1950 hadde Tikhonravov argumentert for at det var teknisk mulig å skyte opp en satellitt og at Sovjetunionen burde starte et program med det formålet. Fra september 1953 ledet Tikhonravov en gruppe som utredet de mange tekniske utfordringene ved å bygge en satellitt og plassere den i bane. Resultatet ble en 442 sider lang rapport som var ferdig i mars Da Koroljov sendte sitt brev 27. mai 1954, la han ved en kopi av Tikhonravovs rapport. Tanken var å bruke en modifisert versjon av R-7 til å skyte opp en 3 tonn tung satellitt. Reaksjonen på Koroljovs fremstøt var lunken. Han fikk ikke grønt lys for dette. Saken svevde halvdød omkring i landets byråkrati. Den 29. juli 1955 annonserte USA at landet kom til å sende opp små satellitter i jordbane i forbindelse med Det internasjonale geofysiske Modell av Sputnik 1 og nyttelastdekselet (til høyre). Antennene ble utfoldet først etter at Sputnik 1 var frigjort fra bærerakettens øverste trinn. året mellom juli 1957 og desember Koroljov utnyttet annonseringen for alt den var verdt til nye fremstøt for sine egne planer. Bare tre uker senere fikk han grønt lys til prosjektet. Nå fulgte en hektisk periode med utarbeidelse av planer for et satellittprosjekt. Den 30. januar 1956 ga den sovjetiske toppledelsen klarsignal for disse planene. De gikk ut på å utvikle tre forskjellige satellitter for tre ulike formål: Objekt D1: for vitenskapelige observasjoner Objekt D2: for å plassere et dyr i bane Sputnik 1s R-7-bærerakett på oppskytingsrampen på Bajkonur. For øvrig benyttet alle involverte på denne tiden navnet Tjuratam på oppskytingsbasen. 7

8 romhistorie Illustrasjon av Sputnik 1 i kretsløp rundt Jorden. Objekt D3: en mer avansert militær satellitt Planene tilsa at Objekt D1 skulle skytes opp tidsnok til å komme i bane før USAs satellitter for Det internasjonale geofysiske år. I det sovjetiske militærkomplekset var det stor motstand mot Koroljovs planer. De militære ønsket ikke å avse noen av sine meget dyrebare langdistanseraketter for noe de anså som totalt bortkastet. Planene om en sovjetisk satellitt innebar nemlig at R-7-raketter som egentlig skulle vært utstasjonert som rakettvåpen, måtte ombygges til bæreraketter for satellitter. En modifikasjon var at skyvekraften til motorene i kjernetrinnet måtte reduseres til 82 % av nominell skyvekraft i startøyeblikket. I hver av de fire påmonterte tankene med hjelpemotorer måtte skyvekraften reduseres til 75 % av nominell skyvekraft 17 sekunder før trinnene ble koblet fra. Systemet som skulle skille nyttelasten fra bæreraketten, måtte endres for å sikre at nyttelastdekselet først ble koblet fra. Støtdempere måtte bygges inn for å redusere påkjenninger på dysene til de påmonterte oksygentankene. Den 20. september 1956 skjøt den amerikanske hæren opp en rakett av typen Jupiter C på en 5300 km lang ferd. Hvis rakettvåpenet hadde hatt et aktivt tredje trinn, kunne det ha plassert en liten satel- Statskommisjonen for Sputnik i Dette var en midlertidig komité med representanter fra forsvaret, industrien og konstruksjonsbyråene. Kommisjonen eksisterte bare under utprøvingen av Sputnik. Den fungerte som den primære kanalen for kommunikasjon med partilederne om programmets tilstand. Sittende fra venstre mot høyre er: Ivan Bulytsjev, Grigori Udarov, Aleksander Mrykin, Mikolai Piljugin, Mstislav Keldysh, Vasili Mishin, Leonid Voskresenskij, Vasili Rjabikov, Mitrofan Medelin, Sergei Korolov, Konstantin Rudnev, Valentin Glushko og Valdimir Barmin. Stående fra venstre mot høyre er: Aleksei Bogomolov, Pavel Trubatsjev, Viktor Kuznetsov, Anatoli Vasiljev, Konstantin Bushujev, Aleksander Nosov, Ivan Borisenko, Aleksei Nesterenko, Georgi Pashkov, Mikhail Ryazanski og Viktor Kurbatov.

9 romhistorie litt i jordbane. Det var imidlertid aldri planen. Nyheten om dette nådde Sovjetunionen med en forvrengt fremstilling av saken. Koroljov var hellig overbevist om at oppskytingen var et hemmelig og feilslått forsøk fra den amerikanske hæren på å skyte opp en satellitt. Koroljov hadde samtidig problemer med utviklingen av den modifiserte versjonen av R-7 som var nødvendig for en sovjetisk satellittoppskyting. Likeledes var det forsinkelser i leveransene av deler til Objekt D1-satellitten. Både Koroljov og Tikhonravov var svært bekymret for at USA skulle skyte opp en satellitt før de selv fikk opp Objekt D1. I november 1956 ble de enige om å gå i gang med en mindre satellitt, samtidig som arbeidet med Objekt D1 skulle fortsette. Den 5. januar 1957 sendte Koroljov et formelt brev til regjeringen. Der ba han om tillatelse til å skyte opp to små satellitter, hver på om lag 100 kg. De to ble omtalt som de «enkleste satellittene» («Prosteyshyy Sputnik» eller PS) PS-1 og PS-2. I februar 1957 godkjente den sovjetiske regjeringen de nye planene. PS-1 var det som ble til historiske Sputnik 1. Arbeidet med den startet dermed bare drøyt et halvt år før oppskytingen. Sputnik 1 ble konstruert av en gruppe under ledelse av V. I. Petrov og A. P. Frelov. Mikhail Khomjakov var sjefkonstruktør i byggefasen. Det hele tok bare om lag én måned. USAs reaksjon på Sputnik 1 Reaksjonen blant amerikanske politikere og den jevne amerikaner på nyheten om Sputnik 1 var helt ekstraordinær. De mottok nyheten med sjokk og vantro. USA hadde i flere tiår sett på seg selv om en teknologisk ledende nasjon. Landet hadde ledet an innen flyteknisk forskning og industri. Eksperimentelle fly utviklet i USA var de første til både å fly fortere enn lyden og to ganger fortere enn En russisk soldat står i giv akt foran et nylig avduket monument av Sputnik 1 i Stjernebyen kosmonauttreningssenter utenfor Moskva. 50-årsjubileet for oppskytingen av Sputnik 1 ble behørlig markert i Russland. lyden. Landet stod bak Manhattanprosjektet, der de første kjernefysiske våpen ble utviklet. Og det var i USA at bilen var blitt gjort til nær allemannseie, samtidig som radio og fjernsyn var utbredt. At landets fiende nummer én på Jorden, Sovjetunionen, nå kom dem i forkjøpet med å sende opp en satellitt, var et sjokk. Roger Launius har tidligere vært leder for NASAs historiske avdeling og er nå historiker ved berømte Smithsonian Institutions National Air and Space Museum i USA. Han har beskrevet reaksjonene i USA: «To generasjoner etter at dette skjedde, er det vanskelig å beskrive med ord hvordan amerikanerne reagerte på den sovjetiske satellitten. Den eneste passende beskrivelsen som nærmer seg i å fange stemningen 5. oktober 1957 innebærer bruk av ordet hysteri. Det kom et kollektivt mentalt opprør og sjelegransking. Nesten umiddelbart dukket det opp to nye begreper i amerikanernes tidsbegreper: «før Sputnik» og «etter Sputnik». Et tredje begrep som snart erstattet andre tidsbeskrivelser var Romalderen. Med oppskytingen av Sputnik 1 var Romalderen begynt, og verden ble aldri den samme igjen.» Launius fortsetter: «Oppskytingen av Sputnik 1 hadde en Pearl Harbour-liknende virkning på den amerikanske opinionen. Den var et sjokk som for den jevne amerikaner åpnet døren til romalderen i en stemning av krise. Hendelsen skapte en illusjon av et teknologisk gap og ga støtet til økte bevilgninger til prosjekter innen flyforskning og romforskning, tekniske og vitenskapelige programmer og opprettelsen av nye statlige organer som skulle administrere forskning og utvikling innen flyvning og romvirksomhet.» George Reedy oppsummerte det mange amerikanere følte på denne måten: «Det er et enkelt faktum at vi ikke lenger kan betrakte sovjeterne som å ligge langt etter oss teknologisk. Det tok dem fire år å ta oss igjen i utviklingen av en atombombe og bare ni måneder å ta oss igjen i utviklingen av en hydrogenbombe. Og nå prøver vi å ta dem igjen i utviklingen av en satellitt.» Reedy var en av assistentene til daværende senator Lyndon Johnson. Johnson var demokratenes leder i Senatet og la senere ned et stort arbeid for å utvikle et sivilt amerikansk romprogram. Johnson ble amerikansk visepresident under president John F. Kennedy i 1960, overtok som president da Kennedy ble myrdet i 1963 og ble valgt til president i Johnson Space Center i Houston, Texas er oppkalt etter ham. Sputnik 1 førte til en stor omlegging av amerikansk skole- og utdanningsvesen. Og Sputnik 1 var den direkte foranledningen til at USA 1. oktober 1958 opprettet National Aeronautics and Space Administration (NASA). Organisasjonen fikk ansvaret for all sivil romvirksomhet i USA og har hatt noen bitre nederlag, men langt flere store triumfer.

10 romhistorie Jubileumsåret 2007 Det er 50 år siden Sputnik 1 innledet romalderen. Hvilke andre rombegivenheter kan ha vært verdt å markere i 2007? Øyvind Guldbrandsen 40 år siden Apollo 1 og Sojuz 1 Kanskje ikke så mye å juble for rent umiddelbart, ettersom Apollo 1 og Sojuz 1 tok livet av hver sin besetning. Det halsbrekkende kappløpet med å komme først til Månen med mennesker kan nok gis mye av skylden for dette. Men både Apollo og Sojuz er i dag bastioner i romhistorien. Amerikanernes Apollo brakte to år senere mennesker til Månen, noe ingen andre romfartøy har gjort. Siste Apollo-ferd inkluderte sammenkobling med en sovjetisk Sojuz i jordbane (illustrasjon t.h.). Sojuz er på sin side fortsatt i flittig bruk, de siste årene som et uunnværlig element i det internasjonale romstasjonsprosjektet. 30 år siden voyager I august og september var det 30 år siden oppskytingene av Voyager 1 og 2, sondene som gjennom sine eventyrlige ferder var de første til å gi et grundig innblikk i det ytre Solsystemets planeter og måner. Begge har forlatt Solsystemet, men er fortsatt operative - Voyager 1 som rommets fjerneste menneskelagde gjenstad. 20 år siden energia Energia/Buran var Sovjetunionens siste gigantprosjekt på romfronten, om man ser bort fra Mir. Etter at fire mislykkede N-1-oppskytinger knuste Sovjetunionens drøm om å bringe mennesker til Månen, satset samveldet på en annen superbærerakett, Energia (t.h.), primært for oppskytinger til jordbane. Men etter to oppskytinger, den siste med romfergen Buran, kollapset Sovjetunionen. Russland var økonomisk ute av stand til å videreføre prosjektet på egenhånd. 10 år siden cassini/huygens I oktober var det 10 år siden oppskytingen av Cassini/Huygens, som sommeren 2004 gikk inn i bane rundt Saturn. I januar 2005 landet Huygens på månen Titan. Cassinimodersonden har fortsatt i kretsløp og gjør stadige oppdagelser (se artikkel i bladet.) Jubilantene: 17. oktober (t.v.) var det 90 år siden NAF-veteran Johan Nicoll så dagens lys. To dager senere kunne romfartsguru Erik Tandberg markere 75 år på Jorden. Her på årsdagen med sin siste bok Romalderen, som han har all grunn til å være stolt av, tross ergrelse over en og annen detalj. (Foto: Øyvind Guldbrandsen) 10

11 FORENINGSAKTIVITETER ROMDAGEN 2007 Romkino: 23/ kunne for en gangs skyld hvem som helst slippe gratis inn på Klingenberg kino. Og det til et arrangement viet romfart! Til deg som ikke kom: Nå kan du bare angre! Romridder: En glad og "også litt stolt" Erik Tandberg mottar velfortjent St. Olavs Orden av representanter fra Slottet. Romdagene (eller Romdagen) ble i jubileumsåret 2007 lagt til storsalen i Klingenberg Kino i Oslo sentrum. Som vanlig et utmerket arrangement, med bl.a. en serie interessante foredrag om utforskningen og utnyttelsen av rommet, og selvsagt om romalderens 50 første år (bildet over). Lik de senere år ble arrangementet muliggjort gjennom et tett samarbeid mellom Norsk Astronautisk Forening og Norsk Romsenter, med førstnevntes utrettelige leder Per Arne Marthinsen som primus motor. Erik Tandberg har i over en mannsalder vært velkjent over det ganske land som en uuttømmelig kilde til presis informasjon om romfart gjennom utallige TV- og radioprogrammer, artikler i aviser og blader, foredrag samt flere bøker. Som avslutning på den offentlige delen av Romdagen 2007 ble Tandberg, for denne enestående formidlingsinnsatsen, utnevnt til Ridder av 1. klasse av St. Olavs Orden. Øyvind Guldbrandsen (tekst og foto) 11

12 romhistorie Kinas romprogram (3) Utvidelse av programmet Kina er stadig på vei med nye elementer til sitt romfartsprogram (Alle kinesiske lastebiler er grønne) Under Kinas første tiår med romfart, oppnådde de å hente inn romfartøy fra bane rundt Jorden, bygge to nye bæreraketter og sende tre nye vitenskapelige satellitter i bane rundt Jorden. Kina ble den tredje nasjonen, etter Sovjetunionen og USA, til å hente satellitter tilbake fra baner rundt Jorden. Kina sendte også ut tre mystiske satellitter i Ji Shun Shiyan Weixing serien. Selv 30 år senere, har det ikke lyktes omverdenen å finne ut hva disse skulle brukes til. Av Per Arne Marthinsen Romkappløp eller ikke? 1960-tallet var for kinesisk romfart ikke særlig konstruktivt. Det var et politisk destruktivt klima, men tiden etter endret seg til det bedre. Riktignok var det friske politiske diskusjoner etter en dramatisk hendelse i september 1971, hvor Lin Biao, Mao Zedongs mest fortrolige løytnant, forlot Kina til fordel for Sovjetunionen. Hans fluktfly ble derimot skutt ned av kinesiske jagerfly. Paranoiaen fikk grobunn, og det ble ikke styring på noen ting før etter Mao Zedongs død i september 1976, og Firerbandens fall måneden etter. Først etter disse hendelsene ble det igjen disiplin i romfartsindustrien og vitenskapsfolk som urettferdig var blitt skjøvet ut, var på vei tilbake. Romfartsplanene for inneholdt en voldsom ekspansjon av romprogrammet, men ble vraket. En ny og en mer realistisk plan ble lagt på bordet av Zhang Aiping, en kommunistisk militær leder. Han utformet nøkkelpunktene for det kommende romprogrammet på 1980-tallet, som det å bruke Dong Feng 5, DF-5, en interkontinental ballistisk bærerakett, ICBM, til å skyte ut en geostasjonær kommunikasjonssatellitt og utvikle missiler til undervannsbåter. Denne mindre ambisiøse planen ble øyeblikkelig godkjent av den kinesiske sentralkomiteen. Det nye lederskapet under Hua Guofeng og Den Xiao Ping, 12

13 kinesisk romvirksomhet skapte en entusiasme blant yngre og mer pragmatiske ingeniører og ledere til å satse på romindustrien. På samme tid ble det besluttet å redusere forsvarbudsjettet fra 12 % av nasjonalbudsjettet til 5 %, demobilisere en million soldater og overføre en del av de militære fasilitetene til sivilt bruk. Romfartsbudsjettet ble justert til å møte en mer moderat ambisjon og falt til 0,035 % av brutto nasjonalprodukt, på lik linje med Japans 0,04 % og Indias 0,14 %. Dette kunne tolkes slik at Kina ikke var med i et romkappløp. Romfartsbudsjettet i USA i dag er 0,58 % av det føderale budsjettet på 2,784 billioner dollar. Under Apollo-tiden var romfartsbudsjettet på 5 % av det føderale budsjettet. Hva kunne ikke NASA ha fått til i dag med den prosentsatsen. Fire moderniseringer I oktober 1978 annonserte Deng Xiao Ping de fire moderniseringer for tiden etter Mao-epoken. Disse fire var vitenskap og militær teknologi, jordbruk, utdannelse og industri. Hånd i hånd med moderniseringene, kom det en åpning for økonomien og vitenskapen. Utenlands investering ble ønsket velkommen og betydelige områder av økonomien ble privatisert. Kinas 20 års isolering fra verdens romsamfunn ble avsluttet i Kinas romfartseksperter besøkte Frankrike og Japan og i 1979 fikk de besøk fra den europeiske romorganisasjonen ESA, og landene Frankrike, Japan og USA. Den første av mange regionale og internasjonale romfartskonferanser ble i 1985 for første gang holdt i Kina. Under den tiden Kina ventet på utviklingen av deres egen jordobservasjonssatellitt, forhandlet Kina med USA om bruk av Landsat-data, jordobservasjonssatellitt. En bakkestasjon ble kjøpt fra amerikansk industri og siden operert av det kinesiske vitenskapsakademiet. Den årlige avgift var på dollar. Stasjonen var operasjonell fra I 1988 sendte Kina sine mest lovende nyutdannede ingeniører til Massachusetts Institute of Technology i USA. Dette for første gang siden 1950-tallet, da kinesiske studenter ble sendt hjem. Det kinesiske romprogrammet åpnet seg, samtidig som landet Kina gjorde det samme. Tidligere hadde de som arbeidet i denne industrien fått beskjed om å ikke si hva de holdt på med, på samme måte som de som arbeidet i romfartsindustrien i Sovjetunionen. Dette førte til at nyansatte hadde problemer med å finne sitt nye arbeidssted, siden ingen hadde lov til å fortelle dem hvor arbeidsstedet lå! Jernbanen fra Qingshui til Jiuquan var ikke å finne på et kart. Dette forhindret også samarbeid vitenskapsfolk i mellom. Dette endret seg fra De fleste romorganisasjoner fikk offentlige navn og kom på kartet. Deng Xioa Ping ble kåret til årets mann av magasinet Time i Prosjekt 701 Ji Shu Shiyan Weixing Serien ( ) Det var et gap på over fire år mellom oppskytingen av Shi Jian 1 i 1971, og den neste kinesiske satellitten, i Den neste serien av satellitter, som skjedde før perioden med åpenhet, skapte flere spørsmål enn svar. Serien besto av tre vellykkede oppskytinger og tre mislykkede i perioden 1973 til Serien er blitt nevnt, men er dårlig beskrevet i kinesisk litteratur. I Kina fikk den prosjektnavnet 701. Konstruksjonen av Ji Shu Shiyan Weixing, JSSW, startet tidlig på 1970-tallet, men det er praktisk talt ingen opplysninger om utviklingen eller historien. Forkortelsen JSSW står for en teknisk eksperimentell satellitt. Uttrykket Chang Kong, Lang Himmel, er også blitt brukt til serien. Dette i en lang tradisjon av kinesiske navnbytter. Fordi så lite informasjon er tilgjengelig om programmet, er det antatt at dette var et militært prosjekt. JSSW er antatt å ha vært en satellitt som skulle samle elektroniske etterretningsopplysninger, på samme måte som Sovjetunionen og USA gjorde. Mindre sannsynlig er det at JSSW var en fotosatellitt, siden det er uklart hvordan den skulle sende bilder tilbake til Jorden. JSSW-serien skjedde på samme tid som utviklingen av det kinesiske romprogrammet for nedhenting av satellitter. Da den første oppskytingen skjedde, ble den militære delen av programmet offisielt bekreftet, som en del av forberedelsen til krig. Mulig at satellitten var en elektronisk havovervåkingssatellitt, da den hadde mye likhet med tilsvarende satellitter fra Sovjetunionen. Feng Bao-raketten Prosjektet 701 brukte en ny bærerakett, Feng Bao, laget i Shanghai. Klassefiseringen 701 er også gitt bæreraketten. Feng Bao var bygget på grunnlaget til bæreraketten DF- 4. Det skal ha være to grunner til at raketten ble bygget i Shanghai. Den ene var sannsynligvis politisk. Shanghai var Mao Zedongs politiske senter. Den andre grunnen kan ha vært at tanken på å bygge opp et nasjonalt senter for romindustri utenfor hovedstaden. Shanghai var den mest avanserte industrielle byen i landet og dermed den beste kandidaten. 13

14 romhistorie Første varmetesten En ikke flygeferdig versjon av Feng Bao ble fraktet til oppskytingsbasen Jiuquan i november 1970, ett år etter at arbeidet startet. I mars-april 1971 ble motorene varmetestet og fungerte perfekt, selv om det ble avdekket et antall problemer, som dataproblemer og noen dårlige ventiler til det første rakettrinnet. Mye skyltes dårlig kvalitetskontroll, som etter hvert ble tatt hånd om. 6. august 1972 ble Zhou Enlai informert om at raketten var klar for oppskyting. Den første oppskytingen av Feng Bao skjedde 10. august Ferden var en opp og ned ferd, en såkalt ballistisk ferd. Selv om ferden kunne betegnes som suksess, ble det allikevel avslørt en del problemer, spesielt med tanke på fremtidig tyngre nyttelast. Drivstofftanken ble omkonstruert med tynnere vegger, drivstofflyten til motorene ble forbedret og det ble bestemt å kjøre alle motorene til drivstofftankene var helt uttømt på veien opp til sin bane. Det andre rakett trinnets manøvreringsmotorer skulle brukes til å styre satellitten inn i bane. Disse forandringene gjorde at nyttelasten kunne økes med 50%. Noe av utstyret ble testet over et år for lekkasje. Kinesiske ingeniører så ut til å ha møtt betydelige vanskeligheter med konstruksjonen. Bæreraketten var langt mer krevende enn Lang Marsj 1, som skulle kunne løfte en nyttelast på 1,9 tonn, sammenlignet med 300 kg til den første Lang Marsj. Offisiell historie har lagt skylden på kulturrevolusjonen for den Kinesiske bæreraketter i Lang Marsj-serien vanskelige historien til Feng Bao og den negative holdningen til kvalitetskontroll under viktige faser i utviklingen. Vitenskapsfolk som prøvde å fronte tekniske problemer, ble beskyldt for å sabotere på vegne av klassefiendene, noe som alltid er vanskelig å imøtegå. Endelig i bane 18. september 1973 skjedde oppskytingen, men den feilet. Årsaken var styremekanismen i det første rakettrinnet. Da Feng Bao igjen ble skutt opp den 14. juli 1974, feilet styringen igjen. Denne gangen var det styremekanismen på det andre trinnet, slik at nyttelasten ikke kom inn i sin bane. I et kommunistisk samfunn er det ikke sjeldent at noen må få skylden for et problem. Denne gang var det Firerbanden som fikk skylden. Den tekniske beslutningen som ble tatt, var å erstatte andre trinnet med motorer fra Lang Marsj 2. Det tredje forsøket lyktes. 26. juli 1975 gikk JSSW-1 inn i sin bane som var 183km x 460 km, med en inklinasjon på 69,91 grader. Den eneste tekniske opplysningen under annonseringen av oppskytingen var baneparameterne. JSSW-1 gikk inn i atmosfæren over Stillehavet 50 dager etter oppskytingen. JSSW-2 gikk inn i bane 16. desember Denne gang ble det ikke en gang opplyst om baneparameterne. JSSW-2 hadde en bane 70 km lavere enn JSSW-1 og brant opp i atmosfæren 42 dager etter oppskytingen. JSSW-3 kom ni måneder senere, 30. august Denne hadde en helt annen banekarakteristikk enn sine forgjengere, 198km x 2100km. Vekten var den samme som forgjengere, 1110kg. Enda mindre informasjon kom ut om denne, unntatt den politiske betydningen. Satellitten gikk inn i atmosfæren etter 817 dager i rommet. Ingen av satellittene kunne manøvrere i rommet. Signaler ble ikke plukket opp av vesten, sannsynligvis på grunn av signalene bare ble sendt når satellitten var over Kina. Den siste satellitten i serien ble sendt opp 10. november Denne utgaven var noe tyngre enn sine forgjengere, 1210kg, men heller ikke denne gang gikk det som planlagt. Feil med styringen av andretrinnet gjorde at satellitten ikke kom inn i sin bane. Dette ble slutten på JSSWprogrammet. Den offisielle grunnen var at JSSW var en testsatellitt og testene var ferdige. Noe usikkert hvilke teknologier den testet, og hvordan det ble målt. Det er en fotnote til historien. Amerikanske romfartseksperter som besøkte Shanghai Huayin Machinery Plant i 1979, ble fortalt at det de så i ustillingen var en modell av et militært reserveromfartøy. De ble fortalt at Kina hadde skutt opp tre slike, hver med 10 dagers ferder. Dette kan passe profilen til JSSW, men ikke mer informasjon om hensikten med ferdene. Fanhui Shi Weixing, prosjekt 911 Kina var den tredje nasjonen som hentet ned satellitter fra sin bane rundt Jorden. Ideen for en slik satellitt dukket opp første gang i Kina i 1964, og fra teamet i Shanghai. De 14

15 kinesisk romvirksomhet var inspirert av det de hadde lest om den amerikanske tilbakevendingskapselen i Discovery-serien fra og tidlig 1960-tallet. Om kineserne visste at Discovery-programmet var et hemmelig militært program, konstruert til å fotografere utskytingsbaser i Sovjetunionen og bringe filmen tilbake til Jorden, er ikke kjent. Prosjektet ble godkjent i august Teamet fra Shanghai fikk ansvaret for prosjektet i En egen gruppe ble nedsatt for å finne ut hvilke eksperimenter som kunne være nyttige å utføre med en slik satellitt. Satellitten skulle ha en vekt på 1800 kg, en omløpstid på 91 minutter i en bane på 173 x 493km. Kodenavnet, prosjekt 911, dukket opp under en konferanse i september 1967 og satellitten fikk navnet Fanhui Shi Weixing, FSW, også dette en eksperimentsatellitt som kunne hentes tilbake. 11. september 1967 ble tegningene til satellitten Oppskytingen av FSW. frosset. Den nøyaktige hensikten med programmet er heller ikke er blitt helt klart. Selv 30 år etter går den under betegnelsen jordobservasjonssatellitt. Dersom programmet bygget på det amerikanske Discovery-programmet, den sivile Ferden med tilbakevendigskapselen. betegnelsen, er det sannsynlig at det var en militær jordobservasjons satellitt. Uansett, senere utgaver er blitt brukt til å utføre mikrogravitasjons eksperimenter og kameraet om bord ble brukt til sivilt formål. Om dette skyldes det internasjonale politiske klimaet, eller den begrensede militære nytten av satellitten, er bare noe en må gjette seg til. Å bygge en slik satellitt representerer en stor ingeniørmessig utfordring. Den må ha et pålitelig varmeskjold slik den kan overleve en tilbakevendings temperatur på 1200 grader Celsius, det må utvikles raketter for styring av tilbakevendingen, nøyaktig stillingskontrollsystem, et pålitelig kontrollsenter på bakken for styringen av tilbakevendingen og et system for å finne satellitten når den lander. Et vakuumkammer, kalt KM-3, ble konstruert av Institute of Environment Test Engineering og Lanzhou Institute of Physics. Et senter for å følge satellitten ble også bygget, Xian Satellite Surveying and Control Centre. Kineserne hadde ingen tidligere erfaring i å bygge varmeskjold. De ønsket ikke å bygge et ablativt varmeskjold av typen som amerikanerne og Sovjetunionen brukte på sine romfartøy på 1960-tallet. Dette var tunge varmeskjold, hvor stoffet progressivt brant opp på veien gjennom atmosfæren, men hvor det ble nok igjen til at astronauter/kosmonauter overlevde. Kina visste at de ikke hadde kapasitet til å gå direkte på lavtetthet skumtype beskyttelse, av typen som blir brukt på den amerikanske romfergen. De fant til slutt et ikkeablativ materiale hvor kvaliteten lå et sted mellom 1960-og 1980-talletes teknologi. Materialet fikk betegnelsen XF, som kan motstå inntil 2000 grader celsius. Satellittene i denne serien krevde et relativt avansert nivå av automatisering. Hele systemet besto av et tre-akse kontrollsystem, analoge datamaskiner, sol og jordsensorer for orientering, naturlige trege målesystemer og et kaldgassystem til bruk for orientering av romfartøyet. Ferdprofilen FSW-satellitene besto av en avstumpet konisk kapsel plassert på en servicemodul. Under ferden pekte neseseksjonen i fartsretningen. På slutten av ferden, da FSWen kom over kinesisk territorium, svingte den 100 grader, pekte rett ned mot Jorden og faststoffmotorene startet. Den gikk omtrent rett ned fra sin bane. Dette er en brutal måte å Innhentingen med et helikopter. vende tilbake til Jorden på, og hvor det brukes relativt store mengder med drivstoff. Fordelen er at tilbakevendingen blir en tvungen nedtaking over eget territorium. Vinkelen under avfyringen må være meget nøyaktig, for hver grad utenfor planlagt landingsområde, betyr 300 km i forskjell på landingsstedet. I en høyde av 16 km blir varmeskjoldet og rakettmotorene kastet av, og en 15

16 romhistorie fallskjerm åpner seg og kabinen faller med en hastighet på 14 m/s. Sovjetunionen brukte sprengstoff på romfartøy for å sikre seg mot at romfartøyet ikke falt i hendene på fiendtlige makter. Den kinesiske tilbakevendingsmanøveren krever en hastighetsendring på 650 m/s, som er langt større enn både for amerikanske og russiske tilbakevendingsprofil, som er 175 m/s. Sichuan-provinsen i den sydlige delen av landet ble valgt som landingsområde, selv om området ofte var plaget av mye skyer og tåke. Lang Marsj 2 Med en langt større nyttelastvekt, sammenlignet med den første oppskytingen, krevde dette større Lang Marsj-2E på utsilling et sted i Kina. løftekapasitet. Til slutt ble bæreraketten Lang Marsj 2 utviklet av det kinesiske akademiet for bæreraketteknologi (CALT) i Beijing. CALT brukte i utgangspunktet den ballistiske bæreraketten DF-5. I samme periode fikk akademiet for romteknologi i Shanghai et tilsvarende oppdrag, som senere ble Feng Bao. Lang Marsj 2 besto av to rakettrinn, var 32m høy og brukte nitrogentetroksid som oksideringsmiddel og usymetrisk dimethylhydrasin (UDMH) som drivstoff. Massen var 190 tonn og skyvkraften 280 tonn. Dette var Kinas første bærerakett som brukte datamaskinstyrt navigasjons- og motorstyring. Utviklingen av Lang Marsj 2 tok fire år ( ) Kvantesteget mellom Lang Marsj 1 og 2, selv før Lang Marsj 2 ble tatt i bruk, var at Lang Marsj 2 skulle ble langt mer nøyaktig enn sin forgjenger. Den gikk gjennom tester som ingen andre kinesiske bæreraketter hadde gjennomgått tidligere. Etter at vibrasjonstester var gjennomført, ble hele bæreraketten tatt fra hverandre for å se hva vibrasjonene hadde gjort med raketten. For å minne ingeniørene og arbeiderne om viktigheten av kvalitetskontroll, sikkerhet og pålitelighet, kom Zhou Enlai under testene for å minne dem nettopp på dette. Det første forsøket på sende opp en satellitt som skulle hentes tilbake, skjede med Lang Marsj 2 den 5. november Det ble en katastrofe. Bæreraketten løftet seg så vidt opp fra utskytingsplattformen før den begynte å svinge fra side til side og måtte ødelegges av sikkerhetsfolkene på oppskytingsstedet, 20 sekunder ut i ferden. Katastrofen, Kinas første, fikk selvfølgelig politiske følger. Årsaken til katastrofen skyltes vibrasjoner slik at en kabel fra gyrosystemet til kontrollsystemet ble skadet. Etter dette ble det en periode med vibrasjonstester. Den andre oppskytingen skjedde 26. november FSW 0 ble sendt opp fra Jiuquan. Syv sekunder etter oppskyting svinge bæreraketten mot sydøst. Etter 130 sekunder ble det første rakett trinnet frigjort, det andre og det tredje gikk også bra. Da beskjeden ble gitt om at raketten hadde kommet i bane, var gleden stor med tanke på hva som hadde skjedd et år tidligere. Ikke før den var kommet inn sin bane, ble det konstatert trykkproblemer i gasstanken som skulle være med å styre raketten. Det ble antatt med denne hendelsen at det ville være umulig å hente tilbake satellitten, som planlagt. Selv med denne feilen ble et kompromiss inngått. Satellitten gikk i omløp rundt Jorden, men ble tatt ned noe tidligere enn planlagt, bare tre dager etter oppskytingen, 29. november Etter 47 omløp rundt Jorden ble helikoptre satt inn for å følge FSW 0 på veien ned. Tilbakevendingen var komplisert. FSW 0 var sterkt skadet og landingspunktet ble langt unna det som var planlagt. Men den overlevde og ble funnet av noen gruvearbeidere som meldte fra om funnet. Kina hadde lyktes i å hente ned et romfartøy i første forsøk, på samme måte som Sovjetunionen mange år tidligere. USA erfarte mange problemer med samme type romfartøy. I denne serien ble det hele 10 satellitter, FSW 0-9. Shi Jian 2 Kinas første vitenskapelig satellitt ble skutt opp i mars Ferden var meget vellykket, men det tok åtte år før Kina igjen var klar til å skyte opp nye vitenskapelige satellitter. Denne gangen forsøkte Kina å sende opp ikke færre enn tre satellitter med samme bærerakett. Dette var i for seg ikke uvanlig. Sovjetunionen gjorde en tilsvarende oppskyting i Senere også 8 satellitter i en oppskyting. Banen til Shi Jian 2 var planlagt for en høyde på 250 x 3000 km, med en inklinasjon på 70 grader og med en operasjonstid på seks måneder. Satellitten veide 257 kg, hadde åtte kanter, var 1,23 m i diameter, 1,1 m høy og med fire små solcellepaneler. Dataene som ble sent tilbake var både i sann tid og tatt opp på en båndopptaker stor nok til å holde databits for en time. Informasjonen ble dumpet ned når satellitten var over Kina. Det var kinas første satellitt med et komplett solorienteringssystem. Oppskytingen, av tre satellitter samtidig, skjedde da i juli Oppskytingen ble ikke vellykket, da satellitten ikke kom i bane. Bæreraketten Feng Baos siste rakettrinn feilet. Et nytt forsøk ble gjort

17 kinesisk romvirksomhet Bakgunnsinformasjon Lang Marsj-2E Første oppskyting Juli 1990 Antll flygninger per år 1-3 Oppskytingssted Xichang Space Launch Center, Kina Ytevne: 8799 kilogram til LEO, 3329 kilogram til GTO Historie Rakettprogrammet startet sent 1950 Utvikling fra kinesiske overflate-til-overflate-missiler LM-2E er en viderutvikling av LM-2 Beskrivelse To-trinns rakett med fire ekstramotorer: Første trinn: fire YF-20B motorer. Drivstoff: UDMH/N Skyvkraft: kilogram Andre trinn En motor av typen YF-22B og fire av typen YF-23 Drivstoff: UDMH/N Total skyvkraft: kilogram Ekstramotorer Hver motor er en YF-20B med flytende drivstoff Skyvkraft: kilogram Mål Lengde: 49,7 m Oppskytingsvekt: kilogram Diameter: 3,35 m Skyvkraft: kilogram september Bæreraketten Feng Bao brakte Shi Jian 2, 2A og 2B opp i bane i løpet av syv minutter og 20 sekunder. Selve separasjonen skjedde i ikke færre enn 59 operasjoner, alle vellykkede. Det skal ha vært betydelig vitenskapelig resultater fra Shi Jian satellittene. Til sammen var det syv satellitter i denne serien. Shi Jian 3 ble derimot kansellert. Vurdering og konklusjon Det Kina oppnådde i perioden etter de to første oppskytingene med FSW-1, var nedhentingen av disse romfartøyene. Kina gikk rett fra å skyte opp enkle satellitter til å hente ned romfartøy son veide over 1 tonn. FSW satellittene hadde avansert romteknologi, så som varmeskjold, datamaskiner, sofistikert styresystem og automatiske kontrollsystemer. Lang Marsj 2 var langt mer avansert enn sin forgjenger. Ved siden av FSW-programmet, beholdt Kina sine forpliktelser ovenfor romforskning. Shi Jian 2 var muligens ikke så sofistikerte som deres motpart i Sovjetunionen, og i Vesten, men representerte en betydelig investering for den kinesiske vitenskapen. Det samme for Shi Jian 4 og 5 for den vitenskapelige delen. Del 1 og 2 av serien om det kinesiske romprogrammet stod i hhv. Romfart nr. 1 og Neste nummer: Kina, en av tre store romnasjoner. USA, Russland og Kina. Satellitten Shi Jian 2. SJ-2-satellitt-flåten inkluderer SJ- 2, SJ-2A og SJ-2B. 20. september 1981 skjøt Kina opp disse tre satelittene med en bærerakett for første gang. Dette markerte et gjennombrudd for kinesisk romteknologi. 17

18 romhistorie India i rommet Delvis i skyggen av USA og Russlands romvirksomhet, har India sammen med Kina gjennom noen tiår utviklet og videreført sin virksomhet i rommet. PSLV (Polar Satellite Launch Vehicle) Av Jan Petter Løberg Allerede i 1972 tok den indiske regjeringen en beslutning om at India skulle delta i utforskningen av verdensrommet. Et eget romfartsdepartement DOS (Space Commission and Departement of Space) ble opprettet. Deretter ble ISRO (Indian Space Research Organisation) dannet. Denne organisasjonen kan sammenlignes med NASA i USA. I årene etter 1972 har India bygget opp imponerende forskningsog utviklingsbedrifter, spredt over hele India. Hver bedrift har spesialisert seg på forskjellige områder. Samtidig har man innenfor flere områder utviklet en imponerende kompetanse. India innledet sitt romeventyr i 1975 med satelitten Aryabhata som bl.a. inneholdt instrumenter for solstudier og røntgenstudier av stjerner. Deretter fulgte flere eksperimentelle satellitter for kommunikasjon og studier av røntgenstråling fra verdensrommet. De første oppskytningene ble gjennomført med russiske bæreraketter. Den første kommunikasjonssatelitten ble imidlertid sendt opp med en europeisk Ariane bærerakett. Samtidig med at de første oppskytingene fant sted, arbeidet man parallelt med utviklingen av et eget bærerakettsystem. I 1981 ble SLV- 3 skutt opp for første gang. Den kunne dessverre bare ta med en nyttelast på 40 kg. Imidlertid viste India med SLV-3 at de etter hvert ønsket å bli uavhengig av de store romfartsnasjonene for å få gjennomført sin utforsking av rommet. I begynnelsen av 1980 årene plasserte India flere kommunikasjonssatelitter i rommet, og hadde ved slutten av 1985 etablert fjernsynsdekning for 70 % av befolkningen. Pr. i dag er denne andelen øket til 90 %. Samtidig med utbyggingen av kommunikasjonsnettverket, innledet India et samarbeid med Sovjetunionen om bemannede romferder. Den første indiske kosmonauten tilbrakte 8 dager i den sovjetiske romstasjonen Saljut 7 sammen med to sovjetiske kolleger. Under sitt opphold utførte Rakesh Sharma flere spektrometriske fotograferinger over de nordlige områdene av India. Dette som et ledd i Indias planer om å etablere flere kraftstasjoner i Himalaya. I årene som fulgte plasserte India ut flere kommunikasjonssatelitter i rommet og samtidig utviklet man stadig større raketter. Dessverre ble det langt mellom suksessene med egne raketter, men en rekke oppskytninger ble foretatt ved hjelp av Ariane-raketter. I 2001 fikk India et gjennombrudd i sitt forskningsarbeide da de gjennomførte en vellykket oppskyting av en GSLV-rakett (Geosynchronous Satellite Launch Vehicle). Raketten hadde vært under utvikling gjennom hele 1990-tallet og er modifisert flere ganger. GSLV er i stand til å løfte en nyttelast på inntil 2,5 tonn opp i en geostasjonær bane. Samarbeidet med Sovjetunio- 18

19 indisk romvirksomhet Den 1,3 tonn tunge månesonden Chandrayaan-1 planlegges skutt opp i april MIP: Kollisjonssonde. RADOM: Strålingsdosemåler. SIR-2: Infrarødt spektrometer. LLRI: Laseravstandsmåler. TMC: Kartleggingskamera. CIXS: Røntgenspektrometer. M3: Mineralkartlegger. MINI-SAR: Bildedannende miniatyrradar. HySI: Hyperspektralt kamera. HEX: Høyenergirøntgendetektor. CENA: Nøytralpartikkelanalysator. SWIM: Solvindmåler. GSLV (Geosynchronous Satellite Launch Vehicle) er Indias kraftigste bærerakett. Første testeksmplar av raketten (øverst t.h.) ble skutt opp fra Sriharikota-romsenteret 18. april Første operasjonelle oppskyting foregikk 20. september 2004 (nederst t.h.) (ISRO) nen, senere Russland, gikk blant annet ut på at India kjøpte motorer til det øverste rakettrinnet til sin GSLV som bl.a. er benyttet i Proton-M rakettene. Imidlertid har India også lykkes i å utvikle sine egen motorer og gjennomført flere vellykkete oppskytinger i de senere årene med en stadig forbedret GSLV-rakett. Resultatet er at India har plassert store kommunikasjon- og værsatellitter i geostasjonære baner. De langsiktige planene er å skyte opp romsonder mot Merkur, Venus og Mars. Dette krever et tettere samarbeid med NASA og ESA og skal etter planen bli realisert i perioden 2010 til India utforsker Månen. For en tid tilbake annonserte Indiske myndigheter at de vil prioritere ubemannet utforskning av Månen og vil sende en romsonde dit i løpet av Planen er å plassere romsonden, kalt Chandrayaan-1, i en ellipsebane på 240 km x km rundt Jorden, for deretter å sende den inn i en polarbane med banehøyde på ca. 110 km rundt Månen. Chandrayaan-1 vil bære med seg røntgen- og gammaspektrometre som vil gjøre forskerne i stand til å utarbeide et høyoppløselig digitalt kart over Månens overflate. Den europeiske romfartsorganisasjonen (ESA) har innledet et samarbeid med India for dette oppdraget. Tre vitenskapelige instrumenter som allerede har vært benyttet i ESAs månesonde SMART-1 skal installeres i Chandrayaan-1. I tillegg vil sonden ha med et radarinstrument fra NASA som skal forsøke å lokalisere vann-is under kraterbunner ved Månens poler. Nærmere detaljer om nyttelasten vil bli frigitt senere. 19

20 romfergeprogrammet NYTT SEGMENT TIL ROM- STASJONEN I lasterommet hadde Endeavour med det omtrent 1,8 tonn tunge S5-segmentet til Den internasjonale romstasjonen. Videre hadde fergen med seg en ny gyro til romstasjonen og en 3,2 tonn tung plattform som skulle monteres utenpå stasjonen og brukes til å lagre forskjellige viktige reservedeler. Med var også en liten Spacehab-trykkmodul med forsyninger. Videre var det i lasterommet en manipulatorarm og en like lang forlengelse av armen. Sistnevnte, instrumentbommen, er en bom med en del instrumenter som benyttes til grundige undersøkelse av romfergen utvendig. I lasterommet var det også en enhet for sammenkobling med romstasjonen. S5-segmentet skulle monteres på styrbord («starboard» på engelsk, STS-118 Endeavour igjen aktiv etter 5 år på bakken Oppskytingen av Endeavour på STS-118 startet fra oppskytingskompleks 39A ved Kennedy-romsenteret i Florida, USA klokken norsk sommertid 9. august 2007 (klokken lokal tid.) Omtrent 10 minutter senere var Endeavour i jordbane. Av Erik Tronstad Under det amerikanske flagget vaier et flagg for Endeavour og markerer at romfergen igjen er i aktiv drift. (NASA/Todd Prough) 20

21 den internasjonale romstasjonen Fakta om STS-118 Romferge: Endeavour Oppskytingstidspunkt: 9. august 2007 kl norsk sommertid (8. august GMT og USA-tid) Oppskytingssted: Oppskytingskompleks 39A, Kennedy-romsenteret i Florida, USA. Besetning: Scott Kelly (kommandør) Charles Hobaugh (pilot) Tracy Caldwell Benjamin Alvin Drew jr. Richard Mastracchio Barbara Morgan Dafydd Williams (ferdspesialister). Besetningen i Endeavour på STS-118, fra venstre: Richard Mastracchio, Barbara Morgan, Charles Hobaugh, Scott Kelly, Tracy Caldwell, Dafydd Williams og Benjamin Alvin Drew jr. (NASA) Nyttelast: Fagverksegmentet IPS-S5 ESP 3 (External Storage Platform 3) Spacehab-modul med forsyninger. Primære gjøremål: Koble S5-segmentet til S4-segmentet Montere ESP 3 til romstasjonens fagverk Bytte en av romstasjonens fire gyroer med en som Endeavour har med. Bringe opp forsyninger til romstasjonen Romvandringer: 4 stk. á to astronauter Diverse: Første ferd for Endeavour siden 2002 Medbrakte vekstkamre for vårskrinneblom fra NTNU, Trondheim Morgan opprinnelig plukket ut som reserve for Christa McAuliffe i Skade i varmeskjoldet oppdaget men ikke reparert Ferden forkortet ett døgn fordi orkanen Dean truet JSC, Houston Landingssted: Kennedy Space Center i Florida Landingstidspunkt: 21. august 2007 klokken norsk sommertid Varighet: 12 døgn, 17 timer, 55 minutter og 34 sekunder Endeavours faststoffmotorer etterlater en søyle av røyk, mens romfergen forlater Florida. (NASA/Ken Thornsley) 21

22 romfergeprogrammet Endeavour sett ovenfra idet romfergen nærmer seg romstasjonen. Litt foran midten av lasterommet er Spacehab-modulen som er med. Bak (til venstre for) den ses S5-seksjonen. Fremst i lasterommet er enheten for sammenkobling med romstasjonen. (NASA) Undersiden av Endeavour fotografert fra romstasjonen da avstanden mellom dem var knapt 200 m. Romfergen er midtveis i sin baklengs salto for å bli fotografert. (NASA) Den rektangulære formen som dominerer bildet er døren til Endeavours høyre landingshjul. Stedet for skaden som er omtalt i artikkelen er midt i den røde sirkelen. Bildet er tatt ved samme anledning som bildet ovenfor. (NASA/ Erik Tronstad) 22

23 den internasjonale romstasjonen derav S i navngivingen av det) side av romstasjonens fagverk. Da STS-118 startet bestod fagverket av segmentene S4, S3, S0, S1, P1, P3, P4 og P5. S5 er omtrent identisk med P5, som ble brakt opp på STS-116 i desember NORSK EKSPERIMENT Blant utstyret Endeavour hadde med seg til romstasjonen var noen norske spesiallagede vekstkammere med frø av vårskrinneblom. De skulle etterlates i et lite drivhus i romstasjonen. Der skal man studere hvordan frøene vokser og utvikler seg under nær vektløse forhold. Dette er et eksperiment som ledes av professor Tor-Henning Iversen ved NTNU i Trondheim. Fordi plantens gener er meget godt dokumentert, brukes den mye til forskning. LANGT OPPHOLD Før STS-118 hadde Endeavour vært gjennom en flere år lang periode med omfattende vedlikehold og modernisering. Foregående ferd med Endeavour var STS-113 i novemberdesember 2002, den siste romfergeferden før Columbiaulykken. STS-118 var således Endeavours første ferd etter Columbia-ulykken. OPP ETTER 20 ÅR Besetningen om bord i Endeavour på STS-118 var: Scott Kelly (kommandør), Charles Hobaugh (pilot), Tracy Caldwell, Benjamin Alvin Drew jr., Richard Mastracchio, Barbara Morgan og Dafydd Williams (ferdspesialister). Williams er kanadier og representerte Canadian Space Agency. Morgans bakgrunn er noe spesiell. Hun var opprinnelig lærer. I juli 1985 ble hun utnevnt som reserve i NASA-programmet Teacher in Space. Programmet ble startet i 1984 for å inspirere amerikanske studenter og lærere og Tegningen av Endeavour der instrumentbommen er hektet på enden av romfergens manipulatorarm. Instrumentbommen er koblet til manipulatorarmen helt øverst på bildet. (NASA) Nærbilde av skadestedet tatt med kameraet i enden av instrumentbommen. (NASA) fremme interessen for matematikk, naturvitenskap og romvirksomhet. Amerikanske lærere kunne melde sin interesse for å delta på en romfergeferd, noe over gjorde. Den som i 1985 ble utnevnt til å bli den første deltaker på en romferd i dette programmet, var Sharon Christa McAuliffe. Som reserve var Morgan til stede ved Kennedyromsenteret 28. januar 1986 og så McAuliffe bli skutt opp i romfergen Challenger. Vel et minutt etter oppskytingsstart nærmest eksploderte den utvendige drivstofftanken. Challenger ble revet i filler av aerodynamiske krefter. McAuliffe og hennes seks medastronauter omkom i det som til da var historiens største romfartsulykke. Teacher in Space -programmet ble skrinlagt. Etter en del representasjon for NASA, gikk Morgan tilbake til jobben som lærer høsten Mens hun fortsatte som lærer, holdt hun kontakt med NASA og hadde noen oppdrag for organisasjonen. I januar 1998 ble Morgan utnevnt til fullverdig astronaut hos NASA og gikk i trening som ferdspesialist. Etter nesten fem års trening ble hun i desember 2002 utnevnt til å fly på STS-118. Ferden var da planlagt å starte 13. november 2003 med romfergen Columbia. Før STS-118 hadde Columbia en annen romferd, STS-107 i januar-februar Under tilbakevendingen på STS-107 gikk Columbia i oppløsning. Alle de syv om bord døde. En ny romfartsulykke av samme omfang som Challengerulykken var et faktum. Med oppskytingen av STS-118 var Morgan er omsider i rommet, sammen med seks andre astronauter. SKADE I VARMESKJOLDET Før Endeavour kom frem til romstasjonen, gjennomførte romfergebesetningen grundige undersøkelser av romfergen utvendig. Formålet var å se om romfergen hadde fått noen skader under oppskytingen. Inspeksjonen ble utført med den 15 m lange instrumentbommen festet til enden av den like lange manipulatorarmen. 23

24 romfergeprogrammet Da romfergen var knapt 200 m fra romstasjonen, foretok romfergen en baklengs salto. Romfarere i romstasjonen tok en rekke nærbilder av områder på romfergen. De ble sendt til bakken for å undersøkes på jakt etter eventuelle utvendige skader på Endeavour. Begge disse undersøkelsene er blitt standard for hver eneste romfergeferd etter Columbia-ulykken. Standard er også en langt mer detaljert overvåkning av en romferge under oppskytingen, med over 100 kameraer og radarer på bakken og i fly. Videoer av oppskytingen og undersøkelser med instrumentbommen viste at det var et 7-8 cm stort sår i de varmeisolerende klossene på styrbord side av Endeavours underside. Alt før Endeavour koblet seg til romstasjonen, besluttet romfergeledelsen at det 12. august skulle gjøres nye, mer detaljerte undersøkelser av dette såret på romfergen. På bilder tatt fra romstasjonen av Endeavours underside kunne det tydelig ses et sår i to varmeisolerende fliser litt bak døren til styrbord hovedlandingshjul. Såret så ikke ut til å være verre enn sår som romferger tidligere har hatt under tilbakevending, og som først ble oppdaget etter landing. Før Columbia-ulykken ble det aldri foretatt slike inspeksjoner av romfergens underside i rommet. Det var da også umulig på de fleste romfergeferder, fordi de ikke gikk til noen romstasjon og ikke hadde med noen instrumentbom. Ut fra disse bildene besluttet ferdledelsen at om det skulle oppstå en nødsituasjon som tvang Endeavour til raskt å vende tilbake til Jorden, så ville romfergen få grønt lys til å lande med den skaden som er der. Beslutningen var enstemmig. Skaden ble følgelig helt klart til ikke å være så stor at den er en alvorlig sikkerhetstrussel for romfergen. Derfor var det ikke noen fare for at Endeavour skulle være strandet i rommet, slik noen medier antydet. Det var heller ingen fare for at Endeavour-astronautene måtte oppholde seg i romstasjonen inntil en annen romferge kunne hente dem ned. SAMMENKOBLING Sammenkoblingen mellom Endeavour og Den internasjonale romstasjonen fant sted klokken norsk sommertid 10. august. Lukene mellom de to romfartøyene ble åpnet vel to timer senere. Besetningen i romfergen ble da hilst velkommen av langtidsbesetningen i romstasjonen: Clayton Anderson, Fjodor Jurtsjikin (kommandør) og Oleg Kotov. Ganske raskt etter at lukene var åpnet, gikk to av astronautene i gang med å løfte S5-seksjonen opp av romfergens lasterom med dens manipulatorarm. Deretter ble S5-seksjonen overlevert til romstasjonens manipulatorarm, Canadarm2. Endeavour fotografert av en av astronautene på den tredje romvandringen. Den andre astronauten skimtes oppe i venstre del av bildet. Romfergen er koblet til Destiny-modulen, som ses i øvre del av bildet. Til venstre ses romstasjonens manipulatorarm, Canadarm2, til høyre romfergens manipulatorarm. (NASA) NYTT SYSTEM FOR STRØMFORSYNING Klokken norsk sommertid aktiverte besetningen systemet som skulle forsyne Endeavour med strøm fra romstasjonen. Det var første gang at en romferge tok dette systemet i bruk. På tidligere romvandringer hadde astronauter koblet opp strømkretser på utsiden av romstasjonen, med strøm fra dens solcellepaneler. Da Endeavour denne gang koblet 24

25 den internasjonale romstasjonen Williams med deler av solcellepaneler bak seg. (NASA) seg til romstasjonen, koblet romfergen seg samtidig til disse kretsene. Strømforsyningen om bord i romfergene kommer fra brenselceller som omgjør hydrogen og oksygen til vann og får ut elektrisitet i den prosessen. Når romfergen kan få en del av strømforsyningen (men Williams er fastspent til enden av Canadarm2. I armene holder han et av de to svinghjulene som var involvert i utskiftingen av et svinghjul på denne romvandringen. (NASA) Mastracchio svever på utsiden av Destinymodulen på den andre romvandringen. Til høyre for ham er Quest-modulen. På utsiden av Quest-modulen er det montert flere gasstanker, hver innhyllet i hvitt isolasjonsmateriale. Quest-modulen er koblet til siden av Unity-modulen. Lenger bak og øverst til venstre i bildet ses Sojuz TMA-10, som er koblet til siden av Zarja-modulen. Den siden av romstasjonen vi her ser, vender ned mot Jorden. (NASA) tre døgn, dvs. til 14 døgn. Dette var hele tiden planen, såfremt systemet for strømforsyning fra romstasjonen til romfergen fungerte. At ferden senere ble redusert til litt under 13 døgn igjen skyltes andre faktorer. Mastracchio fotografert under den første romvandringen på STS-118. (NASA) ikke hele) fra romstasjonen, spares hydrogen og oksygen i romfergen. Dermed kan den være tilkoblet romstasjonen lenger enn vanlig. Alt fungerte som det skulle etter at systemet var startet, samt under resten av tiden. Som følge av dette besluttet romfergeledelsen 12. august 2007 formelt å forlenge STS-118 med Mastracchio vinker fornøyd til fotografen. (NASA) 25

26 romfergeprogrammet Mastracchio (midt i bildet) er rett utenfor Quest-modulen og Williams (fastspent til Canadarm2 til høyre) arbeider på utsiden av romstasjonen. Oppe til venstre er Sojuz TMA-10. (NASA) UNDERSØKELSER AV SKADEN Siden man hadde så god tid på seg, ønsket man selvsagt å undersøke den nevnte skaden i varmeskjoldet så nøye som mulig og se om man for sikkerhets skyld skulle utbedre den. Derfor ble det gjort nye inspeksjoner av skaden 12. august. Til dette brukte astronautene kameraet og laseren på enden av instrumentbommen. De to instrumentene ble plassert rett over skadestedet. Kameraet tok da mye bedre bilder av skadestedet enn de som ble tatt av romstasjonsastronautene da Endeavour var knapt 200 m fra romstasjonen. Laseren gjorde en detaljert tredimensjonal kartlegging av skadestedet. Målingene den gjorde ga nøyaktige data om hvordan dybden av hullet varierte på ulike steder. Skaden omfattet to varmeisolerende klosser som grenser opp til hverandre. På den ene av klossene går hullet omtrent helt ned til romfergestrukturen under. Skadestedet lå rett over en bjelke som er en del av romfergens aluminiumsstruktur, hvilket ble ansett som gunstig. Om det under tilbakevending skulle trenge unormalt mye varme gjennom til aluminiumsstrukturen, ville varmen bli ledet utover i bjelken og fordeles der, i stedet for å bli konsentrert til Williams er her fortsatt fastspent til Canadarm2. Bak ham ses nærmest Sojuz TMA-10, lenger bak Progress M-61. Sistnevnte er koblet til Pirs-modulen. (NASA) et punkt. Dessuten var det ingen strøm- eller signalkabler eller annet utstyr på innsiden av den høyre vingen i dette området. Bilde- og laserdataene var så gode at teknkere på bakken lagde en nøyaktig kopi av skaden i varmeklosser her. Kopien ble senere plassert i en spesiell ovn ved Johnson Space Center i Houston, Texas og utsatt for den tilsvarende varmepåkjenning som dette stedet på Endeavour vil oppleve under en tilbakevending. Ut fra bilde- og laserdataene kunne man også bygge opp en datamodell av skadestedet i en datamaskin. I datamaskiner simulerte man deretter mange av påkjenningene under en tilbakevending og kunne dermed se hvilke virkninger skaden ville gi. Om bord i Endeavour var det utstyr og materialer som kunne brukes til å reparere dette såret, om det ble funnet nødvendig. Et av materialene var an slags pasta som kunne fylles ned i såret, hvor det ville herdes og stivne. Dette måtte i så fall gjøres på en romvandring med en astronaut festet til enden av instrumentarmen, som igjen måtte vært festet på enden av romfergens manipulatorarm. Astronauter i romfergene er trent i å utføre slike reparasjoner. Før man tok en beslutning om å utbedre skadene ville man gjennomføre de nevnte undersøkelsene av kopien av skadestedet i ovn og datamaskin. Ingeniører i romfergeprosjektet mente skaden skyltes et stykke isolasjonsmateriale som ble brutt løs fra den utvendige drivstofftanken under oppskytingen av Endeavour. Stykket var på størrelse med en tennisball og ble revet løs fra en fes- Rett til høyre for Mastracchio ses en av de to trallene som ble flyttet på denne romvandringen. (NASA) tebrakett på utsiden av tanken. Et 26

27 den internasjonale romstasjonen øyeblikk senere traff stykket en av de to kraftige stagene bak på drivstofftanken, som der fester den til romfergens underside. Isolasjonsstykket ble knust i flere biter. En av dem spratt tilbake mot Endeavours underside og laget skaden i de to varmeisolerende klossene. Dette skjedde 58 sekunder etter at Endeavour hadde forlatt oppskytingsplattformen. Romfergen var da i omtrent m høyde og hadde en hastighet på rundt 1600 km/h. På utsiden av den utvendige drivstofftanken går et rør fra øvre del av tanken og nedover langs utsiden av den. Røret frakter flytende oksygen fra oksygentanken, som sitter øverst/fremst inni den utvendige tanken. Oksygenrøret er festet til utsiden av tanken med egne braketter. Disse er igjen dekket av det utvendige isolasjonsmaterialet som dekker hele tanken. Biten med isolasjonsmateriale som ble revet løs, kom fra en av disse brakettene. For NASA er det et kjent problem at det rives løs biter med isolasjonsmateriale fra disse brakettene. Derfor har man lenge arbeidet med en ny konstruksjon av disse. Meningen var å ta i bruk en ny løsning for dette tre romfergeferder etter STS-118. Et viktig spørsmål nå ble om hendelsen med Endeavour gjør at NASA velger eller tvinges til å endre denne planen. I så fall ville det bety nye utsettelser i et allerede svært tett romfergeprogram. Første romvandring Romvandringen startet klokken norsk sommertid 11. august. Den ble utført av Richard Mastracchio og Dafydd Williams. De brukte amerikanske romdrakter og romstasjonens Quest-modul. Etter å ha etablert seg utenfor romstasjonen med nødvendig verktøy og utstyr, forflyttet de seg til styrbord ende av fagverket. Der hang S5-seksjonen i enden av Canadarm2 og ventet på dem. De fjernet noen transportsikringer fra hjørnene av S5-seksjonen. Styrt av astronauter inni romstasjonen førte Canadarm2 S5-seksjonen inn til en myk sammenkobling med S4-seksjonen. Mastracchio og Williams skrudde så til fire bolter som låste S5-seksjonen helt fast til S4-seksjonen. Deretter fjernet de en del utstyr fra S5-seksjonen, utstyr som ble brukt under transporten opp i rommet med Endeavour. Mens romvandringen pågikk, stoppet brått en viktig datamaskin i den amerikanske delen av romstasjonen. Reservemaskinen trådte umiddelbart inn som stedfortreder. Dermed fikk stoppen ingen konsekvenser verken for romvandringen eller annet arbeid om bord. Mastracchio og Williams overvåket så sammenfoldingen av et radiatorpanel på P6-seksjonen. Solcellepanelene på P6-seksjonen ble foldet sammen på romfergeferdene STS-116 og STS-117. En del mindre arbeidsoppgaver ble også gjennomført innen romvandringen ble avsluttet etter 6 timer og 17 minutter. Andre romvandring Denne romvandringen startet klokken norsk sommertid 13. august og ble utført av Richard Mastracchio og Dafydd Williams. Slik ser et typisk MISSE-panel ut. På panelet er det montert prøver av en rekke forskjellige materialer. Et hovedformål er å finne ut hva som skjer med materialene når de utsettes for omgivelsene i rommet over lang tid. To slike paneler skulle vært hentet inn i romstasjonen på denne romvandringen, men måtte forbli utenfor romstasjonen på grunn av hullet i Mastracchios venstre hanske. (NASA) De brukte amerikanske romdrakter og romstasjonens Quest-modul. Etter å være kommet utenfor, tok de seg opp til Z1-seksjonen. Der gikk de i gang med å demontere et av de fire svinghjulene i den amerikanske delen av romstasjonen. Svinghjulet sviktet i oktober Svinghjulene brukes til å endre romstasjonens stilling i rommet uten å bruke drivstoff. Astronautene skrudde ut flere bolter som holdt beholderen med svinghjulet festet til Z1-seksjonen. Strømkabler måtte også kobles fra. Beholderen ble midlertidig lagret like ved. Fastspent i enden av Canadarm2 ble Williams svingt ned i romfergens lasterom. Mastracchio var i lasterommet og hjalp til med å få løs et nytt svinghjul som Endeavour hadde med. Williams holdt det nye svinghjulet med hendene mens han ble svingt tilbake fra romfergens lasterom og opp til Z1-seksjonen. Sammen fikk de det nye svinghjulet på plass, boltet det fast og koblet til 27

28 romfergeprogrammet elektriske kabler igjen. Det gamle svinghjulet ble plassert i samme krybbe som det nye kom opp i. Krybben med det gamle svinghjulet vil forbli montert til utsiden av romstasjonen frem til STS-122 i desember Da blir krybbe og svinghjul tatt med tilbake til Jorden. Romvandringen ble avsluttet etter 6 timer og 28 minutter. ESP august ble en ny, stor komponent løftet ut av romfergens lasterom med romfergens manipulatorarm. Det var den 3,2 tonn tunge plattformen ESP 3 (External Storage Platform 3.) ESP 3 ble så overlevert fra romfergens manipulatorarm til romstasjonens manipulatorarm, Canadarm2. Den plasserte ESP 3 på romstasjonens fagverk. Automatiske låser låste ESP 3 fast til fagverket. Monteringen til fagverket skjedde uten manuelt arbeid av astronauter på romvandring. ESP 3 skal brukes til lagring av forskjellige viktige reservedeler. Dette var første gang ble en ESPplattform ble flyttet fra lasterommet i en Den internasjonale romstasjonen sett fra Endeavour en liten stund etter frakoblingen. Den sølvgrå sylinderen øverst i midten er Destiny. Under oppholdet ved romstasjonen var Endeavour koblet til enden av denne modulen. Nederst i den midtre rekken av moduler ses Progress M-60, som er koblet til Zvezda-modulen. (NASA) romferge og montert til romstasjonen bare ved hjelp av manipulatorarmen. To tilsvarende plattformer, ESP 1 og ESP 2, er tidligere blitt montert til henholdsvis Destiny-modulen og Quest-modulen. Begge gangene var astronauter på romvandringer involvert i utplasseringen. MER SKADESTUDIER Imens fortsatte arbeidet med å analysere skaden i de to varmeklossene Romstasjonen svever over et lettskyet ørkenområde på Jorden. (NASA) på undersiden av Endeavour. Det ble etter hvert klart at skaden ikke representerte noen alvorlig trussel verken for romfergebesetningen eller Endeavour. Skaden kunne overhodet ikke sammenliknes med den som førte til at Columbia gikk tapt. Spørsmålet var mer om skaden vil gi mer vedlikeholdsarbeid på Endeavour før neste ferd. Det verste man antok denne skaden kunne forårsake under tilbakevending var at aluminiumsstrukturen nær skadestedet kunne få en større varmebelastning enn den bør. I så fall måtte man etter ferden ha fjernet en del varmeisolerende klosser rundt skadestedet, gå inn i aluminiumsstrukturen under og bytte ut deler av den. Arbeidet ville kanskje forsinke klargjøringen av Endeavour foran neste ferd og kan i sin tur gi nye forsinkelser i romfergeprogrammet. NASA har satt 175 grader celsius som den høyeste temperaturen aluminiumsstrukturen under de varmeisolerende flisene skal utsettes for. Datamaskinberegninger tydet på at med den skaden Endeavour nå hadde, ville maksimumstemperaturen under en tilbakevending ligge litt under dette. Beregningene ble kontrollert mot prøver med varmeflisene som var gitt en tilsvarende skade og som ble prøvd 28

29 den internasjonale romstasjonen i den spesielle ovnen ved Johnson Space Center i Houston. Det ble etter hvert klart at det var uaktuelt for NASA å be astronauter i Endeavour om å reparere skaden. Dersom det hadde blitt aktuelt å med en reparasjon, ville den trolig skjedd på ferdens fjerde romvandring. Mastracchio ville da ha spent seg fast til enden av den 15 m lange instrumentbommen, som igjen måtte holdes i enden av den 15 m lange manipulatorarmen. Williams ville tjoret seg fast lenger ned på instrumentbommen og bistått Mastracchio. Fastpent til instrumentbommen ville de to så ha blitt svingt inn på undersiden av Endeavour. En slik reparasjon ville medført sine egne farer. Med seg måtte astronautene ha hatt kg med verktøy og utstyr for reparasjonen. De varmeisolerende flisene på undersiden av romfergebe er sprø og lette å skade. Astronautene måtte ha opptrådt meget forsiktig og hele tiden passet på at ikke noe av det medbrakte utstyret løsnet, eller hadde slått inn i andre fliser og lagd enda større skader enn den som skal repareres. Hovedhjulene på Endeavour har tatt bakken etter STS-118. (NASA) Tredje romvandring Den tredje romvandringen på STS- 118 startet klokken norsk sommertid 15. august. Den ble utført av Richard Mastracchio og Clayton Anderson. Mens Mastracchio var medlem av STS-118-besetningen, var Anderson en av de tre som utgjorde langtidsbesetningen i den internasjonale romstasjonen. De brukte amerikanske romdrakter og romstasjonens Quest-modul. Fastspent til enden av Canadarm2 ble Mastracchio svingt opp til P6-seksjonen. Der gikk han i gang med demontere en antenne. Senere flyttet han antennen ned til P1-seksjonen. Anderson bega seg direkte til P1-seksjonen der han installerte en signalprosessor og en transponder. Deretter gikk begge i gang med å flytte to traller langs romstasjonens fagverk. Trallene går på en slags skinner der. Av hensyn til fremtidige arbeidsoppgaver måtte trallene flyttes til motsatt side av Canadarm2 i forhold til der de da var. Hver tralle måtte løses fra skinnegangen. Anderson fraktet i to omganger begge trallene over fra babord til styrbord side av Canadarm2. Fastspent til enden av Canadarm2 tok han først tak i den ene trallen. Mens han holdt den i hendene, ble han svingt over fra den ene siden av der Canadarm2 stod på fagverket og til den andre. Deretter gjentok han operasjonen med den andre trallen. På påfølgende romfergeferd, STS-120 som i skrivende stund er planlagt til oktober 2007, skal P6- seksjonen med de sammenfoldede solcellepanelene flyttes til ytterenden av babord side av fagverket. Der skal P6-seksjonen kobles til P5-seksjonen. For å få til dette må Canadarm2 kunne kjøre helt til enden av babord side av fagverket. Da kunne ikke de to trallene omtalt ovenfor være på babord side av Canadarm2. Der var årsaken til at de nå ble flyttet over til styrbord side. Ved 21-tiden ble Mastracchio bedt om å undersøke hanskene på romdrakten sin. Dette er en ny rutine som er innført på romvandringer etter en skade som ble oppdaget etter STS-116 i desember Hver halvtime under en romvandring gjør astronautene slike undersøkelser. Mastracchio oppdaget at det i venstre hanske var et hull i lag nummer to av de fem lagene en hanske har. Hullet utgjorde ingen fare for Mastracchio og det var ingen lekkasje fra romdrakten. Likevel beordret bakkekontrollen Mastracchio tilbake til Quest-modulen og til å avslutte romvandringen. Årsaken var så enkel som at sikkerhetsrutinene for romvandringer tilsier at om det oppdages slike hull, skal astronauten tilbake til luftslusen. Man vet ikke hvorfor Mastracchios hanske ble skadet. Dette var andre gang på tre romfergeferder (den første var altså på STS-116) at en hanske får en slik skade. Foreløpig har man en mistanke om at et eller annet objekt utenfor romstasjonen har uvanlig skarpe kanter. Om bord i romstasjonen har man et sett med reservehansker. Skaden på den ene hansken utgjorde derfor ikke noe problem for den neste romvandringen på STS-118. Anderson gjorde seg ferdig med den arbeidsoppgaven han holdt på 29

30 romfergeprogrammet Bremseskjermen bak romfergen brukes for raskere å få den til ro etter landing. (NASA) med. Så vendte også han tilbake til luftslusen i Quest-modulen og avsluttet romvandringen. Da dette skjedde, lå de to godt foran planen for romvandringen. Å flytte de to trallene var den viktigste oppgaven de hadde, og den var de ferdige med. Det eneste de ikke fikk gjort, var å ta med seg inn i romstasjonen to paneler med ulike stoffer som har vært utsatt for forholdene i rommet (Materials International Space Station Experiment (MISSE)). Den oppgaven vil bli gjort på en annen, fremtidig romvandring. Romvandringen ble avsluttet etter 5 timer og 28 minutter. Fjerde romvandring Ferdens fjerde romvandring skulle gått 17. august, men var et par dager tidligere blitt den utsatt til 18. august. Årsaken var at man ville ha ekstra tid til forberedelser dersom den romvandringen skulle ha blitt brukt til å reparere de skadede varmeisolerende klossene på undersiden av Endeavour. Men 16. august besluttet man å ikke reparere skaden på de to varmeflisene. Alle undersøkelser som var gjort tydet på at den ikke ville føre til for høy oppvarming av romfergestrukturen under skadestedet. Sannsynligheten var null for at fordypningen i varmeklossene skulle utgjøre noen fare for Endeavour eller astronautene under tilbakevendingen. I verste fall regnet man med at det kunne bli noen skader på de varmeisolerende klossene som lå rett bak de to som er skadet. Dermed ble den planlagte romvandringen den 18. august den fjerde og siste på STS-118, med de arbeidsoppgavene var de som oprinnelig var planlagt for den. Om denne fjerde romvandringen hadde gått med til å reparere såret i varmeklossene, ville det blitt en femte romvandring for å utføre de oppgavene som opprinnelig var planlagt for den fjerde. For øvrig oppdaget astronautene en liten skade i det ytterste laget på et av vinduene på Endeavour som vender fremover. Treff av en mikrometeoroide eller et liten bit med romskrap har laget en om lag én millimeter stor skramme i vinduet. Opprinnelig var den fjerde romvandringen planlagt å vare i 6,5 timer. I god tid før den startet besluttet NASA å korte den ned til 4,5 timer. Så merkelig det enn kan høres lå årsaken til dette i orkanen Dean, som var i ferd med å bygge seg opp i ute i den sydøstlige delen av Det karibiske hav. Varslene for hvor Dean vil treffe land var ennå usikre. Dog var det en viss sjanse for at den kunne ramme Houston-området i Texas og i verste fall stoppe driften ved Johnson Space Center. Senteret ville da ikke kunnet støtte Endeavour under tilbakevendingen til Jorden. Før romvandringen besluttet NASA derfor å fremskyve landingen av Endeavour med ett døgn, til tirsdag 21. august istedenfor onsdag 22. august En konsekvens av det var at romfergen måtte koble seg fra romstasjonen tidligere enn planlagt. Romvandringen måtte kortes inn for at man skulle få tid til å fullføre alle gjenstående oppgaver før frakoblingen. Den fjerde romvandringen på STS-118 startet klokken norsk sommertid 18. august. Den ble utført av Clayton Anderson og Dafydd Williams. De brukte amerikanske romdrakter og romstasjonens Quest-modul. Først installerte de en antenne som inngår i et system for trådløs kommunikasjon med en del instrumenter på utsiden av romstasjonen. Dette er en del av et system som måler ulike belastninger på romstasjonselementene. Etterpå monterte de en plattform som romfergens instrumentbom kan plasseres på under fremtidige romfergeferder. Til slutt demonterte de to brett med materialprøver og tok dem med inn i Quest-modulen. Det var de to MISSE-panelene som det ikke ble tid til å hente inn på den tredje romvandringen. Opprinnelig var det planen å også montere noen skjold mot mikrometeoroider på utsiden av Destiny- og Unity-modulene. Dessuten skulle de ha flyttet en verktøykasse fra et sted til et annet på utsiden av romstasjonen. Disse oppgavene ble kuttet fra planen for romvandringen og tas på en fremtidig romvandring. Romvandringen ble avsluttet klokken norsk sommertid og varte således i 5 timer og 2 minutter. 30

31 den internasjonale romstasjonen Nærbilde av skadestedet tatt etter landing. (NASA) Med en gang romvandringen var avsluttet, gikk besetningsmedlemmene i gang med å fullføre de siste overføringene av utstyr mellom romfergen og romstasjonen. Lukene mellom Endeavour og den internasjonale romstasjonen ble stengt klokken norsk sommertid 18. august. Dersom man hadde holdt fast ved planen om å la Endeavour lande 22. august, måtte man ha satt opp et nødkontrollsenter ved Kennedy Space Center i Florida. NASA har lenge hatt planer om dette. Der måtte man imidlertid ha nøyd seg med en langt mindre støttestab enn den man har ved Johnson Space Center. Da hadde man ikke hatt mulighet til å overvåke alle romfergens systemer så godt som under en landing som kontrolleres med full stab fra Johnson Space Center. Frakobling Endeavour ble koblet fra den internasjonale romstasjonen klokken norsk sommertid 19. august. Om bord i Endeavour var de samme syv som ble skutt opp, mens de tre som var igjen i romstasjonen var de samme tre som var der da Endeavour ankom Endeavour drev først ut til en avstand av omtrent 120 m fra romstasjonen. Der sørget en motoravfyring for at romfergen for alvor bega seg bort fra romstasjonen. Senere brukte Endeavour-besetningen instrumentbommen til nok en undersøkelse av romfergens varmebeskyttende lag utvendig. Det var for å se om romfergen hadde fått noen nye skader fra mikrometeoroider og romskrap mens den var koblet til romstasjonen. Slike undersøkelser etter frakobling er blitt standard etter Columbia-ulykken. Planen var nå at Endeavour skulle lande ved Kennedy Space Center i Florida 21. august Værutsiktene for Florida var bra. Dessuten så orkanen Dean ut til å følge en kurs så langt syd at Johnson Space Center i Houston, Texas likevel ikke var truet av den. Om Endeavour ikke hadde kunnet lande Kennedy Space Center 21. august, ville landingen blitt utsatt til 22. august, med tanke på å få romfergen ned der. Dersom det hadde vært fare for at Johnson Space Center måtte stenges på grunn av Dean, var NASA forberedt på å ta Endeavour ned tirsdag uansett. Om en landing ved Kennedy Space Center ikke hadde vært mulig, ville NASA latt Endeavour lande enten ved Edwards Air Force Base i California eller ved White Sands i New Mexico. Endeavour hadde tilstrekkelig med forsyninger til å kunne være i rommet frem til 24. august. Landing De to banemanøvreringsmotorene på Endeavour startet klokken norsk sommertid den 21. august. De brant i 3 minutter og 33 sekunder og bremset romfergens hastighet med rundt 395 km/h. Det var tilstrekkelig til at romfergen en halv time senere kom ned i jordatmosfæren Landingen fant sted ved Kennedy Space Center i Florida. Hovedhjulene tok rullebanen klokken norsk sommertid, nesehjulene klokken og romfergen stoppet klokken Ferden hadde vart i 12 døgn, 17 timer, 55 minutter og 34 sekunder fra oppskyting og til hovedhjulene tok bakken. Skaden på de to varmeisolerende flisene under Endeavour hadde ikke hatt noen synlig innvirkning på Endeavour under tilbakevendingen og landingen. Dette var helt i tråd med hva man hadde forventet. Bilder av skaden etter landing viste ingen tegn til at den var blitt vesentlig verre enn den var i rommet, ei heller at skaden hade økt i omfang eller påførte skader på andre deler av romfergen. Endeavour blir nå gjennomgått og klargjort for sin neste ferd, som i skrivende stund er planlagt til 14. februar I denne prosessen vil noen av flisene på og rundt skadestedet bli fjernet. Først da vil man i detalj få se om det er blitt noen skader i området rundt denne skaden. Fire av besetningsmedlemmene ser opp på den mye omtalte skaden på to varmeisolerende klosser. Skadestedet er det største hvite feltet over dem. Fra venstre står: Kelly, Williams, Caldwell og Mastracchio. (NASA) 31

32 utforskning UTFORSKNING av AV solsystemet SOLSYSTEMET Phoenix er på vei mot Mars Alle systemer fungerte som de skulle da USAs nyeste Mars-romfartøy, Phoenix, ble skutt opp fra Cape Canaveral Air Force Station i Florida, USA 4. august Phoenix skal lande på Mars i mai 2008 for å undersøke om forholdene på overflaten kan tillate liv å eksistere der. Av Erik Tronstad Oppskytingen Delta 2-bæreraketten med den ubemannede Phoenix på toppen tok av fra oppskytingskompleks 17A klokken ,59 norsk sommertid. Dette var nær midt i det ett sekund lange oppskytingsvinduet. Denne Delta 2-versjonen hadde ni faststoffmotorer montert rundt nedre del av det første trinnet. RS-27A-motoren i det første trinnet brant i knapt 4,5 minutter. Motoren i det andre trinnet brant i knapt fem minutter og plasserte seg selv og Phoenix i en lav jordbane, 9 minutter og 28 sekunder etter oppskytingsstart. Motoren i det andre trinnet startet på nytt omtrent 1 time og 14 minutter etter oppskytingsstart og brant i om lag 2,5 minutter. Omtrent 1,5 minutter senere startet faststoffmotoren i det tredje trinnet, av typen Star 48B, og brant i 1 minutt og 27 sekunder. Da var både Star 48B-trinnet og Phoenix på vei bort fra Jorden. Så ble Phoenix og Star 48B koblet fra hverandre. Solcellepanelene på Phoenix frakttrinn ble foldet ut og begynte umiddelbart å levere strøm til systemene om bord og lade opp batteriene. For NASA var det spesielt gunstig at Phoenix kom av gårde på første forsøk og at oppskytingen ikke måtte ut- 32

33 utforskning av solsystemet settes, ettersom oppskytingen av Endeavour skulle skytes opp 9. august. Om oppskytingen av Phoenix var blitt utsatt, ville det ført til tilsvarende utsettelse for Endeavour. Om Phoenix ikke var blitt skutt opp senest 24. august 2007, måtte NASA ha ventet i nær to år på neste oppskytingsvindu mot Mars. Derfor hadde Phoenix prioritet foran Endeavour. Etter Endeavour ventet Dawn, som i skrivende stund er planlagt skutt opp 26. september for etter tur å gå inn i bane rundt klodene Vesta og Ceres. Banejustering 10. august sørget en 3 minutter og 17 sekunder lang avfyring av Phoenix motorer for en hastighetsendring på om lag 18,5 m/s. En ny banejustering kommer i midten av oktober Til sammen kommer disse to banejusteringene til å gi Phoenix rett kurs mot Mars. Frem til denne første banejusteringen hadde Phoenix hatt en kurs som ville fått romfartøyet til å passere km fra Mars. Phoenix ble plassert i en slik bane for å sikre at Star 48B-motoren ikke skulle kollidere med Mars. Frem til denne banejusteringen hadde de to fulgt nær samme bane. Datagrafikk som viser Delta 2s andre trinn som brenner. Phoenix og frakttrinnet med de sammenfoldede solcellepanelene helt til venstre. Den grå delen rett til høyre for solcellepanelene er Star 48B-motoren. (NASA) Formålet med Phoenix Et hovedformål med Phoenix er å finne ut om forholdene på Mars-overflaten kan tillate liv å eksistere der. Phoenix skal imidlertid ikke gjøre noe forsøk på å lete etter tegn til fortidig eller nåtidig liv på Mars. Romfartøyet skal lande langt nord på Mars og grave i jordsmonnet der. Observasjoner fra tidligere Mars-romfartøyer tyder på at det er betydelige mengder med vannis i overflaten i de områdene. I motsetning til kjøretøyene Opportunity og Spirit har Phoenix ingen mulighet for å bevege seg omkring på Mars-overflaten. Phoenix er et stasjonært landingsfartøy som må stå i ro på det stedet det lander, slik tilfellet var med de to Viking-landerne i Med seg har imidlertid Phoenix helt andre instrumenter enn de som Opportunity og Spirit er utstyrt med. Dermed kan Phoenix gjøre flere typer og mer avanserte analyser av Mars-materialet enn de to nevnte kjøretøyene kan. Instrumentene i Opportunity og Spirit er i hovedsak rettet mot geologiske undersøkelser. Instrumentene i Phoenix er mer rettet mot å se om egenskapene til jordsmonnet på Mars er av en slik art at det tillater liv slik vi kjenner det å eksistere og mot å undersøke vær og klima. LANDING Phoenix skal lande på Mars 25. mai 2008, men en endelig beslutning om hvor på Mars Phoenix skal lande, er ennå ikke tatt. Det mest aktuelle landingsstedet er i øyeblikket et sted i Vastitas Borealis ved 68 N og 233 Ø. Dette er et arktisk sletteområde på Mars. I utgangspunktet skal Phoenix være i virksomhet i 90 døgn på Mars. I løpet av denne tiden kommer temperaturen til å variere mellom -73 C og -33 C nær overflaten på landingsstedet. BAKGRUNN Hovedstrukturen i landeren ble bygd til Mars Surveyor 2001, en lander planlagt skutt opp i Det prosjektet ble skrinlagt etter at Mars Polar Lander gikk tapt i Også flere av komponentene til mange av instrumentene i Phoenix ble bygd for Mars Surveyor Alt utstyr som Phoenix har arvet fra Mars Surveyor 2001, har gjennomgått nye og mer omfattende prøver. Om nødvendig er utstyret endret for å innfri an- Phoenix montert på toppen av Delta 2-bæreraketten med halve nyttelastdekselet (bak) på plass. Varmeskjoldet er øverst og peker oppover. (NASA) 33

34 utforskning av solsystemet befalingene som kom da man undersøkte årsakene til at Mars Polar Lander gikk tapt. På en måte er Phoenix-prosjektet etablert på «ruinene» av Mars Polar Lander og Mars Surveyor Føniks (engelsk Phoenix) var hos de gamle egyptere en fugl som var et symbol på oppstandelse eller en ny begynnelse. KONSTRUKSJON Under ferden til Mars ligger Phoenix sammenfoldet og innkapslet mellom et varmeskjold og et ryggskall. Til ryggskallet er det montert en enhet eller trinn med elektronikk, kommunikasjonsutstyr og solcellepaneler. Eneste formål med dette trinnet, som vi kan kalle frakttrinnet, er å bringe Phoenix til Mars. Rett før Phoenix braser inn i Marsatmosfæren, blir dette trinnet koblet fra. Etter det har trinnet ingen flere oppgaver. Rundt bunnen av dekket eller hovedkroppen til Phoenix er det tolv bremsemotorer. Hver har en skyvekraft på maksimalt 293 N. Motorene startes omtrent 30 sekunder før Phoenix lander på Mars. Fra da av avfyres de i mange korte støt, opptil 10 avfyringer per sekund, både for å bremse ned landeren før møtet med overflaten og for å kontrollere landerens stilling. Kontroll av romfartøyets Sammenbygging av Phoenix hos Lockheed Martin i september Øverst til venstre og nede til høyre ses de to solcellepanelene. (NASA/JPL/UA/Lockheed Martin) Phoenix sett fra undersiden etter at romfartøyet er plassert sammenfoldet under ryggskallet. To av landingsbeina ses klart, mannen på bildet holder hånden sin ved det tredje landingsbeinet. Den grå sekskanten midt under Phoenix er radaren som skal brukes til høydemålinger i sluttfasen. Rundt radaren er et bredt, svart belte, som markerer ytterkanten til underdekket. I ytterkanten av dette ses seks par med røde «sirkler». Det er dysene til de 12 bremsemotorene som skal få Phoenix trygt ned det siste stykket til en myklanding. (NASA) stilling innebærer å sørge for at det ikke vipper opp eller ned til noen kant og ikke roterer, men holder seg horisontalt og parallelt med planetoverflaten frem til landing. Bremsemotorene sørger for at hastigheten langs bakken i landingsøyeblikket er mindre enn 1,4 m/s (5 km/h). Hastigheten i vertikal retning skal være mindre enn 1 m/s (3,6 km/h). Phoenix er for stor til at er var hensiktsmessig å bruke kollisjonsputer til å ta støtet mot overflaten, slik man gjorde med Mars Pathfinder, Spirit og Opportunity. Åtte mindre motorer brukes under overfarten til Mars, mens Phoenix ligger innkapslet mellom varmeskjoldet og ryggskjoldet. Alle disse motorene er montert på selve landeren, men stikker ut gjennom åpninger i ryggskallet. Fire av disse motorene har hver en skyvekraft på 15,6 N og skal brukes til de seks planlagte banejusteringene. De andre fire har hver en skyvekraft på 4,4 N og skal brukes til stillingskontroll underveis til Mars. Da sørger de blant annet for at solcellepanelene er vendt mot Solen og at varmeskjoldet vender i fartsretningen og mot Marsatmosfæren rett før romfartøyet raser inn der. 34

35 utforskning av solsystemet Midt på bildet ses dysen til en av de tolv bremsemotorene. (NASA) Modell i full skala av Phoenix. De tolv bremsemotorene, men der vann strømmer ut av dysene. (NASA) Når Phoenix har landet, blir det stående i ro på tre landingsbein. Dekket eller plattformen oppå de tre beina har en diameter på 1,5 m. Etter landingen blir to solcellepaneler foldet ut. Hvert solcellepanel er en nær sirkulær tikant med et areal på 2,1 m 2. En mast med et stereokamera på og en mast med instrumenter for meteorologiske observasjoner blir så reist opp på toppen av plattformen. Høyden fra bakken og til toppen av meteorologimasten er 2,2 m, muligens litt mindre, avhengig av hvor mye landingsbeina trykkes inn i sammenstøtet med overflaten. Avstanden mellom ytterkantene av de to solcellepanelene er 5,52 m. Ved oppskyting veide Phoenix og frakttrinnet som brukes underveis til Mars 670 kg. I dette inngår varmeskjold, ryggskall, drivstoff til banejusteringer og fallskjerm til bruk under landingen på Mars. Selve Phoenix-landeren veier 350 kg, hvorav 55 kg er vitenskapelig utstyr. Prisen for prosjektet er 420 millioner amerikanske dollar, inkludert utvikling, vitenskapelige instrumenter, oppskyting og drift av romfartøyet i dets levetid. En liten videoplate med navn fra 70 land er montert på toppen av dekket. På platen er det også prosa, musikk og annen kunst relatert til Mars. Hovedkomponentene til Phoenix under ferden fra Jorden til Mars. (NASA/Erik Tronstad) DATASYSTEMET «Hjernen» i Phoenix er en RAD6000 mikroprosessor, en variant av PowerPC-brikken som en gang ble brukt i mange Macintosh-maskiner. RAD6000-prosessoren kan kjøre med en av tre hastigheter: 5 millioner, 10 millioner eller 20 millioner klokkesykluser per sekund. Prosessoren har tilgang til et arbeidsminne på over 75 MB, pluss et lagerminne. Tallene er ikke særlig imponerende i dag. Men dette er spesialbrikker produsert for å tåle de ekstreme forholdene i rommet og den ødeleggende partikkelstrålingen der. Komponenter fra en datamaskin 35

36 utforskning av solsystemet som brukes her på Jorden, ville ikke fungert pålitelig underveis til og på Mars. KOMMUNIKASJON All kommunikasjon mellom Phoenix og Jorden etter landingen på Mars må skje via romfartøyer i Mars-bane, i praksis NASAs Mars Odyssey og Mars Reconnaissance Orbiter. Også ESAs Mars Express har nødvendig utstyr for å kunne formidle data mellom Phoenix og Jorden. Underveis til Mars kommuniserer Phoenix med bakken via utstyr i og antenner på frakttrinnet. Etter at frakttrinnet kobles fra noen minutter før ankomst Mars, sender en UHF-spiralantenne på ryggskallet korte statusdata tilbake til Jorden. Like etter at ryggskallet er koblet fra, trer en UHF-antenne på selve Phoenix-landeren i funksjon. Resten av landingsfasen sender denne antennen statussignaler tilbake til Jorden. På toppen av dekket har Phoenix to UHF-antenner, den nevnte spiralantennen og en monopolantenne. I månedene etter landing skal de to brukes til å kommunisere med Jorden via de to nevnte romfartøyene i Mars-bane. Landeren kan kommunisere med romfartøyene i Mars-bane med hastigheter på 8000 bit/s, bit/s og bit/s. De to laveste hastighetene skal brukes når Phoenix skal motta kommandoer fra Jorden fra romfartøy i Mars-bane. Vitenskapelige instrumenter Phoenix bringer med seg syv vitenskapelige instrumenter. Tre av dem består av flere delinstrumenter. Robotarmen Noe av det viktigste utstyret Phoenix har er en 2,35 m lang robotarm. Med den skal Phoenix hente opp prøver fra overflaten og fordele dem til ulike analyseinstrumenter. Armen er laget av aluminium og titan og er 2,35 m lang. Den ene enden av armen er montert til dekket på Phoenix. Midt på armen er et En tekniker betrakter Phoenix' robotarm. Ytterst på armen graveskuffen, lenger opp kameraet. (NASA/JPL/UA/Lockheed Martin) albueledd. I motsatt ende av armen er en skuffe med blader på og en motorisert raspe for å knuse og bryte opp frosset jordsmonn. Robotarmen kan beveges som armen på en gravemaskin med fire typer bevegelser: Opp og ned; sidelengs; frem og tilbake og i en roterende bevegelse. Armen har lang nok rekkevidde til å kunne grave ned til omtrent 50 cm under overflaten. Isen som forventes å være i jordsmonnet på landingsstedet, kan imidlertid tenkes å ligge nærmere opp til overflaten enn dette. Når armen kommer i kontakt med jordsmonn med vannis, vil den motoriserte raspen bli brukt til å ta prøver. Små grøfter skal graves med armen og analyseres med instrumenter på den. Prøver som tas av overflatelagene, vil dessuten bli levert til flere instrumenter på dekket av Phoenix for detaljerte analyser. Kamera på robotarmen Kameraet er montert på robotarmen like over skuffen i enden av den. Det skal ta nærbilder i farger av jordsmonnet på landingsstedet, Kameraet på robotarmen på Phoenix, med to grupper lysdioder. Den ene gruppen har 36 røde, 18 grønne og 18 blå dioder, den andre har 16 røde, 8 grønne og 8 blå dioder. (NASA) av vegger og bunner i grøfter som graves og av prøver av jordsmonn og is før og etter at de er tatt opp i graveskuffen. Data fra kameraet om overflatestrukturen i jordsmonnet vil bli brukt til å velge hvilke prøver som skal tas opp for analyser av andre instrumenter. I veggene på grøftene skal forskerne se etter mulige lagdelinger, som kan skyldes endringer i klimaet på Mars. Kameraet har innebygde lyskilder, i form av dioder som sender ut henholdsvis rødt, grønt og blått lys. De skal brukes til å lyse opp områder som skal fotograferes og gjør det mulig å ta fargebilder av dem. En innebygd motor kan brukes til å fokusere objektivet på kameraet. Dette er første gang at et interplanetarisk romfartøy har med et kamera der objektivet kan fokuseres. Alle tidligere kameraer har hatt fast fokuspunkt. Objektivet kan fokuseres fra en nærgrense på 11 mm og til uendelig. Ved nærgrensen har kameraet en oppløsning på 0,023 mm (23 mikron) per bildepunkt. Dermed kan det avbilde detaljer med en utstrekning som er mindre 36

37 utforskning av solsystemet enn tykkelsen på et hårstrå fra et menneske. Stereokamera Enheten består av to kameraer i en mast på toppen av Phoenix. Avstanden mellom kameraene er omtrent Phoenix' stereokamera. (NASA) Instrument for oppvarming av prøver og gassanalyser av dem (Thermal and Evolved-Gas Analyzer) Instrumentet skal analysere stoffer som omgjøres til gassform ved at de varmes opp. I instrumentet er et måleverktøy, kalt kalorimeter. Det måler hvor mye energi som kreves for å øke temperaturen på en prøve med konstant hastighet. Slik kan man finne hvilken temperatur overgangen fra fast stoff til flytende form og fra flytende form til gass skjer ved. Det sier noe om hvilke stoffer og mineraler som er til stede i en prøve. Gassene som dannes føres til et massespektrometer. Det kan bestemme hvilke kjemikalier som er til stede og hvilken sammensetning de har. Åtte små ovner inngår i instrumentet. Hver ovn kan brukes bare én gang. En ovn er omtrent 1 cm lang og 2 mm i diameter. En analyse starter med at en prøve tømmes ned i en ovn fra robotarmen. Ovnen stenges når en lysdetektor ser at den er full. Prøven varmes langsomt opp til temperaturer på opptil 1000 C. Under oppvarmingen drives vann og andre flyktige stoffer ut av prøven i form av gasser. Gassene ledes ut til massespektrometeret. En av prøvene som skal analyseres, er et spesielt materiale som landeren har med fra Jorden. Materialet er preparert slik at det skal være mest mulig fritt for karbon. Dette tjener som et kontrolleksperiment når instrumentet analyserer prøver fra Mars. Formålet er å se hvor godt eksperimentet kan eliminere karbon som er med fra Jorden. Karbon som påvises i Mars-prøver kan være uunngåelige spor av karbon fra Jorden, dersom målingene ikke er høyere enn karbonmengden som måles fra denne kontrollprøven. den samme som mellom øynene på et menneske. Kameraene kan dermed gi stereobilder av omgivelsene. Bildene skal blant annet brukes til å bestemme hvor robotarmen skal grave og til støtte under bruken av armen. Foran hvert kamera kan det plasseres ett av 12 filtre. Kameraene kan dermed ta både fargebilder og bilder på bestemte bølgelengder i synlig og infrarødt lys som er nyttige for å fremheve geologiske og atmosfæriske egenskaper. Hvert kamera har en CCD-brikke på 1024 x 1024 bildepunkter. Fra sitt utsiktspunkt to meter over bakken kan kameraene dreies i alle retninger. De vil «se» omgivelsene med samme kvalitet som et menneskelig øye. Når robotarmen leverer prøver med jordsmonn og is til instrumentene på dekket av Phoenix, vil stereokameraet kunne se ned og inspisere prøvene Plasseringen av vitenskapelige instrumenter på toppen av dekket til Phoenix. A) Instrument for jordanalyse. B) Instrument for oppvarming av prøver og gassanalyser av dem. C) Robotarmen. D) Graveskuffe og kamera i enden av robotarmen. E) Meteorologimast. F) Stereokamera. G) Meteorologisk utstyr med lidar. (NASA/JPL/UA/Lockheed Martin/Erik Tronstad) 37

38 utforskning av solsystemet Massespektromenteret i instrumentet skal altså analysere gasser som avgis fra prøvene som varmes opp. Spektrometeret skal også analysere gasser fra Mars-atmosfæren for å få detaljerte data om stoffene der. Instrument for jordanalyse (Microscopy, Electrochemistry and Conductivity Analyzer) Instrumentet skal bruke fire verktøy til å analysere jordprøver på landingsstedet. Det vil gi omtrent tilsvarende resultater som en gartner eller bonde ville få fra en jordanalyse, pluss flere andre. Tre av verktøyene skal analysere prøver som leveres dem av robotarmen. To av verktøyene er mikroskoper, det tredje et slags kjemisk laboratorium i miniatyr. Det fjerde verktøyet er på robotarmen. Det første verktøyet er et lite kjemisk laboratorium med fire «begere» på størrelse med en tekopp. Hvert kan brukes bare én gang. Verktøyene skal brukes til å analysere løsbare kjemikalier i jordsmonnet. Det skjer ved å blande vann med prøven, slik at den får en suppeliknende konsistens. Verktøyet sørger for å holde prøven varm nok til at den forblir i flytende form under hele analysen. På innsiden av hvert beger er 26 sensorer, for det meste elektroder bak membraner med ulik grad av gjennomtrengelighet. Noen sensorer vil gi data om ph-verdien i prøven, det vil si i hvilken grad den er sur eller alkalisk. ph-verdien er en viktig faktor som sier noe om hvilke typer kjemiske reaksjoner som kan foregå i jordsmonnet. Kanskje kan den for eksempel si noe om hvilke typer mikrober som kunne eksistere i et slikt jordsmonn. Dette er første gang ph-verdien til jordsmonn på Mars skal måles. Det andre og tredje verktøyet er henholdsvis et optisk mikroskop og et atommikroskop. Robotarmen leverer prøver til et hjul som roterer og holder prøvene opp foran de to mikroskopene etter tur. Langs ytterkanten av hjulet er stoffer med forskjellige typer overflater, som for eksempel magneter og klebrig silikon. Slik gir verktøyet data om hvordan partikler i en prøve reagerer med ulike typer overflater, i tillegg til data om størrelsene, formene og fargene til partiklene. De største partiklene det optiske mikroskopet kan betrakte, er omtrent én millimeter lange. De minste det kan se er 500 ganger mindre, det vil si har en diameter på 0,002 mm eller 2 mikron. Atommikroskopet kan se partikler som er ytterligere 20 ganger mindre, det vil si har en diameter på 0,0001 mm eller 100 nm. Diameteren på et menneskelig hårstrå er til sammenlikning omtrent 0,01 mm. Det er første gang et romfartøy har med mikroskoper som kan se så små detaljer som disse to mikroskopene. Det optiske mikroskopet får fargedata om en prøve ved å belyse den med en hvilken som helst kombinasjon av inntil fire forskjellige lyskilder. Lyset kommer fra 12 dioder som sender ut lys i de røde, grønne, blå og ultrafiolette delene av spekteret. Atommikroskopet bygger opp et bilde av en partikkel ved å berøre partikkelen med en meget skarp spiss i enden av en fjær. Fjæren er koblet til en strekkspenningsmåler. Den måler hvor mye fjæren strekker seg eller presses sammen. Ved å flytte den skarpe spissen over ulike deler av en partikkel, bygges det gradvis opp et bilde av partikkelens overflate. Formene og størrelsene på partikler i jordsmonnet gir data 38

39 utforskning av solsystemet om noen av prosessene partiklene har gjennomlevd i omgivelsene på Mars. Ruller en partikkel bortover overflaten, slipes kantene på den til en rundere form. Gjentatte perioder med frysing og tining fører til oppsprekking og skarpe kanter. Leirmineraler som dannes mens de lenge er i kontakt med flytende vann, får karakteristiske plateliknende former. Det fjerde verktøyet skal måle hvordan varme og elektrisitet ledes gjennom jordsmonnet. Verktøyet har en slags elektronisk «gaffel» med fire tagger. Gaffelen stikkes inn i jordsmonnet på forskjellige stadier i gravingen av en grøft med robotarmen. Når gaffelen står inn i jordsmonnet, kan for eksempel en av taggene varmes opp. Så kan man måle hvordan temperaturen øker i nabotaggen. Slik fås data om hvordan jordsmonnet mellom taggene leder varme. Tilsvarende kan man måle hvordan den oppvarmede taggen avkjøles, når varmen slås av. En liten isbit i jordsmonnet kan gi store utslag i hvordan jordsmonnet leder varme. På tilsvarende måte kan den elektriske ledningsevnen til jordsmonnet mellom to tagger måles. Jordsmonnets ledningsevne er en følsom indikator på om det er fukt i jordsmonnet. Fukt kan forekomme i flere former mellom is og flytende form. For eksempel kan fukt opptre som «varm» is og vannfilmer. Når gaffelen holdes opp i luften, kan den måle luftfuktigheten. Små temperaturvariasjoner mellom taggene kan dessuten brukes til å måle vindhastigheten. Meteorologiske instrumenter I værstasjonen inngår en 1,14 m høy mast med sensorer i tre høyder. De skal måle hvordan temperaturen varierer i forskjellige høyder nær overflaten. Fra toppen av masten henger et lite rør som påvirkes av vind. Stereokameraet skal ta bilder av røret for å bestemme vindretning og vindhastighet. Toppen av masten er det høyeste punktet på Phoenix. I de meteorologiske instrumentene inngår også en lidar. Den sender korte laserpulser rett oppover i atmosfæren over Phoenix. Støv og ispartikler som svever i atmosfæren over laserstrålene, reflekterer laserlyset i alle retninger, også rett ned mot Phoenix. Et lite teleskop i lidaren måler hvor mye lys som reflekteres nedover. Analyser av styrken på og tidsforsinkelsene i de reflekterte laserpulsene gir data om størrelsene på partiklene og hvor høyt i atmosfæren de er. Over tid gir slike observasjoner data om hvordan skyer og støvskyer dannes og beveger seg. Nedstigningskamera Kameraet er montert i ytterkanten av dekket på Phoenix. Mot slutten av landingsfasen, rett før Phoenix Nedstigningskameraet til Phoenix med mikrofonen. (NASA/Erik Tronstad) lander, skal det ta ett eneste bilde av landskapet under Phoenix. Bildet vil ha en oppløsning som er bedre enn høyoppløsningskameraet på Mars Reconnaissance Orbiter kan gi. Det vil gjøre det lettere å sammenholde bilder tatt fra Mars Reconnaissance Orbiter med bilder som Phoenix eget stereokamera senere skal ta av omgivelsene. Kameraet er bygd for å ta flere bilder, noe som også var meningen. Under utprøvingen av utstyret på Phoenix oppdaget man at en komponent som håndterer data et annet sted i Phoenix, kunne miste en del viktige tekniske data om det mottar bilder i en kritisk fase av nedstigningen. Dermed ble det bestemt at nedstigningskameraet skal ta bare ett bilde. Nedstigningskameraet veier 480 g og har et synsfelt på 75,3. Eksponeringstiden på bildet som skal tas er 0,004 s (1/250 s). Med en såpass lang eksponeringstid kan bildet bli uskarpt fordi bremsemotorene får hele romfartøyet til å vibrere. En liten mikrofon er montert til nedstigningskameraet. Mikrofonen kan fange inn lyder rundt romfartøyet mens kameraet tar bildet sitt. Man har ingen planer om å bruke kameraet til å ta bilder eller mikrofonen til å registrere lyder etter landingen. Vitenskapelige formål En viktig grunn til at forskerne ønsker å lande Phoenix så langt nord på Mars, er observasjoner som viser at det er store mengder vannis i de øverste delene av jordsmonnet der. Til sammen skal de vitenskapelige instrumentene gi de dataene forskerne ønsker fra Phoenix. I hovedsak er det tre vitenskapelige formål med Phoenixprosjektet: Studere vannets historie på Mars i alle dets faser. Regnet over en tidsskala på milliarder av år kan isen i Phoenix landingsområde være en del av en gammel sjø på Mars nordlige halvkule. Allerede har man flere indisier på at det har vært flytende vann en gang i planetens historie. Terrenget på den nordlige halvkulen er dessuten lavt og nokså slett, sett i forhold til den sydlige halvkulen på Mars. Mye av det vannet 39

40 utforskning av solsystemet som kan ha vært flytende da Mars hadde en tykkere atmosfære, kan nå være is under overflaten. Bakken i de arktiske delene av Mars «puster» hver sol (hvert Mars-døgn) og med årstidene. Om sommeren omgjøres daglig små mengder med is til vanndamp. Om vinteren omgjøres daglig små mengder med vanndamp i atmosfæren til frost på bakken. Slik endres ismengden i bakken med døgnlige variasjoner og årstidsvariasjoner. Finne ut om jordsmonnet på Mars kan understøtte levende organismer. Her må det med en gang (igjen) understrekes at Phoenix ikke er utstyrt for å lete etter fortidig eller nåtidig liv på Mars. Phoenix skal imidlertid se om jordsmonnet på Mars har egenskaper som gjør det mulig for liv å eksistere der. Liv slik vi i dag kjenner det krever at det finnes molekyler som inneholder karbon og oksygen. Slike molekyler kalles for organiske forbindelser, enten de har en biologisk opprinnelse (kommer fra levende organismer) eller ikke. Organiske forbindelser omfatter de kjemiske byggesteinene som liv trenger, samt kjemiske komponenter som kan fungere som en energikilde («mat») for levende organismer. Instrumentene i Phoenix er så følsomme at de vil kunne registrere selv svært små mengder av slike stoffer og bestemme hva slags stoffer det er. Viking 1 og 2 er de eneste vellykkede romfartøyene som tidligere har landet på Mars med liknende instrumenter. De fant ingen spor av organiske forbindelser i jordsmonnet på Mars. Phoenix skal også se etter andre mulige råstoffer som liv trenger. Romfartøyet skal undersøke hvor salte og hvor sure eller alkaliske omgivelsene er i ulike dyp nedover i den øverste delen av Marsoverflaten. Videre skal det se etter andre typer kjemiske forbindelser, som sulfater (svovelforbindelser), som kan fungere som en energikilde for mikrober. Undersøke værforholdene i polområdene på Mars. Phoenix skal måle temperaturen ved bakkenivå og i tre andre høyder opptil vel to meter over bakken. Lufttrykk, luftfuktighet og atmosfærens sammensetning skal måles. Lidaren skal måle mengdene av, høydene over bakken og bevegelsene til skyer og støv i atmosfæren over Phoenix. Landingsstedet Det mest aktuelle landingsstedet blant flere kandidater ligger ved 68,35 N og 233,0 Ø på Mars. Kartlegging av høydevariasjoner med laserhøydemåleren til nå «avdøde» Slik ser overflaten ut i det planlagte landingsområdet for Phoenix. (NASA) Det planlagte landingsstedet til Phoenix (oppe til venstre) sett i forhold til landingsstedene til USAs tidligere, vellykkede Mars-landere. Fargekodingen angir høyder over et gjennomsnittsnivå på Mars. Hvitt er høyestliggende områder, blått lavestliggende. (NASA) Mars Global Surveyor tyder på at det der er en bred, grunn dal. Dalen er om lag 50 km lang og bare 250 m dyp. Observasjoner i infrarødt fra Mars Odyssey og høyoppløsningsbilder tatt fra Mars Reconnaissance Orbiter tyder på at det er forholdsvis lite stein i området. Opprinnelig var det et annet sted som var førstekandidat som landingssted for Phoenix. Observasjoner med Mars Odyssey og Mars Reconnaissance Orbiter viste imidlertid at det i området var mange klynger med steiner, mange av dem større enn cm. Så hyppige forekomster av så store steiner var en uakseptabel høy risiko for Phoenix. Derfor ble det landingsstedet droppet. Når det er vinter på Mars nordlige halvkule, er landingsområdet dekket med frost av karbondioksid. Phoenix skal lande når det er sent på våren der. Frosten skal da være borte, Solen står høyt på himmelen, kommer tidlig 40

41 utforskning av solsystemet opp om morgenen og går sent ned om kvelden. Det gir lange dager med mye sollys til solcellepanelene. Ferdplanen Overføringsfasen til Mars varer i om lag 9,5 måneder, frem til tre timer før landing på Mars-overflaten. Underveis er det planlagt seks banejusteringer, om nødvendig. Den siste skal finne sted 22 timer før ankomst Mars. Rundt syv minutter før Phoenix kommer inn i Mars-atmosfæren, frakobles frakttrinnet med solcellepaneler og annet utstyr brukt under overfarten fra Jorden. Fra da og til omtrent 15 minutter etter at Phoenix har landet, får systemene om bord strøm fra batterier i landeren. Når Phoenix treffer atmosfæren i omtrent 125 km høyde, har romfartøyet en hastighet på 5,6 km/s (vel km/h), og det er litt over syv minutter til landing. Det meste av hastighetsreduksjonen skjer med varmeskjoldet ned gjennom atmosfæren i løpet av de neste tre minuttene. I den fasen oppleves den kraftigste retardasjonen, på 9,3 g. Fallskjermen foldes ut når Phoenix er knapt 13 km over bakken, omtrent 3 minutter og 23 sekunder før landing. Varmeskjoldet kobles fra 3 minutter og 8 sekunder før landing. Høyde og hastighet er da henholdsvis 11 km og 119 m/s (430 km/h). Bare 10 sekunder senere foldes de tre landingsbeina ut. Når det er vel to minutter til landing, starter en radar på undersiden av Phoenix. Fra da av måler den hele tiden avstanden ned til bakken. Knapt 900 meter over bakken er hastigheten redusert til 55 m/s (200 km/h). Da kobles fallskjermen og ryggskallet fra landeren. Små bremsemotorer på Phoenix vil begynne å fungere tre sekunder etter at ryggskallet er koblet fra og 30 sekunder før landing. Bremsemotorene avfyres i mange korte pulser, istedenfor å brenne kontinuerlig og med variabel skyvekraft. Motorene skal både regulere Phoenix stilling og bremse ned hastigheten. Idet sensorer i landingsbeina registrerer kontakt Den stiplede kurven viser banen til Phoenix fra Jorden til Mars. J1 angir Jordens posisjon idet Phoenix skytes opp, J2 Jordens posisjon idet Phoenix ankommer Mars. Firkantene markert med sifrene 1 til 6 angir de planlagte banejusteringene. Den siste (6) kommer få timer før ankomst Mars, så den firkanten angir i praksis også Mars' posisjon når Phoenix lander der. (NASA/Erik Tronstad) Bremsemotorene til Phoenix kontrollerer romfartøyet de siste metrene ned mot landing på Mars. (NASA) 41

42 utforskning av solsystemet med bakken, slås bremsemotorene av. Deretter venter Phoenix i 15 minutter på at støv som ble virvlet opp under landingen, skal dale ned og komme til ro på overflaten. Så foldes de to solcellepanelene ut. Ved å vente med å folde ut solcellepanelene, håper man å unngå at det avsettes mye støv på dem. Om det innenfor området til solcellepanelene ligger steiner som er mer enn 50 cm høye, kan det gi problemer for utfoldingen av panelene. Når solcellepanelene er foldet ut og leverer strøm, strekkes meteorologimasten og kameramasten seg ut oppover. Stereokameraet kan deretter ta de første bildene av landingsstedet. Idet Phoenix lander er det ettermiddag på landingsstedet. Ett Mars-døgn, som kalles en sol, er på 24 timer, 39 minutter og 35,244 sekunder, det vil si knapt 40 minutter lenger enn et døgn på Jorden. Den solen Phoenix lander på, blir sol 0 for landeren. For de to Mars-kjøretøyene Spirit og Opportunity betegnet man landingssolen som sol 1. I løpet av de neste solene foretas en omfattende statuskontroll og utprøving av alle systemene i Phoenix. Tekniske data fra landingsfasen sendes tilbake til Jorden, slik at det Solen står så vidt over horisonten på landingsstedet der Phoenix er kommet ned. Landeren og noen av hovedkomponentene er tegnet i silhuett. (NASA) blir ledig lagringsplass i dataminnet om bord. Deretter vil de vitenskapelige undersøkelsene av landingsstedet starte. Robotarmen trer i funksjon, graver grøfter, undersøker dem med egne instrumenter og leverer jordprøver til noen av de andre instrumentene på landerens dekk. Hvor ulike prøver skal tas fra, kommer til å bli nøye planlagt av forskerne i prosjektet. Phoenix skal i utgangspunktet fungere i 90 soler på Mars. Alle prøver som skal tas og analyseres, må gjøres i løpet av denne perioden. Om solcellepanelene leverer nok strøm og andre systemer fortsetter å fungere tilfredsstillende, kan prosjektet bli forlenget med en måned eller to. Det vil da være sent på sommeren eller tidlig på høsten på landingsstedet. Hvor lenge solcellepanelene kan levere nok energi, avhenger blant annet av om Phoenix lander slik at romfartøyet heller mot syd og av hvor raskt støv avsettes på solcellepanelene. Phoenix kommer ikke til å få en levetid på mange ganger de planlagte 90 solene, slik tilfellet har vært med Spirit og Opportunity. Prosjektstaben regner med at etter omtrent 150 soler vil solcellepanelene ikke lenger levere nok strøm til varmeelementene som holder Phoenix og systemene om bord varme nok til at de kan fungere. Dagene på landingsstedet er da for korte, Solen for lavt på himmelen og solcellepanelene dekket av såpass mye støv at de produserer for lite elektrisk energi. I løpet av ytterligere noen måneder kommer dessuten både landingsstedet og Phoenix til å være dekket av karbondioksidfrost. 42

43 50ÅRSMARKERING NY BOK! utforskning av solsystemet ERIK TANDBERG ROMALDEREN Teknologien - triumfene - tragediene De v viktigste hendelsene i romalderens korte femtiårige historie. Hva skjedde, og hvem gjorde det mulig? Her er alle de spennende romferdene, med Apollo 11s månelanding i 1969 som et høydepunkt. Erik Tandberg er utnevnt til Ridder a av 1. klasse av St. Olavs Orden for r sitt s opplysningsarbeid om romfart. Boka er rikt illustrert. Innb. nb. kr 449,00 DEN FØRSTE SAMLEDE FRAMSTILLING AV ROMALDEREN PÅ NORSK. 43

44 UTFORSKNING utforskning AV av SOLSYSTEMET solsystemet Dawn skal til de største asteroidene Dawn er et ubemannet romfartøy skal til asteroidebeltet. Der skal Dawn inn i bane rundt de to største klodene i beltet, Vesta og Ceres. Først skal Dawn besøke Vesta, deretter Ceres. Av Erik Tronstad Først skal Dawn besøke Vesta, deretter Ceres. Dawn vil bli historiens første romfartøy som går inn i bane rundt et annet legeme enn Jorden, går ut av bane og forlater legemet, flyr over til et annet legeme og går inn i bane rundt det. Flere romfartøyer har passert, gått i bane rundt og til og med landet på asteroider. Felles for alle disse asteroidene er at de har vært små. Ikke noe romfartøy har tidligere gjort nærobservasjoner av en så stor asteroide som Vesta eller av en dvergplanet som Ceres. Oppskytingen Oppskytingen av Dawn foregikk fra oppskytingskompleks 17B ved Cape Canaveral Air Force Station i Florida, USA. Igjen var det en bærerakett av den svært pålitelige Delta 2-typen som sendte et romfartøy på vei bort fra Jorden på oppdrag ute i Solsystemet. Bæreraketten med Dawn på toppen tok av fra oppskytingsrampen klokken ,372 norsk sommertid torsdag 27. september Denne Delta 2-versjonen hadde ni faststoffmotorer montert rundt nedre del av det første trinnet. RS- 27A-motoren i det første trinnet brant i omtrent 4,5 minutter. Motoren i det andre trinnet brant i knapt 4,5 minutter og plasserte seg selv og Dawn i en lav jordbane, 9 minutter og 4 sekunder etter oppskytingsstart. Motoren i det andre trinnet startet på nytt knapt 52 minutter etter oppskytingsstart. Denne gang brant motoren i noe over 2,5 minutter. Omtrent 1,5 minutter senere startet Star 48B-motoren. Den brant i 1 minutt og 21 sekunder. Da var både Star 48B-trinnet og Dawn på vei bort fra Jorden. Litt over én time etter oppskytingsstart ble Dawn og Star 48B koblet fra hverandre. Solcellepanelene på Dawn ble senere foldet ut og begynte å levere strøm til systemene om bord og lade opp batteriene som siden rett før oppskytingsstart hadde forsynt Dawn med strøm. Mange utsettelser Dawn hadde i sluttfasen før oppskyting opplevd flere utsettelser. Det startet med 20. juni 2007 som oppskytingsdato. Problemer med sammenmonteringen av Delta 2- bæreraketten førte til utsettelse til 30. juni. Den datoen greide man heller ikke, på grunn av problemer 44

45 utforskning av solsystemet med en kran som trengtes til montering av faststoffmotorer til Delta 2. Alt lå deretter an til oppskyting 7. juli. Fare for lynaktivitet nær oppskytingsområdet i Florida gjorde at man 5. juli måtte avbryte fyllingen av drivstoff på Delta 2-bæreraketten. Dermed fikk man ett døgns utsettelse, til 8. juli. To nye utsettelser ble annonsert 6. juli. Først til 9. juli. Årsaken var tekniske problemer med et fly som skal motta telemetri fra bæreraketten i oppskytingsfasen. Så annonserte NASA en ny utsettelse til 15. juli. Nå var årsaken problemer med å få av gårde et skip som kunne være reserve for nevnte fly, for mottak av telemetridata. Uten skip eller fly på plass i området ville man ikke fått noen telemetridata fra fasen der det andre trinnet og Star 48-motoren på toppen av Delta 2-bæreraketten brenner. Om noe uventet skulle skje i de fasene, ville man ikke hatt noen data om hva som inntraff. Neste dag, 7. juli 2007, besluttet så NASA å utsette oppskytingen av Dawn til september Årsaken var at man etter 15. juli 2007 videre i den måneden hadde få og sterkt begrensede muligheter for oppskyting av Dawn, som hadde 19. juli som siste mulige oppskytingsdato den måneden. En hovedgrunn til utsettelsen til september 2007 var forberedelsene til oppskytingen av Mars-romfartøyet Phoenix. Dets oppskytingsvindu strakk seg fra Dawns Delta 2-bærerakett i startøyeblikket (NASA) 3. til 24. august Om Phoenix ikke rakk det vinduet, måtte oppskytingen utsettes i nesten to år. Derfor måtte Phoenix få prioritet fremfor Dawn. Både Delta 2-bærerakettens andre trinn og Star 48-motoren på toppen av bæreraketten har brenneperioder utenfor vestkysten av Afrika. NASA har ingen bakkestasjoner der som kan motta telemetridata under disse kritiske avfyringene. Isteden må NASA ha på plass en mobil enhet (fly eller skip) i området. Romfartøyet Ved oppskyting veide Dawn knapt 1218 kg. Av dette utgjorde romfartøyets struktur 747 kg, drivstoffet xenon 425 kg og drivstoffet hydrasin knapt 46 kg. Kroppen på Dawn er 1,64 m lang, 1,27 m bred og 1,77 m høy. Mellom ytterpunktene på de to solcellepanelene i fullt utfoldet tilstand er det 19,7 m. Strømforsyning Hvert solcellepanel er på 8,3 m x 2,3 m og består av 5740 lysfølsomme og strømproduserende celler. En celle omgjør 28 % av solstrålingen som treffer den til elektrisk energi. Ved Jorden leverer solcellepanelene en elektrisk effekt på omtrent 10 kw. Energiproduksjonen fra solcellepanelene kommer til å avta med økende avstand fra Solen. I tillegg til solcellepanelene har Dawn et oppladbart nikkel-hydrogen-batteri med en kapasitet på 35 Ah. Batteriet skal brukes til strømforsyning når solcellepanelene ved enkelte manøvrer ikke er vendt mot Solen. Kommunikasjon En stor parabolantenne og tre rundstråleantenner er montert til Dawn. Parabolantennen har en diameter på 1,52 m. I hovedsak kommer all kommunikasjon mellom Jorden og Dawn til å gå via parabolantennen. Avhengig av avstanden fra Jorden kan Dawn overføre data hit med kbit/s. 45

46 utforskning av solsystemet Dawn er ferdig montert for oppskyting, med sammenfoldede solcellepaneler inntil romfartøykroppen. På venstre side ses den vel 1,5 m store parabolantennen. Rett under den og pekende på skrå ned til venstre ses en av de tre ionemotorene. Her forberedes romfartøyet til rotasjonsprøver 13. juni (NASA/Jack Pfaller) Viktige ionemotorer Fremdriftssystemet i Dawn er tre ionemotorer. Hver av dem er 33 cm i diameter, 41 cm lang, veier 8,9 kg og kan svinges rundt to akser. Skyvekraften fra hver motor er svært liten, mn (millinewton). Det tilsvarer omtrent vekten av et A4- ark du holder i hånden. Når en motor går med maksimal skyvekraft, forbruker den 0,00325 g (0, kg) med xenon per sekund. Det er vel 0,28 kg per døgn. Romfartøyet er i stor grad bygd opp rundt xenontanken. Den er laget av kunststoffmateriale. Utviklingen og byggingen av den skapte store problemer. Dette var en hovedårsak til at NASA faktisk skrinla hele Dawn-prosjektet i mars Så skjedde det høyst uvanlige for et skrinlagt prosjekt at det ble startet opp igjen, noe som skjedde mindre enn en måned senere. Selv om Dawn har tre ionemotorer, kommer bare en motor til å være i drift i gangen. De to andre fungerer da som reserver. Alle tre kommer imidlertid til å bli brukt. Dawn er det første vitenskapelige romfartøyet som har ionemotorer som hovedfremdriftssystem. Både USAs Deep Space 1 og ESAs SMART-1 hadde riktignok også ionemotorer som hovedfremdriftssystem. Hovedformålet med de to romfartøyene var imidlertid utprøving av nye teknologier, ikke vitenskapelige observasjoner, selv om begge var vellykkede også på den måten. En ionemotor har altså svært liten skyvekraft, men er likevel langt mer effektiv enn noen kjemisk rakettmotor. Eksempler på kjemiske motorer er væskemotorer, som de tre bak på hver romferge, og faststoffmotorer, som de to faststoffmotorene som benyttes på hver romfergeoppskyting. Ionomotoren sender ut eksosgassene med hastigheter som typisk er 10 ganger høyere enn fra en kjemisk motor. Populært kan vi si at en ionemotor gir langt større fartsøkning for et romfartøy med ett kilogram drivstoff enn det en kjemisk motor kan. Selv om skyvekraften fra en ionemotor er svært liten, gir det over tid en stor fartsøkning ved at motoren har svært lang driftstid. I løpet av hele sin driftstid kommer ionemotorene i Dawn til å gi romfartøyet et hastighetsbidrag på omtrent 11 km/s. Det er omtrent den samme hastighetsøkningen som Delta 2-bæreraketten med Starmotoren gir Dawn fra jordoverflaten og til romfartøyet er på vei bort på Jorden. Deep Space 1 var et romfartøy som ble bygd for å prøve ut mange typer avanserte teknologier for fremtidige romfartøyer. En av dem var ionemotorer. Den svært vellykkede utprøvingen av ionemotorer på Deep Space 1 gjorde det mulig for NASA å satse på denne teknologien og på et prosjekt som Dawn. Dawns ferdprofil hadde vært umulig å gjennomføre uten ionemotorene. De kommer til å være i Slik ser kroppen på Dawn ut, når man fjerner alt omkringliggende isolasjonsmateriale. De tre grå, sylinderformede gjenstandene nederst er de tre ionemotorene. (Orbital Sciences Corporation) 46

47 utforskning av solsystemet drift i totalt 2100 døgn under hele ferden, men ikke i kontinuerlig drift. De mindre ionemotorene på Deep Space 1 hadde en driftstid på totalt 678 døgn og ga romfartøyet et hastighetstilskudd på 4,3 km/s. Første test av en av Dawns ionemotorer fant sted 7. oktober I de neste 27 timene ble motoren kjørt gjennom et testprogram. Motoren ble da prøvd på fem forskjellige skyvekraftnivåer, fra det svakeste til det kraftigste motoren kan yte. Alt fungerte som det skulle.mindre enn 280 g med drivstoffet xenon gikk med i denne driftsperioden. Stillingskontroll Stillingskontrollsystemet i Dawn består blant annet av to stjernefølgere, tre treghetsenheter, 16 solsensorer og fire svinghjul. Systemet sørger for at solcellepanelene alltid er rettet mot Solen, unntatt under spesielle manøvere der det ikke er mulig. Stillingskontrollsystemet har også kontroll med hvilken retning den til enhver tid aktive ionemotoren peker i. Normalt brukes svinghjulene til å kontrollere romfartøyets stilling i rommet. Det skjer ved å variere hastigheten svinghjulene roterer med. Tidvis kan det hende at et eller flere svinghjul når opp i maksimal hastighet og går i «metning». Da overtar små stillingskontrollmotorer for å avlaste svinghjulet og redusere hastigheten på det. Dawn har 12 små stillingskontrollmotorer, hver med en skyvekraft på 0,9 N. Drivstoff til dem er hydrasin. Siden hver ionemotor kan dreies rundt to akser og følgelig peke i ulike retninger, kan ionemotorene også brukes til stillingskontroll. Dawns Xenon-tank (NASA) En del av systemet som frakter xenon fra xenontanken og til ionemotorene på Dawn. En NSTAR ionemotor. (NASA/JPL) Vitenskapelige instrumenter Dawn har tre vitenskapelige instrumenter for observasjoner av Vesta og Ceres: Et kamerasystem som består av to identiske og helt uavhengige kameraer. Hvert kamera har sin egen optikk med en brennvidde på 15 cm, en CCD-brikke på 1024 bildepunkter x 1024 bildepunkter, et minne på 8 Gbit, syv filtre, elektronikk og struktur. Kameraene kan observere både synlig lys og infrarød stråling. Ved å observere samme område på flere bølgelengder, får forskerne informasjon om hvilke mineraler som finnes på overflatene til Vesta og Ceres. Fra 200 km høyde gir kameraene bilder med en oppløsning på 18,6 m per bildepunkt. Et spektrometer som skal observere synlig lys og infrarød stråling. Instrumentet tar en form for bilder der hvert bildepunkt registrerer lysintensiteten på over 400 bølgelengder. Ved å sammenlikne slike bilder med observasjoner av forskjellige mineraler i laboratorier på Jorden, kan forskerne lage seg et kart over hvilke mineraler som finnes på overflatene av Vesta og Ceres og hvordan ulike mineraler er fordelt i forskjellige områder på de to klodene. Instrumentet er en modifisert versjon av tilsvarende instrumenter i de to ESA-romfartøyene Rosetta og Venus Express. Det bygger også i betydelig grad på et slikt instrument i NASAs Cassini. Et instrument som skal registrere gammastråling og nøytroner. Instrumentet har 21 sensorer som måler energien til gammastråling og nøytro- 47

48 utforskning av solsystemet I midten og innerst i romfartøyet ses den ellipsoideformede xenon-tanken. Over den ligger den kuleformede hydrasintanken. De vertikale grå stripene på venstre og høyre side angir solcellepanelene. De to grå «mastene» øverst i midten er de to kameraene. (Orbital Sciences Corporation) Tegning av Dawn med plasseringen av hovedkomponentene. Tegnforklaring: 1) Parabolantenne; 2) Rundstråleantenner; 3) Stjernefølgere; 4) Kameraer; 5) Spektrometer som skal observere synlig lys og infrarød stråling (instrumentet er ikke synlig på denne tegningen); 6) Instrument som skal registrere gammastråling og nøytroner; 7) Solcellepaneler; 8) En av de tre ionemotorene. (NASA/Erik Tronstad) ner som enten sendes ut av stoffer på overflaten av et legeme eller som reflekteres fra legemet. Både gammastråling og nøytroner sendes ut fra atomkjerner. Forskjellige atomkjerner sender ut gammastråling og nøytroner med ulike energier. Ved å observere variasjoner i energien i mottatt gammastråling og nøytroner fra et område på en klode, fås data om hvilke grunnstoffer som er i området og et mål på hvor mye det er der av disse grunnstoffene. Instrumentet kan registrere gammastråling og nøytroner fra den øverste meteren av overflatene på Vesta og Ceres. Spesielt ønsker forskerne å kartlegge forekomstene av grunnstoffer som oksygen, magnesium, aluminium, silisium, kalsium, titan og jern. Det er grunnstoffer som er med på å danne mange typer bergarter. Dessuten er forskerne blant annet interessert i radioaktive stoffer med lange halveringstider, som kalium, thorium og uran. Mange forskere mener Ceres inneholder store mengder vannis. Hvis det er tilfelle, vil dette instrumentet kunne påvise slike forekomster. Dessuten kommer radiosenderen i Dawn til å fungere som et slags fjerde instrument. Ved å observere små variasjoner i radiostrålingen fra Dawn som mottas av bakkestasjoner på Jorden, kan man kartlegge variasjoner i gravitasjonsfeltene til Vesta og Ceres. Det gir igjen data om de to klodenes masse og indre struktur. Om lag navn er med om bord i Dawn. Ulike mennesker har før Dawnoppskytingen registrert sine, og andres, navn via Internett. Navnene er etset inn i en silisiumbrikke på 8 mm x 8 mm. Deretter ble brikken montert til Dawn. Ferdplanen Under omtrent hele ferden ut til Vesta kommer en av de tre ionemotorene til å være virksom det meste av tiden. Tidvis vil ionemotorene være avslått for kontroll av systemene om bord og for å løse eventuelle problemer med dem. Disse planlagte vedlikeholdsperiodene byr dessuten på ekstra tid som kan brukes til å la ionemotorene gå. Det kan bli aktuelt om tekniske problemer gjør at man mister ordinær driftstid av disse motorene. Ionemotorene kommer til å bli stoppet noen timer en gang i uken. Da skal Dawn dreies slik at parabolantennen peker mot Jorden og romfartøyet kan kommunisere med bakkestasjoner her. Etter oppskyting fra Jorden settes kursen mot Mars. På det nærmeste passerer Dawn 500 km fra Mars 4. februar Hovedformålet med nærpasseringen av Mars er å gi Dawn et gravitasjonsdytt utover i Solsystemet. Passeringen av Mars kommer til å øke romfartøyets hastighet i forhold til Solen med 4020 km/h. Ankomst til Vesta blir 14. august Med ionemotorene kommer Dawn til være i nær samme bane som Vesta idet romfartøyet nærmer seg asteroiden. Langsomt kommer Dawn til nærmest å «gli» inn i bane rundt Vesta. Her trengs ingen tidskritisk motoravfyring som må starte og slutte i rett øyeblikk for å få romfartøyet inn i bane, slik tilfellet er for romfartøy som bruker kjemiske rakettmotorer for å gå inn i bane rundt et stort legeme. 48

49 utforskning av solsystemet Diagram over Dawns bane fra Jorden via Mars til Vesta og Ceres. Diagrammet er basert på oppskyting av Dawn i september Heltrukne kurvesegmenter angir perioder der en av Dawns ionemotorer skal være i virksomhet. Kortstiplede kurvesegmenter angir perioder der motorene ikke brukes. Retningen til vårjevndøgnspunktet er rett ut til høyre på dette diagrammet. (NASA/Erik Tronstad) Mens Dawn nærmer seg Vesta, kommer romfartøyet til å kartlegge området rundt asteroiden på leting etter eventuelle måner, støv eller små legemer nær asteroiden. Når Dawn ankommer Vesta, kommer ionemotorene til å ha en driftstid på over 1000 døgn bak seg. Dawn skal inn i en nær polar bane rundt Vesta. Fra den banen kan instrumentene i Dawn kartlegge og observere omtrent hele Vesta-overflaten. Banehøyden kommer til å variere mellom 2500 km og mindre enn 200 km. Fra sistnevnte høyde kan kameraene om bord ta bilder som viser detaljer ned til en utstrekning på litt over 18 m per bildepunkt. Etter å ha gått i bane rundt Vesta i om lag syv måneder, kommer Dawn til å forlate Vesta 22. mai Fra Vesta settes kursen enda lenger utover i Solsystemet, til Ceres. Der skal Dawn være fremme og gå inn i bane rundt Ceres 1. februar Det blir første gang i historien at et romfartøy har dratt fra Jorden, først gått i bane rundt et legeme, forlatt det og så gått inn i bane rundt et annet legeme. I fem måneder skal Dawn kretse i nær polbane rundt Ceres og observere det meste av overflaten på dvergplaneten. Når de observasjonene er avsluttet, kommer Dawn til å bli etterlatt i en 700 km høy bane rundt Ceres. Den banen er høyt nok over Ceres til at Dawn ikke kommer til å falle ned på Ceres i løpet av de påfølgende 50 år. Asteroider og dvergplaneter har stor interesse for forskning innen organisk kjemi og når det gjelder spørsmålet om hvordan liv ble dannet. Ceres inneholder tydeligvis store mengder vannis, og vann er en forutsetning for liv slik vi kjenner det. Sannsynligheten for at det skal være levende organismer på Ceres anses som svært, svært liten. Likevel har NASA satt som krav for seg selv at Dawn ikke må kræsje på Ceres i løpet av de 20 årene etter at Dawns oppgaver ved Ceres er fullført. Prisen for hele prosjektet er 343,5 millioner amerikanske dollar. Av dette går 267 millioner amerikanske dollar til romfartøyet og 76,5 millioner amerikanske dollar til bærerakett og oppskyting. Passering av andre asteroider underveis? I asteroidebeltet mellom Mars og Jupiter, der Vesta og Ceres beveger seg, kjenner astronomene banene til titusener av asteroider. Kanskje vil banen til Dawn bringe romfartøyet nær en eller flere av disse, men det vet man ennå ikke. Med sin ionemotor har Dawn en fleksibilitet til å endre banen sin som et romfartøy med kjemiske rakettmotorer ikke har. Likevel er det en del ukjente størrelser som gjør at man før Dawn har vært prøvd ut ute i rommet ikke vet nøyaktig hvordan romfartøyets bane blir. På Jorden ble det gjort omfattende prøver av Dawn og dets systemer i vakuumkammer. Men først etter utprøvingen vil man kunne Med en ionemotor i drift nærmer Dawn seg Vesta. (NASA) 49

Hvor går romfarten? Bemannet romfart før, nå og framover. Terje Wahl 07.09.2010. Norsk Romsenter www.romsenter.no

Hvor går romfarten? Bemannet romfart før, nå og framover. Terje Wahl 07.09.2010. Norsk Romsenter www.romsenter.no Hvor går romfarten? Bemannet romfart før, nå og framover Terje Wahl Innhold - Kort om Norsk Romsenter - Romalderens begynnelse - Høydepunktet (Månen) - Nedturen (Romfergen) - Nye trender - Offentlig -

Detaljer

TEMA ROMFART. 10 vi reiser i rommet

TEMA ROMFART. 10 vi reiser i rommet Det er 60 år siden menneskene skjøt ut Sputnik, den aller første satellitten. Siden den gangen har vi sendt både mennesker til månen og roboter til Mars. Men hva skal vi gjøre nå? TEKST: INGRID SPILDE

Detaljer

ART.3: PRINSIPPER FOR OPPBYGGING AV EKSPONATER

ART.3: PRINSIPPER FOR OPPBYGGING AV EKSPONATER Org.: IKa Side: 1 av 7 ART.1: KONKURRANSEUTSTILLINGER 1.1 Basis innhold (ref. SREV, GREV art. 1.1-1.4) 1.4.1 Disse retningslinjer er utarbeidet for å hjelpe dommere og utstillere til en bedre forståelse

Detaljer

Newton Realfagsenter Nannestad. Versjon: KAN/2009-02-20

Newton Realfagsenter Nannestad. Versjon: KAN/2009-02-20 Versjon: KAN/2009-02-20 1. Raketter, romturisme og verdens kappløp 2. Teleskoper 3. Stellarium 4. Jorden THE NEWTON TEAM Kjell Arnt Nystøl (Kjemi) Theresa Myran (Biokjemi) Runar Andreassen (Biologi) Andreas

Detaljer

Romrelaterte aktiviteter og læringsressurser Ny læreplan nye utfordringer

Romrelaterte aktiviteter og læringsressurser Ny læreplan nye utfordringer Romrelaterte aktiviteter og læringsressurser Ny læreplan nye utfordringer Birgit Strømsholm, birgit@rocketrange.no NAROM, Nasjonalt senter for romrelatert opplæring www.narom.no 1 Den norske romfamilien

Detaljer

HI-116 1 Konflikt og fred - historiske og etiske perspektiver

HI-116 1 Konflikt og fred - historiske og etiske perspektiver HI-116 1 Konflikt og fred - historiske og etiske perspektiver Kandidat-ID: 7834 Oppgaver Oppgavetype Vurdering Status 1 HI-116 skriftlig eksamen 19.mai 2015 Skriveoppgave Manuell poengsum Levert HI-116

Detaljer

En Romekspedisjon Lærerveiledning til prosjektarbeidet

En Romekspedisjon Lærerveiledning til prosjektarbeidet En Romekspedisjon Lærerveiledning til prosjektarbeidet Prosjektarbeid for barnehage Verdensrommet i barnehagen Hva er et romskip? Hvor kan vi reise? La oss se om vi kan finne det ut. De fleste av oss har

Detaljer

TENK SOM EN MILLIONÆ ÆR http://pengeblogg.bloggnorge.com/

TENK SOM EN MILLIONÆ ÆR http://pengeblogg.bloggnorge.com/ TENK SOM EN MILLIO ONÆR http://pengeblogg.bloggnorge.com/ Innledning Hva kjennetegner millionærer, og hva skiller dem fra andre mennesker? Har millionærer et medfødt talent for tall og penger? Er millionærer

Detaljer

Einar Gerhardsen i russiske arkiv en metoderapport for SKUP 2014

Einar Gerhardsen i russiske arkiv en metoderapport for SKUP 2014 Einar Gerhardsen i russiske arkiv en metoderapport for SKUP 2014 Av Morten Jentoft, journalist i utenriksredaksjonen, NRK, tel 23048210/99267524 Redaksjonens adresse: NRK - utenriks 0342 Oslo Følgende

Detaljer

Historien om universets tilblivelse

Historien om universets tilblivelse Historien om universets tilblivelse i den første skoleuka fortalte vi historien om universets tilblivelse og for elevene i gruppe 1. Her er historien Verden ble skapt for lenge, lenge siden. Og det var

Detaljer

Fagområder: Kunst, kultur og kreativitet, Natur, miljø og teknikk, Nærmiljø og samfunn, Kropp, helse og bevegelse, Antall, rom og form.

Fagområder: Kunst, kultur og kreativitet, Natur, miljø og teknikk, Nærmiljø og samfunn, Kropp, helse og bevegelse, Antall, rom og form. Hei alle sammen Kom mai du skjønne milde. April er forbi, og det begynner å gå opp for oss hvor fort et år faktisk kan fyke forbi. Det føles ikke så lenge siden vi gjorde oss ferdig med bokprosjektet vårt

Detaljer

ESERO AKTIVITET GODT ELLER DÅRLIG SIGNAL? Lærerveiledning og elevaktivitet. Klassetrinn: alle. Utviklet av

ESERO AKTIVITET GODT ELLER DÅRLIG SIGNAL? Lærerveiledning og elevaktivitet. Klassetrinn: alle. Utviklet av ESERO AKTIVITET Klassetrinn: alle? Utviklet av Lærerveiledning og elevaktivitet Oversikt Tid Læreplanmål Nødvendige materialer 45 min undersøke fenomener knyttet til lyd, hørsel og støy, diskutere observasjonene

Detaljer

International Space Camp 2012. Av Abeera Akbar

International Space Camp 2012. Av Abeera Akbar International Space Camp 2012 Av Abeera Akbar 1 20. juli satte jeg kursen mot Hunstville, Alabama sammen med Tove Astrid Kvarme og Usman Azeem for å delta på International Space Camp. Min store drøm jeg

Detaljer

1. Kometen Ison har fått mye oppmerksomhet i media den siste tiden. Hvorfor? 2. UiA teleskopet har fulgt kometen, se

1. Kometen Ison har fått mye oppmerksomhet i media den siste tiden. Hvorfor? 2. UiA teleskopet har fulgt kometen, se Ison (video) --- Noen kommentarer 1. Kometen Ison har fått mye oppmerksomhet i media den siste tiden. Hvorfor? 2. UiA teleskopet har fulgt kometen, se http://www.verdensrommet.org 6. nov 2013, den har

Detaljer

Velkommen til minikurs om selvfølelse

Velkommen til minikurs om selvfølelse Velkommen til minikurs om selvfølelse Finn dine evner og talenter og si Ja! til deg selv Minikurs online Del 1 Skap grunnmuren for din livsoppgave Meningen med livet drømmen livsoppgaven Hvorfor god selvfølelse

Detaljer

Månedsbrev fra Rådyrstien Mars 2015

Månedsbrev fra Rådyrstien Mars 2015 Månedsbrev fra Rådyrstien Mars 2015 Februar startet med et smell det også, da vi nå måtte fyre av hele fire raketter for Sigurd som fylte år. Første 4-åring er på plass på Rådyrstien, og det er selvfølgelig

Detaljer

ESERO AKTIVITET Grunnskole og vgs

ESERO AKTIVITET Grunnskole og vgs ESERO AKTIVITET Grunnskole og vgs Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 90 min Lære hvordan magnetfelt oppfører seg Lære om magnetfelt på andre planeter og himmellegemer

Detaljer

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller.

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller. "FBI-spillet" ------------- Et spill for 4 spillere av Henrik Berg Spillmateriale: --------------- 1 vanlig kortstokk - bestående av kort med verdi 1 (ess) til 13 (konge) i fire farger. Kortenes farger

Detaljer

Undervisningsopplegg til txt 2015 Tidsinnstilt

Undervisningsopplegg til txt 2015 Tidsinnstilt Undervisningsopplegg til txt 2015 Tidsinnstilt A. Innledende opplegg om litterær smak og kvalitet Dette opplegget kan med fordel gjennomføres som en forberedelse til arbeidet med årets txt-aksjon. Hvis

Detaljer

Periodeevaluering 2014

Periodeevaluering 2014 Periodeevaluering 2014 Prosjekt denne perioden: Bokstaver. Periode: uke3-11. Hvordan startet det, bakgrunn for prosjektet. Vi brukte de første ukene etter jul til samtaler og observasjoner, for å finne

Detaljer

ESERO AKTIVITET 0-99 år

ESERO AKTIVITET 0-99 år ESERO AKTIVITET 0-99 år - Land et egg på Mars Lærerveiledning og elevaktivitet Oversikt Tid Læringsmål Nødvendige materialer 2 timer Lære om forskjellige romfartøy og forskjellen mellom dem Lære om hva

Detaljer

Raketter og romskip. Prosjektarbeid for barnehage

Raketter og romskip. Prosjektarbeid for barnehage Raketter og romskip Prosjektarbeid for barnehage Kort om aktiviteten Til dags dato har vi mennesker kun funnet én måte å reise ut i verdensrommet på. Det som trengs er et romskip med rakettmotorer som

Detaljer

Kjenn på gravitasjonskraften

Kjenn på gravitasjonskraften Kjenn på gravitasjonskraften Klasseromressurs for grunnskolen Kort om aktiviteten I denne aktiviteten lærer elevene om gravitasjonskraften og hvilke krefter som virker på alt i universet. Vi prøver å svare

Detaljer

Mars Robotene (5. 7. trinn)

Mars Robotene (5. 7. trinn) Mars Robotene (5. 7. trinn) Lærerveiledning Informasjon om skoleprogrammet Gjennom dette skoleprogrammet skal elevene oppleve og trene seg på et teknologi og design prosjekt, samt få erfaring med datainnsamling.

Detaljer

Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter

Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter Lærerveiledning Passer for: Varighet: Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter Blikk mot himmelen er et skoleprogram der elevene får bli kjent med dannelsen av universet, vårt solsystem og

Detaljer

AST1010 En kosmisk reise. Forelesning 7: De indre planetene og månen del 1: Merkur og Venus

AST1010 En kosmisk reise. Forelesning 7: De indre planetene og månen del 1: Merkur og Venus AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus Innhold Hva ønsker vi å vite om de indre planetene? Hvordan kan vi finne det ut? Oversikt over Merkur: Bane, geologi

Detaljer

Til Mars med IKT. Fasitsvar. Spill, utforsk og lær. www.wowfabrikken.no

Til Mars med IKT. Fasitsvar. Spill, utforsk og lær. www.wowfabrikken.no Til Mars med IKT Spill, utforsk og lær Fasitsvar Pedagogisk tilrettelagt for WOWFabrikken av: - Eva Bratvold - Magnus Henrik Sandberg - Lage Thune Myrberget www.wowfabrikken.no UNGDOMSTRINN Landingen på

Detaljer

Mann 21, Stian ukodet

Mann 21, Stian ukodet Mann 21, Stian ukodet Målatferd: Følge opp NAV-tiltak 1. Saksbehandleren: Hvordan gikk det, kom du deg på konsert? 2. Saksbehandleren: Du snakket om det sist gang at du... Stian: Jeg kom meg dit. 3. Saksbehandleren:

Detaljer

Skoletorget.no Fadervår KRL Side 1 av 5

Skoletorget.no Fadervår KRL Side 1 av 5 Side 1 av 5 Fadervår Herrens bønn Tekst/illustrasjoner: Ariane Schjelderup og Øyvind Olsholt/Clipart.com Filosofiske spørsmål: Ariane Schjelderup og Øyvind Olsholt Sist oppdatert: 15. november 2003 Fadervår

Detaljer

Europas nye kosmologiske verktøykasse Bo Andersen Norsk Romsenter

Europas nye kosmologiske verktøykasse Bo Andersen Norsk Romsenter Europas nye kosmologiske verktøykasse Bo Andersen Norsk Romsenter Hvordan er Universet dannet og hva er dets skjebne? Hvilke lover styrer de forskjellige skalaene? Hvorfor og hvordan utviklet universet

Detaljer

Kapittel 11 Setninger

Kapittel 11 Setninger Kapittel 11 Setninger 11.1 Før var det annerledes. For noen år siden jobbet han her. Til høsten skal vi nok flytte herfra. Om noen dager kommer de jo tilbake. I det siste har hun ikke følt seg frisk. Om

Detaljer

Eksperiment- og oppgavehefte

Eksperiment- og oppgavehefte Eksperiment- og oppgavehefte Innhold 4 Solsystemet: Hvor mye vet du om planetene i solsystemet vårt? 6 Sol og måne: Se på månen med kikkert og lag et solteleskop 8 Jordobservasjon: Se på jorda med Google

Detaljer

Satellitter og satellittbaner

Satellitter og satellittbaner Satellitter og satellittbaner Klasseromressurs for skoleelever Kort om aktiviteten Satellitter har blitt en viktig del av hverdagen for oss mennesker. Det er kanskje ikke noe vi går og tenker på til vanlig,

Detaljer

ESERO AKTIVITET Klassetrinn: grunnskole

ESERO AKTIVITET Klassetrinn: grunnskole ESERO AKTIVITET Klassetrinn: grunnskole Kommunikasjon i verdensrommet Lærerveiledning og elevaktivitet Oversikt Tid Læringsmål Nødvendige materialer 60 min 60 min I denne oppgaven skal elevene lære: hvordan

Detaljer

MIN SKAL I BARNEHAGEN

MIN SKAL I BARNEHAGEN MIN SKAL I BARNEHAGEN Bilde 1: Hei! Jeg heter Min. Jeg akkurat fylt fire år. Forrige uke hadde jeg bursdag! Jeg bor i Nord-Korea. Har du hørt om det landet før? Der bor jeg sammen med mamma, pappa, storebroren

Detaljer

Last ned Det beste innen ny vitenskap. Last ned. Last ned e-bok ny norsk Det beste innen ny vitenskap Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi

Last ned Det beste innen ny vitenskap. Last ned. Last ned e-bok ny norsk Det beste innen ny vitenskap Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi Last ned Det beste innen ny vitenskap Last ned ISBN: 9788293321521 Antall sider: 176 Format: PDF Filstørrelse:11.53 Mb Velkommen til den første utgaven av Det beste fra ny vitenskap, med de kuleste artiklene

Detaljer

Romsikkerhet - angår det Norge?

Romsikkerhet - angår det Norge? Romsikkerhet - angår det Norge? NSMs sikkerhetskonferanse 2014 Steinar Thomsen Seksjonssjef satelli2navigasjon steinar.thomsen@spacecentre.no Agenda! Hva er romsikkerhet?! Nasjonal ny2everdi av rom! Metodisk

Detaljer

Jorda bruker omtrent 365 og en kvart dag på en runde rundt sola. Tilsammen blir disse fire fjerdedelene til en hel dag i løpet av 4 år.

Jorda bruker omtrent 365 og en kvart dag på en runde rundt sola. Tilsammen blir disse fire fjerdedelene til en hel dag i løpet av 4 år. "Hvem har rett?" - Jorda og verdensrommet 1. Om skuddår - I løpet av 9 år vil man oppleve 2 skuddårsdager. - I løpet av 7 år vil man oppleve 2 skuddårsdager. - I løpet av 2 år vil man oppleve 2 skuddårsdager.

Detaljer

Kolonisering av andre planeter

Kolonisering av andre planeter Kolonisering av andre planeter Klasseromressurs for grunnskole Kort om aktiviteten Menneskene har alltid drømt om å reise blant stjernene, og etter hvert har man forestilt seg å bosette seg på fjerne himmellegemer.

Detaljer

Hans Olav Lahlum og Katrine Tjølsen. Lahlums Quiz vol. 1

Hans Olav Lahlum og Katrine Tjølsen. Lahlums Quiz vol. 1 Hans Olav Lahlum og Katrine Tjølsen Lahlums Quiz vol. 1 Forord/bruksanvisning Lahlums quiz er skrevet for å være et spennende og pedagogisk quizspill, som kan spilles mellom lag eller som individuell konkurranse.

Detaljer

Kapittel 4. Algebra. Mål for kapittel 4: Kompetansemål. Mål for opplæringen er at eleven skal kunne

Kapittel 4. Algebra. Mål for kapittel 4: Kompetansemål. Mål for opplæringen er at eleven skal kunne Kapittel 4. Algebra Mål for kapittel 4: Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene

Detaljer

KATRINS HISTORIE. Godkjent av: En pedagogisk kampanje av: Finansiert ved en støtte fra Reckitt Benckiser Pharmaceuticals.

KATRINS HISTORIE. Godkjent av: En pedagogisk kampanje av: Finansiert ved en støtte fra Reckitt Benckiser Pharmaceuticals. KATRINS HISTORIE Katrin begynte å bruke heroin da hun var ca. 12 år gammel, men bare sporadisk. Vi hadde ikke nok penger. En stor tragedie i livet hennes førte henne til å bruke mer og mer. Jeg brukte

Detaljer

FILM 7: Bioteknologisk industri: Fra grunnforskning til produkt

FILM 7: Bioteknologisk industri: Fra grunnforskning til produkt BIOTEKNOLOGISKOLEN - TEKSTUTSKRIFTER FILM 7: Bioteknologisk industri: Fra grunnforskning til produkt 00:17 Biteknologiskolen 00:20 Bioteknologisk industri: Fra grunnforskning til produkt 00:26 Dette er

Detaljer

2/12/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: Jupiter. Forelesning 9: De store gassplanetene og noen av deres måner

2/12/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: Jupiter. Forelesning 9: De store gassplanetene og noen av deres måner AST1010 En kosmisk reise Forelesning 9: De store gassplanetene og noen av deres måner De viktigste punktene i dag: Jupiter: Struktur, måner. Saturn: Struktur, ringer, måner. Uranus: Struktur, helning.

Detaljer

Nyheter fra Fang. Den Hellige Ånd falt. To uker før pinse hadde vi en pinseopplevelse med staben vår.

Nyheter fra Fang. Den Hellige Ånd falt. To uker før pinse hadde vi en pinseopplevelse med staben vår. Nyheter fra Fang Den Hellige Ånd falt To uker før pinse hadde vi en pinseopplevelse med staben vår. Denne uken hadde vi først et amerikansk ektepar som underviste. Da de skulle be for staben vår spurte

Detaljer

Om Mennesker og Deres Risikable Liv

Om Mennesker og Deres Risikable Liv Om Mennesker og Deres Risikable Liv av Wacław Kuśnierczyk 25. mars 2003 Sammendrag Noen mennesker trenger risiko og fare for å gjøre livet deres fargerikt. De søker etter farlige eventyr på fremmede sted,

Detaljer

Gratis data fra himmelen hva skjer? Terje Wahl

Gratis data fra himmelen hva skjer? Terje Wahl Gratis data fra himmelen hva skjer? Terje Wahl Første bilde tatt fra verdensrommet Tatt fra 105 km høyde fra en V-2 rakett skutt opp 24. okt 1946 fra White Sands, USA. 21.03.2018 Når begynte det? Første

Detaljer

Omkom fordi NASA ikke ville lære facebook.com/romfart

Omkom fordi NASA ikke ville lære facebook.com/romfart Omkom fordi NASA ikke ville lære 2007-1 ROMFART facebook.com/romfart www.romfart.no Sovjets hemmelige romslagskip Radarscoop fra Titan: Sjøer av flytende brennstoff Uoffisielle NASA-instrukser: Hvordan

Detaljer

AST1010 En kosmisk reise. Forelesning 8: De store gassplanetene og noen av deres måner

AST1010 En kosmisk reise. Forelesning 8: De store gassplanetene og noen av deres måner AST1010 En kosmisk reise Forelesning 8: De store gassplanetene og noen av deres måner Et par ting fra forrige gang Månens alder: 4.5 milliarder år Jorden var ung da månen ble dannet Hvorfor tror vi månen

Detaljer

Humanware. Trekker Breeze versjon 2.0.0.

Humanware. Trekker Breeze versjon 2.0.0. Humanware Trekker Breeze versjon 2.0.0. Humanware er stolte av å kunne introdusere versjon 2.0 av Trekker Breeze talende GPS. Denne oppgraderingen er gratis for alle Trekker Breeze brukere. Programmet

Detaljer

Solsystemet, 5.-7. trinn

Solsystemet, 5.-7. trinn Lærerveiledning Solsystemet, 5.-7. trinn Viktig informasjon om Solsystemet Vi ønsker at lærere og elever er forberedt når de kommer til VilVite. Lærerveiledningen inneholder viktig informasjon om læringsprogrammet

Detaljer

Hvorfor kan ikke steiner flyte? 1.- 2. trinn 60 minutter

Hvorfor kan ikke steiner flyte? 1.- 2. trinn 60 minutter Lærerveiledning Passer for: Varighet: Hvorfor kan ikke steiner flyte? 1.- 2. trinn 60 minutter Hvorfor kan ikke steiner flyte? er et skoleprogram hvor elevene får prøve seg som forskere ved bruk av den

Detaljer

Oppgaver og løsningsforslag i undervisning. av matematikk for ingeniører

Oppgaver og løsningsforslag i undervisning. av matematikk for ingeniører Oppgaver og løsningsforslag i undervisning av matematikk for ingeniører Trond Stølen Gustavsen 1 1 Høgskolen i Agder, Avdeling for teknologi, Insitutt for IKT trond.gustavsen@hia.no Sammendrag Denne artikkelen

Detaljer

Vår unike jordklode klasse 60 minutter

Vår unike jordklode klasse 60 minutter Lærerveiledning Passer for: Varighet: Vår unike jordklode 5.-7. klasse 60 minutter Vår unike jordklode er et skoleprogram der jordkloden er i fokus. Vi starter med å se filmen «Vårt levende klima», som

Detaljer

Dokument for kobling av triks i boka Nært sært spektakulært med kompetansemål fra læreplanen i naturfag.

Dokument for kobling av triks i boka Nært sært spektakulært med kompetansemål fra læreplanen i naturfag. Oppdatert 24.08.10 Dokument for kobling av triks i boka Nært sært spektakulært med kompetansemål fra læreplanen i naturfag. Dette dokumentet er ment som et hjelpemiddel for lærere som ønsker å bruke demonstrasjonene

Detaljer

I hvilken klasse går Ole? Barnehagen 1. klasse 2. klasse Hvor gammel er Kristine? 5 år 7 år 8 år. Hvor gammel er Ole?

I hvilken klasse går Ole? Barnehagen 1. klasse 2. klasse Hvor gammel er Kristine? 5 år 7 år 8 år. Hvor gammel er Ole? Kristine og dragen. Kristine er en fem år gammel jente. Hun har en eldre bror som heter Ole. Ole er åtte år og går i andre klasse på Puseby Skole. Kristine og Ole er som regel gode venner. Men av og til

Detaljer

Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett.

Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett. Hvor i All Verden? Del 1 Introduksjon Hvor i All Verden? er et reise- og geografispill hvor man raskest mulig skal fly innom reisemål spredt rundt i Europa. I denne første leksjonen vil vi se på hvordan

Detaljer

AST1010 En kosmisk reise. Forelesning 9: De store gassplanetene og noen av deres måner

AST1010 En kosmisk reise. Forelesning 9: De store gassplanetene og noen av deres måner AST1010 En kosmisk reise Forelesning 9: De store gassplanetene og noen av deres måner Innhold Jupiter og de fire galileiske månene Saturn og Titan Uranus Neptun Jupiter 3 Sentrale mål Masse 1.9 x 10 27

Detaljer

Kvinne 30, Berit eksempler på globale skårer

Kvinne 30, Berit eksempler på globale skårer Kvinne 30, Berit eksempler på globale skårer Demonstrasjon av tre stiler i rådgivning - Målatferd er ikke definert. 1. Sykepleieren: Ja velkommen hit, fint å se at du kom. Berit: Takk. 2. Sykepleieren:

Detaljer

folksomt Masseutflukten sørover blant pensjonistene vil ikke snu med det første! Bare hjemme for å høste epler! Magasinet for og om oss nordmenn

folksomt Masseutflukten sørover blant pensjonistene vil ikke snu med det første! Bare hjemme for å høste epler! Magasinet for og om oss nordmenn Magasinet for og om oss nordmenn Masseutflukten sørover blant pensjonistene vil ikke snu med det første! Bare hjemme for å høste epler! Idar gjør som mer enn 30.000 andre norske pensjonister. Han overvintrer

Detaljer

Rapport til undersøkelse i sosiologi og sosialantropologi

Rapport til undersøkelse i sosiologi og sosialantropologi Rapport til undersøkelse i sosiologi og sosialantropologi Problemstilling: Er det en sammenheng mellom kjønn og hva de velger å gjøre etter videregående? Er det noen hindringer for ønske av utdanning og

Detaljer

KRIG. Rettferdigkrig? Kambiz Zakaria Digitale Dokomenter Høgskolen i Østfold 23.feb. 2010

KRIG. Rettferdigkrig? Kambiz Zakaria Digitale Dokomenter Høgskolen i Østfold 23.feb. 2010 KRIG Rettferdigkrig? KambizZakaria DigitaleDokomenter HøgskoleniØstfold 23.feb.2010 S STUDIEOPPGAVE Denneoppgaveerenstudieoppgavehvorjeghartattformegkrigsomtemaoghar skrevetlittfaktaogkobletkrigmedetikkvedhjelpavendelkilder.oppgavenble

Detaljer

I november 1942 ble 17 norske jøder i Bergen arrestert av norsk politi og deportert til Auswitzch. Ingen av disse vendte hjem i live.

I november 1942 ble 17 norske jøder i Bergen arrestert av norsk politi og deportert til Auswitzch. Ingen av disse vendte hjem i live. ET BEDRE STED - basert på en sann historie I november 1942 ble 17 norske jøder i Bergen arrestert av norsk politi og deportert til Auswitzch. Ingen av disse vendte hjem i live. ET BEDRE STED handler om

Detaljer

Modul nr Verdensrommet

Modul nr Verdensrommet Modul nr. 1231 Verdensrommet Tilknyttet rom: Ikke tilknyttet til et rom 1231 Newton håndbok - Verdensrommet Side 2 Kort om denne modulen Elevene lærer om verdensrommet, tilpasset læreplanmålene for de

Detaljer

Romfartskarriereprosjektet 2016

Romfartskarriereprosjektet 2016 Romfartskarriereprosjektet 2016 Innledning I 2016 gjennomfører ESA-astronauten Tim Peake et lengevarende oppdrag på Den internasjonale romstasjonen (ISS). Oppdraget har fått navnet Principia. Astronauter

Detaljer

LIGNELSEN OM DEN BARMHJERTIGE SAMARITAN

LIGNELSEN OM DEN BARMHJERTIGE SAMARITAN LIGNELSEN OM DEN BARMHJERTIGE SAMARITAN TIL LEKSJONEN Tyngdepunkt: Samaritanen og den sårede veifarende (Luk. 10, 30 35) Lignelse Kjernepresentasjon Om materiellet: BAKGRUNN Plassering: Lignelsesreolen

Detaljer

SATELLITTER. og DERES AVFALL. satellitter side 1. mørk materie side 17. solas atmosfære side 9. stjernehoper side 23

SATELLITTER. og DERES AVFALL. satellitter side 1. mørk materie side 17. solas atmosfære side 9. stjernehoper side 23 SATELLITTER og DERES AVFALL satellitter side 1 solas atmosfære side 9 mørk materie side 17 stjernehoper side 23 nr. 13 2016 «Noen satellitter står stille på himmelen, andre farer over himmelhvelvet på

Detaljer

TRE STYRTEDE FLY, NI HAVARERTE MENN, OG EN DRAMATISK KAMP FOR Å HENTE DEM HJEM

TRE STYRTEDE FLY, NI HAVARERTE MENN, OG EN DRAMATISK KAMP FOR Å HENTE DEM HJEM FANGET I ISEN TRE STYRTEDE FLY, NI HAVARERTE MENN, OG EN DRAMATISK KAMP FOR Å HENTE DEM HJEM MITCHELL ZUCKOFF Til Suzanne, Isabel og Eve INNHOLD Til leseren PROLOG: Anda 1 Grønland 2 «En mor som spiser

Detaljer

ESERO AKTIVITET LIV PÅ ANDRE PLANETER. Lærerveiledning og elevaktivitet. Klassetrinn 5-6

ESERO AKTIVITET LIV PÅ ANDRE PLANETER. Lærerveiledning og elevaktivitet. Klassetrinn 5-6 ESERO AKTIVITET Klassetrinn 5-6 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 80 min. Å: oppdage at forskjellige himmellegemer har forskjellige betingelser når det gjelder

Detaljer

Pedagogisk tilbakeblikk Sverdet september 2013

Pedagogisk tilbakeblikk Sverdet september 2013 Pedagogisk tilbakeblikk Sverdet september 2013 Hei alle sammen. I september har vi fortsatt å introdusere barna gradvis for temaet vi skal ha i prosjektet. Vi har funnet tegninger av vikinger og vikingskip

Detaljer

Hva hvis? Jorden sluttet å rotere

Hva hvis? Jorden sluttet å rotere Hva hvis? Jorden sluttet å rotere Jordrotasjon Planeter roterer. Solsystemet ble til for 4,5 milliarder år siden fra en roterende sky. Da planetene ble dannet overtok de rotasjonen helt fram til i dag.

Detaljer

Straffespark Introduksjon Scratch Lærerveiledning

Straffespark Introduksjon Scratch Lærerveiledning Straffespark Introduksjon Scratch Lærerveiledning Introduksjon Vi skal lage et enkelt fotballspill, hvor du skal prøve å score på så mange straffespark som mulig. Steg 1: Katten og fotballbanen Vi begynner

Detaljer

LESE-TEST. (Nivå 1 - GNO)

LESE-TEST. (Nivå 1 - GNO) LESE-TEST. (Nivå 1 - GNO) Reza er 17 (år alder årer). Han bor i Stavanger, men han (før kommer reise) fra Afghanistan. Han (besøk bor - kom) til Norge for to år (siden senere før). Reza går på Johannes

Detaljer

STUP Magasin i New York 2014. 1. Samlet utbytte av hele turen: STUP Magasin i New York 2014 14.11.2014 12:21

STUP Magasin i New York 2014. 1. Samlet utbytte av hele turen: STUP Magasin i New York 2014 14.11.2014 12:21 STUP Magasin i New York 2014 1. Samlet utbytte av hele turen: 6 5 5 4 Antall 3 2 2 1 0 0 0 1 Antall 1 = Uakseptabelt dårlig 0 2 = Ganske dårlig 0 3 = Middels 1 4 = Bra 2 5 = Meget bra 5 2. Hvorfor ga du

Detaljer

2/7/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: IAUs definisjon av en planet i solsystemet (2006)

2/7/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: IAUs definisjon av en planet i solsystemet (2006) AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus De viktigste punktene i dag: Hva er en planet? Plutos ferd fra planet til dvergplanet. Hvordan kan vi finne ut

Detaljer

RIDDEREN, PRINSESSA, DRAGEN OG HEKSA

RIDDEREN, PRINSESSA, DRAGEN OG HEKSA RIDDEREN, PRINSESSA, DRAGEN OG HEKSA Et eventyr laget av skolestarterne ved Gartneriet barnehage, våren 2015 Kasper (Dragen spruter ild på menneskene) Gartneriet barnehage Forord I henhold til Rammeplan

Detaljer

Stolt av meg? «Dette er min sønn han er jeg stolt av!»

Stolt av meg? «Dette er min sønn han er jeg stolt av!» 1 Stolt av meg? «Dette er min sønn han er jeg stolt av!» Omtrent sånn lyder det i mine ører, selv om Matteus skrev det litt annerledes: «Dette er min sønn, den elskede, i ham har jeg min glede.» Sånn er

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer

I tidligere har jeg skrevet om hvor stor betydning undervisning om ekteskap for shanfolket er. Og jeg har igjen sett hvor viktig dette er.

I tidligere har jeg skrevet om hvor stor betydning undervisning om ekteskap for shanfolket er. Og jeg har igjen sett hvor viktig dette er. Nyheter fra arbeidet i Fang I tidligere har jeg skrevet om hvor stor betydning undervisning om ekteskap for shanfolket er. Og jeg har igjen sett hvor viktig dette er. Jeg spurte en norsk familie, som er

Detaljer

MÅLING AV TYNGDEAKSELERASJON

MÅLING AV TYNGDEAKSELERASJON 1. 9. 2009 FORSØK I NATURFAG HØGSKOLEN I BODØ MÅLING AV TYNGDEAKSELERASJON Foto: Mari Bjørnevik Mari Bjørnevik, Marianne Tymi Gabrielsen og Marianne Eidissen Hansen 1 Innledning Hensikten med forsøket

Detaljer

Kloder i bevegelse 1. - 2. trinn 60 minutter

Kloder i bevegelse 1. - 2. trinn 60 minutter Lærerveiledning Passer for: Varighet: Kloder i bevegelse 1. - 2. trinn 60 minutter Bildet viser størrelsesforholdet mellom planetene og sola, men avstanden mellom dem stemmer ikke med fakta. (NASA) Kloder

Detaljer

AST1010 En kosmisk reise. Forelesning 6: De indre planetene og månen del 1: Merkur og Venus

AST1010 En kosmisk reise. Forelesning 6: De indre planetene og månen del 1: Merkur og Venus AST1010 En kosmisk reise Forelesning 6: De indre planetene og månen del 1: Merkur og Venus De viktigste punktene i dag: Hva er en planet? Plutos ferd fra planet til dvergplanet. Hvordan kan vi finne ut

Detaljer

ER DU STOLT OVER Å VÆRE NORSK?

ER DU STOLT OVER Å VÆRE NORSK? FORARBEID SORT GULL 5.-7. TRINN Velkommen til Teknisk museum og undervisningsopplegget Sort gull! Sort gull handler om det norske oljeeventyret og hva funnet av olje på norsk sokkel har betydd for Norge

Detaljer

Den internasjonale sommerskole Universitetet i Oslo

Den internasjonale sommerskole Universitetet i Oslo NB: Husk å skrive kandidatnummer og sidetall på hver side av besvarelsen! (Remember to write your candidate number and page number on every page of the exam.) 2010 Den internasjonale sommerskole ISSN 0120

Detaljer

En eventyrlig. historie. - om et folkemuseum i Trondheim og et ektepar fra Sveits. Monica og Pierre Chappuis

En eventyrlig. historie. - om et folkemuseum i Trondheim og et ektepar fra Sveits. Monica og Pierre Chappuis En eventyrlig historie - om et folkemuseum i Trondheim og et ektepar fra Sveits Monica og Pierre Chappuis 1. juni 2000 foretok HM dronning Sonja den offisielle åpningen av et nytt publikums- og utstillingsbygg

Detaljer

Realfagsglede VG2 80 minutter

Realfagsglede VG2 80 minutter Lærerveiledning: Passer for: Varighet: Realfagsglede VG2 80 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no «Realfagsglede»

Detaljer

Guatemala 2009. A trip to remember

Guatemala 2009. A trip to remember Guatemala 2009 A trip to remember Andreas Viggen Denne boken har jeg laget for at jeg skal kunne se tilbake på denne fantastiske reisen som virkelig gjorde inntrykk på meg. Håper du som leser av denne

Detaljer

Eventyr og fabler Æsops fabler

Eventyr og fabler Æsops fabler Side 1 av 6 En far, en sønn og et esel Tekst: Eventyret er hentet fra samlingen «Storken og reven. 20 dyrefabler av Æsop» gjenfortalt av Søren Christensen, Aschehoug, Oslo 1985. Illustrasjoner: Clipart.com

Detaljer

MATEMATIKKOPPGAVER TIL PROSJEKTET

MATEMATIKKOPPGAVER TIL PROSJEKTET MTEMTIKKOPPGVER TIL PROSJEKTET Disse flotte oppgaven har sin egen historie. Elevene hadde før prosjektet arbeidet med tema vei-fart-tid. Det var en del av prosjektforberedelsene i klassen. Under selve

Detaljer

Snake Expert Scratch PDF

Snake Expert Scratch PDF Snake Expert Scratch PDF Introduksjon En eller annen variant av Snake har eksistert på nesten alle personlige datamaskiner helt siden slutten av 1970-tallet. Ekstra populært ble spillet da det dukket opp

Detaljer

Lisa besøker pappa i fengsel

Lisa besøker pappa i fengsel Lisa besøker pappa i fengsel Historien om Lisa er skrevet av Foreningen for Fangers Pårørende og illustrert av Brit Mari Glomnes. Det er fint om barnet leser historien sammen med en voksen. Hei, jeg heter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS00 Eksamensdag: 5. juni 08 Tid for eksamen: 09.00-3.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (3 sider).

Detaljer

Rapport / Skolesekken v.2004 Maria Gradin

Rapport / Skolesekken v.2004 Maria Gradin Rapport / Skolesekken v.2004 Maria Gradin Fortellingen om et sted - på Værøy, Røst og Nordmela Utgangspunkt for disse tre prosjekt, formidlet gjennom skolesekken, var en idé om at ta fatt i lokalhistorien

Detaljer

Ikkevoldelig kommunikasjon Con-flict. Det handler om å være sammen. Arne Næss

Ikkevoldelig kommunikasjon Con-flict. Det handler om å være sammen. Arne Næss 2 Ikkevoldelig kommunikasjon Ikkevoldelig kommunikasjon Con-flict. Det handler om å være sammen. Arne Næss Ikke-voldelig kommunikasjon (IVK) er skapt av den amerikanske psykologen Marshall Rosenberg. Det

Detaljer

Åpningsinnlegg under Ahusbanekonferansen 24/9-2014 Av Bjørn Edvard Engstrøm, Ellingsrud Velforening:

Åpningsinnlegg under Ahusbanekonferansen 24/9-2014 Av Bjørn Edvard Engstrøm, Ellingsrud Velforening: 1 Åpningsinnlegg under Ahusbanekonferansen 24/9-2014 Av Bjørn Edvard Engstrøm, Ellingsrud Velforening: Velkommen til en viktig konferanse! Konferansen er viktig som et ledd i å få realisert byggingen av

Detaljer

Astrokatt. Introduksjon. Steg 1: En flyvende katt. Sjekkliste. Scratch. Skrevet av: Geir Arne Hjelle

Astrokatt. Introduksjon. Steg 1: En flyvende katt. Sjekkliste. Scratch. Skrevet av: Geir Arne Hjelle Scratch Astrokatt Skrevet av: Geir Arne Hjelle Kurs: Scratch Tema: Blokkbasert, Spill Fag: Kunst og håndverk, Naturfag Klassetrinn: 1.-4. klasse, 5.-7. klasse Språk: Norsk bokmål Introduksjon Katten vår

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Et hundefaglig tidsskrift for aktive hundeeiere. Årgang 13. Nr. 6/10. Canis vi forandrer hundeverden! www.canis.no

Et hundefaglig tidsskrift for aktive hundeeiere. Årgang 13. Nr. 6/10. Canis vi forandrer hundeverden! www.canis.no Et hundefaglig tidsskrift for aktive hundeeiere Nr. 6/10 Årgang 13 Canis vi forandrer hundeverden! www.canis.no Adferd & læring FRIVILLIGE STARTER FRA UTGANGSSTILLING Tekst: Cecilie Køste & Morten Egtvedt

Detaljer

DEN GODE HYRDE / DEN GODE GJETEREN

DEN GODE HYRDE / DEN GODE GJETEREN DEN GODE HYRDE / DEN GODE GJETEREN TIL DENNE LEKSJONEN Fokus: Gjeteren og sauene hans Tekster: Matteus 18:12-14; Lukas 15:1-7 (Salme 23; Joh.10) Lignelse Kjernepresentasjon Materiellet: Plassering: Lignelseshylla

Detaljer