Exercises GEO1040. Øyvind Ryan

Størrelse: px
Begynne med side:

Download "Exercises GEO1040. Øyvind Ryan"

Transkript

1 Exercises GEO1040 Øyvind Ryan 19. februar 2013

2 1. Bruk Matlab til å regne ut: a b. 5/7 5/7 c ^ d. (2*3-4^2)/(13-2*2^2) e ^4 f. Hva er det 12. desimalet i 1/7? Hint: funksjonen floor er nyttig her. x=1/7; x11=floor(x*1e11); x12=floor(x*1e12); tall=x12-10*x11 2. Lag følge variable: x = og y = 9.56+e 1 og regn ut: x + y, x y, x y og sin x 2 y 2

3 x=0.762 y=sqrt(9.56) + exp(-1) x+y x*y x/y sin(x^2*y) 3. Bytt om verdiene til variablene x og y uten at Matlab viser verdien til den temporære variabelen som du bruker. temp=x; x=y y=temp 4. Beregn antall sekunder i ett år. 365*24*60*60 5. Beregn avstanden x 2 + y 2 hvor x = 10 km and y = 50 km. x=10 y=50 dist=sqrt(x^2 + y^2) 6. Beregn volumet til Jorda og den gjennomsnittlige tettheten. Angi tettheten i kg/m 3. Jordas masse er kg og radiusen er 6371 km. R=6371*1000; M=5.9737e+24; vol=4/3*pi*r^3; M/vol 7. a. La Matlab regne ut cos(θ) og sin(θ) for θ = 0,π/6,π/4,π/3 og π/2. Sjekk at resultatene er rimelige: 3

4 Løsningsforslag: cos(0) = sin(π/2) = 1 cos(π/6) = sin(π/3) = cos(π/4) = sin(π/4) = cos(π/3) = sin(π/6) = 0.5 cos(π/2) = sin(0) = 0 b. Gjør om verdiene til θ fra radianer til grader. Hint: deg = rad 180 π. Regn ut verdiene ved å bruke funksjonene cosd(θ) og sind(θ). Får du samme svar som i a.? (Hvis ikke har du gjort noe feil.) Løsningsforslag: JA, du får samme svar! 8. La Matlab regne ut verdiene, og sjekk at resultatene er rimelige: e 1, 16, cosπ, sin π 6, tan π 4, arcsin 1 2, arctan1, cos45. exp(1) sqrt(16) cos(pi) sin(pi/6) tan(pi/4) asin(1/2) atan(1) cosd(45) 9. Anta at 1. januar er dag 1 i uke 1. I hvilken uke er dag 117? Løsningsforslag: Her vil vi at 1 til 7 skal gi uke 1, 8 til 14 uke 2, osv. Da kan vi dele med 7 og avrunde oppover. Vi sjekker først at det fungerer som vi vil ved å teste med dagene 1, 7 og 8. ceil(1/7) ceil(7/7) ceil(8/7) uke=ceil(117/7) Svaret er Anta at 1. januar er dag 4 i uke 1. I hvilken uke er dag 117? Løsningsforslag: Her må vi legge til 3 dager i formelen for de som mangler i den første uken: 4

5 uke = ceil((117+3)/7) Svaret er Vi antar at en bakteriepopulasjon vokser eksponentielt og har en vekst gitt ved P = P 0 e kt der t er tiden i sekunder, P 0 = 120 er antall bakterier ved t=0 og k = 0.04s 1. Finn ut hvor mange bakterier det er etter: a. 10 sekunder Løsningsforslag: 179 b. 30 sekunder Løsningsforslag: 398 c. 1 minutt Løsningsforslag: d. 1 time Løsningsforslag: (Jordskjelv). Jordskjelvet på Haiti i 2010 målte 7.0 Mw (Moment magnitude scale) og det i Chile ca en måned senere 8.8 Mw forskjellen i energi for to jordskjelv kan beskrives ved E = (m 1 m 2 ) Hvor mange ganger mer energi ble utløst i jordskjelvet i Chile enn i det på Haiti? Løsningsforslag: 501 ganger mer 13 (Aldersbestemmelse etter Karbon-14 metoden). Karbon-14 er en radioaktiv isotop med halveringstid på 5730 år. I atmosfæren er det et nokså konstant blandingsforhold mellom karbon-14 og vanlig karbon 12. Dette forholdet kaller vi I 0. Når dyr og planter dør vil de ikke lengre ta opp karbon-14 og mengden av karbon-14 de inneholder blir gradvis redusert, mens mengden av karbon-12, som ikke er radioaktivt, blir uforandret. Forholdet mellom karbon-14 og karbon- 12 i prøven av det døde dyret/planten kaller vi I. Tiden t er antall år som har gått siden dyret/planten vi ser på døde. Sammenhengen mellom I 0, I og t er gitt ved: t = ln(i /I 0) ln Bruk Matlab til å regne ut alderen på følge prøver: a. En tann fra en sabeltanntiger der I er ca 10% av I 0 Løsningsforslag: år 5

6 b. En tann fra en mammut der I er ca 5% av I 0 Løsningsforslag: år c. En trebit der forholdet mellom I og I 0 er 50% Løsningsforslag: 5730 år d. Et maleri der I er ca 96% av I 0. Fra hvilken epoke er dette maleriet? Løsningsforslag: 337 år. Barokken (1674) 14. Når en lydbølge går fra et medium til et annet res både hastigheten til bølgen og retningen. Snells brytningslov uttrykker dette forholdet ved sammenhengen v1sin(θ 2 ) = v2sin(θ 1 ), der størrelsene er angitt på figuren under. Vi skal se på en lydbølge som går fra luft til vann. Lydhastigheten i luft er 340m/s, mens lydhastigheten i vann er 1500m/s. Løsningsforslag: Kode som løser oppgaven blir v1 = 340; v2 = 1500; theta1=10; theta2= asind(v2/v1*sind(theta1)); t= 5; 6

7 s= v2*t; dybde=s*cosd(theta2); x=sqrt(s^2-dybde^2); x2 = s*sind(theta2); a. Vi antar at θ 1 = 10. Finn θ 2 Løsningsforslag: θ 2 = 50 b. Vi kan uttrykke lengden bølgen tilbakelegger i vannet med formelen: s = vt, der v = 1500 m/s. Finn ut hvor langt lydbølgen beveger seg i løpet av 5 sek etter den traff vannet. Løsningsforslag: t=5 gir s=7500m c. Finn ut hvor dypt ned (langs z-aksen) bølgen har beveget seg i vannet. Løsningsforslag: 4820m d. Finn ut hvor langt bortover (langs x-aksen) bølgen har beveget seg ved hjelp av Pythagoras læresetning. Finnes det en annen metode å regne ut denne lengden på? Løsningsforslag: 5746m, Ja man kan bruke s*sind(θ 2 ). x og x2 i løsningsforslaget gir samme svar 15. Gitt følge kode: for i=1:6 num = i; a. Hvor mange steg er det i løkka? Løsningsforslag: 6 b. Hvilken verdi har num etter at løkka er ferdig? Løsningsforslag: 6 c. Hvilken verdi har num etter at løkka har gått 3 ganger? Løsningsforslag: 3 16 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. 7

8 tallet=10; for k=2:6 tallet = tallet+k/2; tallet Hva skrives ut? tallet = 10 tallet = 20.5 tallet = 20 tallet = 30 tallet = 0 Løsningsforslag: 20 er riktig svar. 17. Vi skal bruke Matlab til å studere partall og oddetall. Lag en løkke som skriver ut de n første oddetallene. Sett n lik et tall i begynnelsen av programmet. n=10; for k=1:n disp(2*k-1) 18. Skriv en for-løkke som finner de n første kvadrattallene. n=10; for k=1:n disp(k^2) 19. Ê Man definerer fakultet av n til n! = n. Skriv en for-løkke som regner ut n!. Sett verdien til n helt i starten av programmet. n=10; val=1; for k=2:n val=val*k; disp(val) 8

9 20. Din nye PC har kostet 2000 kroner. Den devalueres med 20% hvert år. a. Hvor mye blir PC en verdt når du får bachelorgraden din om 3 år? val=2000; for k=1:3 val=val*0.8; disp(val) b. Skriv om programmet slik at PC en i stedet devalueres med 20% av den opprinnelig verdien hvert år (det vil si at vi devaluerer med et fast beløp hvert år, i motsetning til i a.). val=2000; deval=val*0.2; for k=1:3 val=val-deval; disp(val) 21. Du har 1000 kroner på bankkontoen din. Banken din tilbyr fast rente på 5% per år. a. Bruk en for-løkke til å beregne hvor mye du har på kontoen om 10 år. sumpenger1=1000; for k=1:10 sumpenger1=sumpenger1*1.05; sumpenger1 Kjører du koden vil du se at vi sitter igjen med 1629kr etter 10 år med den første banken b. En annen bank tilbyr deg en rente på 4% per år de 5 første årene og 6% per år de 5 siste årene. Hvor mye kan du tjene ved å bytte bank? 9

10 sumpenger2=1000; for k=1:5 sumpenger2=sumpenger2*1.04; for k=6:10 sumpenger2=sumpenger2*1.06; sumpenger2 diffpeng=sumpenger2-sumpenger1; disp(diffpenger) Vi sitter igjen med 1628kr etter 10 år med den andre banken. Det er derfor ikke lønnsomt å bruke den andre banken. 22. En vanntank inneholder 10 liter usaltet vann på dag 0. I forbindelse med et eksperiment i oseanografi, blir det tilført 1dl salt hver dag fra dag 1. Samtidig, fordampes 2dl usaltet vann hver dag. Regn ut hvordan forholdet salt/vann varierer i løpet av den første uken. vannmengde=10; saltmengde=0; for k=1:7 saltmengde=saltmengde+0.1; vannmengde=vannmengde-0.2; forhold=saltmengde/vannmengde; disp(forhold) 23 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. tallet=0; for i=1:2 for j=2:3 tallet = tallet+i+j; tallet Hva skrives ut? 10

11 tallet = 7 tallet = 0 tallet = 11 tallet = 16 tallet = 5 Løsningsforslag: 16 er riktig svar. 24. Vi skal se på en av de store innsjøene i Norge. Anta at vanntilførselen fra elvene i området, V 0, var 128 m 3 /s i år Pga. økt bresmelting økte tilførselen med 4% pr. år frem til a. Finn V 0 i m 3 /år i Løsningsforslag: m 3 /år. b. Hvor stor var V 0 i 2009? Løsningsforslag: m 3 /år. c. Anta videre at i tillegg er det tilsig fra grunnvannet. Det var V G = 0.8 km 3 /år i 2003 og ble redusert med 3% pr.år. Regn ut total tilførsel av vann til innsjøen i 2004 og i Løsningsforslag: i 2004: V = V V G 0.97 = m 3 /år. i 2009: V = V V G 0.97 ( ) = m 3 /år. 25. Legg inn disse vektorene i Matlab: (1, 9,7,5, 7), (π, 14,7/3), (1,3,5,7,9,...,99), (124,120,116,112...,4,0). : a=[1,-9,7,5,-7] b=[pi,-14, 7/3] c=1:2:99 d=124:-4:0 26. Legg inn arrayet (1, 2, 4, 8, 16, ) Matlab og finn summen. Hint: 4096 = : a=0:12; a=2.^a; summen=sum(a) NB: Ikke kall summen sum siden sum også er navnet på en innebygd funksjon. 27. Definer vektorene A, B, og C slik at de har følge verdier i Matlab: 11

12 A=[ ] B=[ ] C=[0.5,1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] A=1:9; B=2:2:18; C=0.5:0.5:5; D=B.^2-A.^2 a. På hvilken plass i hhv. A, B, og C finner du tallet 4? Løsningsforslag: plass 4, 2 og 8 b. Hvilken av vektorene er lengst? Løsningsforslag: C er lengst c. Opprett vektoren D=B.^2-A.^2. d. Hva blir A + B +C + D? Løsningsforslag: Vi får enfeilmelding fordi alle vektorene ikke har samme lengde 28. Definer a=[ ]. Lag et program som beregner sum(a) ved hjelp av en løkke istedenfor funksjonen sum. a=1:10; summen=0; % initialisere for i=1:length(a) summen=summen+a(i); 29. Trykket (p) i en gitt høyde (z) i atmosfæren uttrykkes ved p(z) = p 0 e ( z H ), hvor p 0 er bakketrykket, z er høyden over bakken og H en karakteristisk konstant. Vi kan bruke følge verdier på disse: p 0 = 1004 [hpa] H = 7800 [m] a. Opprett et array Z, med høyder 0-20km med intervall på 500m 12

13 b. Finn trykket for alle høydene og lagre dem i et array P z : P0=1004; % trykk ved bakken i hpa H=7800; % konstant i m z=0:500:20000; % høyder i m Pz=P0*exp(-z/H) Pass på at høydene og konstanten er enten begge i meter eller begge i kilometer 30. I denne oppgaven skal vi se på hvordan vi kan skrive ut oddetall, partall, og kvadrattall. R=1:2:49; P=2:2:50; S=P-R; length(s) prod(s) sum(s) prod(p./r) sum(1./p) a. Opprett en vektor R med alle oddetallene mellom 0 og 50 og et array P med alle partallene f.o.m. 2 t.o.m. 50 b. Lag en vektor S = P - R. Hvor lang er S? Hva blir produktet av alle elementene i S? Hva blir summen av alle elementene i S? Løsningsforslag: 25, 1, 25 c. Hva blir produktet av elementene i P R? Løsningsforslag: d. Hva blir summen av 1 P? Løsningsforslag: Finn tettheten til 4 forskjellige steintyper på nettet, sett verdiene i en vektor og konverter fra g /cm 3 to kg /m 3. 13

14 % basalt, granite, sandstone, purnice from a=[ ] a=a* Det magnetiske feltet i Oslo i 2010 har de tre komponentene B N = , B E = og B Z = hvor verdiene er gitt i nanotesla og B N er feltintensitet mot nord, B E mot øst, og B Z vertikalt nedover. Sett de tre elementene i et array. Deretter beregn deklinasjon D og inklinasjon I av feltet som er relatert til feltkomponentene ved formlene tand = B E /B N og tan I = B Z / B 2 N + B 2 E. B=[ ,484.7, ] % mag felt i Oslo i nt declin=atand(b(2)/b(1)) % declination in degrees inclin=atand(b(3)/sqrt(b(1)^2+b(2)^2)) % inclination in degrees 33 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. A = [ ] B = [5 6 8] Operasjonen C = A + B gir C = [ ] Operasjonen C = A + B gir C = [ ] Operasjonen C = [A,B] gir C = [ ] Operasjonen C = [A + B] gir C = [ ] Løsningsforslag: Det tredje alternativet er riktig. 34 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. tallet=0; for i=1:2 for j=2:3 tallet = tallet+i+j; tallet Hva skrives ut? tallet = 7 tallet = 0 tallet = [ ] 14

15 tallet = 16 tallet(i,j) = [ ] Løsningsforslag: 16 er riktig. 35 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. A = [ ] B = [6 7 8] Operasjonen C = A B gir C = [ ] Operasjonen C = A B(1) gir C = [ ] Operasjonen C = B A gir C = [ ] Operasjonen C = [A,B] gir C = [ ] Løsningsforslag: Det andre alternativet er riktig. 36 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. D = [ ] E = [2 2 2] Operasjonen F = D. E gir F = [ ] Operasjonen F = D E gir en matrise. Operasjonen F = D. E(1) gir F = [ ] Operasjonen F = E. D(4) gir F = [4 4 4] Løsningsforslag: Det fjerde alternativet er riktig. 37. Gitt følge kode: for i=1:3 num = i; obs(i)= num; a. Hva slags type variabel er obs? Løsningsforslag: obs er en array b. Hvilke(n) verdi(er) har obs når løkka er ferdig? Løsningsforslag: [1 2 3] c. Hva er summen av obs? Løsningsforslag: Gitt følge array 15

16 F = [ ] F inneholder gjennomsnittstemperatur for hver måned på Blindern gitt i Fahrenheit. Formelen for å konvertere fra Fahrenheit til Celsius er gitt ved C = (F 32)/1.8. Bruk en for-løkke og lag en ny array C som inneholder tilsvare temperaturer i Celsius. F = [ ]; for i=1:length(f) C(i)=(F(i)-32)/1.8; 39. Fibonacci-tallene er en tallfølge der hvert tall er summen av de to forrige tallene i følgen: osv a. Lag en løkke som lager de femten første Fibonaccitallene, og legger dem i et array kalt Fibo. Fibo = zeros(1,15); Fibo(1) = 0; Fibo(2) = 1; for i = 3:15 Fibo(i) = Fibo(i-1) + Fibo(i-2); Her må vi først lage et array for tallene med femten elementer der første element inneholder tallet 0 og det andre elementet tallet 1. Så går vi i løkke der vi starter på element 3 og beregner verdien på elementet ut fra de to foregåe elementene som vi lagrer i element nr. i. b. Lag en løkke der du finner Fibonaccitall nr. n. Du velger verdien til n i begynnelsen av programmet. Du skal ikke lage en vektor som i a., bare finne tall nr n. n = 15; f1 = 0; 16

17 f2 = 1; for i = 3:n f3 = f2 + f1; f1 = f2; f2 = f3; disp(f3); Vi velger 15 som tallet n og legger dette i en variabel. Dette gjør det lettere å re på tallet senere. Så initaliserer vi to variable f1 og f2 til verdi 0 og 1. Så går vi i en løkke der i varierer fra 3 til n og beregner Fibonacci tallet nr. i som vi legger i variablen f3. Videre tar vi vare på det nest siste tallet i f1 og det siste som vi nå har i f3 legges i f2. Da er vi klar for neste runde i løkka. c. Vanskelig: Du får oppgitt at tallene på plass nr. 16 og 17 i Fibonaccitallrekka er henholdsvis 610 og 987. Bruk kun denne informasjonen til å regne ut rekka bakover fra tall nr 17. Legg disse tallene inn i et array.(arrayet du får burde være lik den du fikk i oppgave 1. pluss de to tallene du fikk opgitt i denne oppgaven.) Fibo = zeros(1,17); Fibo(17) = 987; Fibo(16) = 610; for i = 15:-1:1 Fibo(i) = Fibo(i+2) - Fibo(i+1); Her må vi snu på måten vi gjennomløper løkka. Vi starter med i = 15 siden vi skal bruke verdiene på plass 17 og 16 til å beregne den neste verdien nedover i arrayet. Vi initaliserer element 16 og 17 til de angitte verdiene. Da er det bare å strte beregningene for element i ut fra de to vediene på plass i + 1 og i + 2 ved en enkel subtraksjon. 40. I Oppgave 19 i Seksjon?? definerte vi fakultet av n til å være n! = n, og programmerte en løkke som regnet ut n!. Skriv om løkken slik at alle fakultetverdiene fra 1! til n! lagres i et array som du kaller fakultet. n = 10; fakultet = zeros(1,n); 17

18 fakultet(1) = 1; for i = 2:n fakultet(i) = fakultet(i-1) * i; Her velger vi n = 10 og setter av plass for et array på 10 elementer med verdi 0. Vi initaliserer første element til 1 og starter løkka med indeks til element 2. Vi bruker foregåe element til å beregne verdien av element i. 41. En tallfølge er gitt ved a 1 = 1, a 2 = 3 og a n+2 = 3a n+1 2a n. Skriv et program som returnerer en vektor med de 8 første leddene i følgen. n=8; % antall elementer som skal beregnes a=zeros(1,n); % initialisere arrayen a(1)=1; a(2)=3; for i=3:n a(i)=3*a(i-1)-2*a(i-2); eller n=8; % antall elementer som skal beregnes a=zeros(1,n); % initialisere arrayen a(1)=1; a(2)=3; for i=1:n-2 a(i+2)=3*a(i+1)-2*a(i); 42. Legg inn vektorene a = (3,1, 2,5,4,3) og b = (4,1, 1,5,3,1) i Matlab, og utfør kommandoen» plot(a,b). Utfør også kommandoene» plot(a) og» plot(b), og bruk» hold on til å sørge for at de to siste figurene kommer i samme vindu. a=[ ]; b=[ ]; plot(a,b) figure hold on plot(a) 18

19 plot(b) hold off 43. Plot de to funksjonene f (x) = e 0.5x2 og h(x) = e (x 3t)2. La x variere fra 4 til 4 med små skrittlengde (prøv deg frem til du faa fine glatte grafer). t skal være et tall mellom 0 og 2. Plott de to funksjonene i samme figur. La de ha ulik farge. Prøv ut forskjellige verdier av t. Hva gjør t? x=linspace(-4,4,1000); f=exp(-0.5*x.^2); t=0.5; h_xt=exp(-(x-3*t).^2); figure(1) plot(f) hold on plot(h_xt, g ) t forflytter senteret av funksjonen, eller forflytter bølgetoppen". 44 (To vulkaner). Vi kan se for oss en vulkan som en sylinder og beskrive dens utslippsrate av magma ved Q = πr4 P 8µL m3 /s Der L er lengden i meter, R radiusen i m, µ viskositeten til magmaen i Pa/sek og P trykket i vulkanen gitt i Pa. For en vulkan fra Hawaii og Mount St Helen under typiske utbrudd: L H = 5000 L St = 7000 µ H = 100 µ St = R H = 1m L St = 50 P H = P St = a. Hvilken vulkan slipper ut mest magma under et typisk utbrudd? Løsningsforslag: Følge kode løser problemet: L = [ ]; u = [100 2*10^6]; R = [1 50]; P = [5*10^6 3*10^7]; Q = (pi*r.^4.*p)./(8*u.*l); Vulkanen på St. Helens slipper ut mest (St.Helens: e+03, Hawaii: ) 19

20 b. Hvor stort trykk ville man trengt i vulkanen på Hawaii for at de to vulkanene skulle slippe ut like mye magma? Pp = P(1)/Q(1)*Q(2); som gir at trykket på Hawaii vulkanen må være minst e+09 Pa for å slippe ut samme mengde magma. c. Plott Q som funksjon av radier og lengder i nærheten av de gitte verdier, hva er de viktigste faktorene for hvor mye lava som blir sluppet ut? R = 1:50; L = 5000; u = 100; P = 5*10^6; Q = (pi*r.^4*p)/(8*u*l); figure(1); plot(r,q); xlabel( Radius [km] ); ylabel( Lavaflom ); clear R L Q; R = 1; L = 5000:100:7000; Q = (pi*r.^4*p)./(8*u*l); figure(2); plot(l,q); xlabel( Radius [km] ); ylabel( Lavaflom ); Ut fra plottene ser vi at det er radius som er den viktigste faktoren for mengden av lava som strømmer ut. 45. Vi skal se litt mer på oppgaven fra tidligere der vi hadde en bakteriepopulasjon som vokste eksponentielt og hadde en vekst gitt av P = P 0 e kt der t er tiden i sekunder, P 0 =120 er populasjonen ved t = 0 og k = t=0:30; % tidsrekka k=0.04; % parameter 20

21 P0=120; % bakteriepopulasjonen ved start P=P0*exp(k*t); figure(1) plot(p) xlabel( tid [s] ) ylabel( antall bakterier ) title( Populasjon ) xlim([1 30]) t=1:60*6; P=P0*exp(k*t); figure(2) hold on plot(p) xlabel( tid [s] ) ylabel( antall bakterier ) title( Populasjon ) plot(t,1e8, r* ) xlim([1 360]) hold off Tidspunktet naar populasjonen naar grensen er ved ca. 340 sekunder. a. Lag en tidsvektor for de 30 første sekundene som du kaller t. b. Regn ut bakteriepopulasjonen for hver t, og plot denne. Sett navn på aksene. c. Lag en ny tidsvektor som representerer 6 minutter. d. Regn ut bakteriepopulasjonen for hvert sekund i 6 minutter, og plot denne. Sett navn på aksene e. Plot en linje i figuren din som markerer der populasjonen når 10 8 bakterier. La linjen være røde stjerner. Les av for hvilken t denne verdien nås. 46. Bruk kommandoen» plot til å lage en enkel strektegning av et hus. 21

22 x=[ ]; y=[ ]; plot(x,y) % definere aksene for å se huset bedre figure plot(x,y) axis([ ]) 47. Bruk Matlab til å tegne grafen til f (x) = x 3 1 over intervallet [ 1,1]. Legg så inn grafen til g (x) = 3x 2 i samme koordinatsystem, og velg forskjellig farge på de to grafene. Bruk skrittlengde langs x-aksen. x=-1:0.01:1 figure hold on y=x.^3-1 plot(x,y, r ) y=3*x.^2 plot(x,y, g ) hold off 48. Skriv inn realistiske verdier til nedbør på 7 dager i et array og lag et søylediagram som viser nedbør som en funksjon av tid (med bar). Lag også et histogram av verdiene (med hist). Prøv deg frem med forskjellige verdier av n. ned=[ ]; subplot(2,2,1) bar(ned) title( bar ) subplot(2,2,2) hist(ned) title( hist default ) subplot(2,2,3) hist(ned,2) title( hist 2 ) subplot(2,2,4) hist(ned,4) title( hist 4 ) 22

23 49. Om man kaster en ball vil den følge en bane gitt av formelen: f (x) = x tan(θ) 1 g x 2 2v0 2 cos 2 (θ) + y 0 der v 0 er startfarten (i m/s), θ er vinkelen du kaster ballen i forhold til x-aksen, y 0 er høyden ballen kastes i (ved x=0) og g er tyngdeakselerasjonen. Figur 1: En balls bane gjennom luften i Oppgave 49 Du kan sette g = 9.81m/s 2. Prøv ulike startverdier og lag figurer som viser banen til ballen. Hint: om du setter θ i grader må du bruke tand() og cosd(). v0=80; theta=60; x=0:0.01:10; g=9.81; y0=2; y=x*tand(theta)-((g*x.^2)/(2*v0*(cosd(theta))^2))+y0; plot(y) hold on ylim([0 max(y)]) 50 (Meteorer). Vi skal se på energien i meteorer som treffer månen og størrelsen på krateret de lager. 23

24 a. Den kinetiske energien til masse i bevegelse er K E = 1 2 mv 2 der K E er energien i Joule, m er massen i kg og v hastigheten i m/s. Hva er den kinetiske energien til en meteor på 5 g som beveger seg med v = 71 km/s (typisk hastighet i asteroidebeltet)? K_e =.5*0.005*32000^2; % = 1.26*10^7 Joule b. En ligning som blir brukt for å beregne diameteren på kratere på månen er der D at er Diameteren i meter, D at = 0.015ρ 1 6 p ρ 1 2 t W.37 sinφ 2 3 ρ p = 600 og ρ t 3000 er henholdsvis meteorens og månens tetthet i kg/m 3, W er prosentandelen av kollisjonsenergien som går med til å lage et krater, og φ er vinkelen på nedslaget i grader. Bruk W = 0.9K E, φ = 90 til å regne ut diameteren til krateret meteoren fra a. ville laget. ro_p = 600; % kg/m^3 ro_t = 3000; % kg/m^3 W =.9*K_e; % J i=90; D_at =.015*ro_p^(1/6)*ro_t^(-.5)*W^(.37)*sind(i)^(2/3); % 0.32 m c. ρ p = 600 er et ca. anslag, vis enten ved plott eller på andre måter hvordan kraterdiameteren avhenger av tettheten til meteoren og månen ved å variere ρ p og ρ t innenfor rimelige verdier (hvor stort ville krateret blitt dersom den var av feks is, jern, bly, gull?). Løsningsforslag: ρ i s = 920 D a t = 0.34m ρ j er n = 7870 D a t = 0.49m ρ bl y = D a t = 0.52m ρ g ull = D a t = 0.57m 24

25 d. La nå ρ p = 5000 men la den totale massen variere fra 1 g til 100 kg, og plott kraterstørrelsen som funksjon av vekten til meteoren. Husk å sette verdier på aksene. Hint: logspace(-3,2, 100) generer 100 verdier mellom 10 3 og 10 2 med logaritmisk avstand. Det går også an å bruke linspace her. v=logspace(-3,2, 100); W2=.9*.5.*v.*71000^2; D2=.015*ro_p^(1/6)*ro_t^(-.5).*W2.^(.37).*sind(i)^(2/3); plot(v,d2) e. Denne formelen gjelder strengt tatt kun for mindre kratere på månen, men vi kan teste hvor stor asteroiden som laget Chicxulub krateret på Yucatan halvøya må ha vært etter denne formelen. Krateret har en radius på 180 km og mange mener at det er dette nedslaget som utslettet dinosaurene. Bruk ρ t = 6000, ρ p = 3000 og resten som i b. og beregn massen. Hva med radiusen? Virker resultatene sannsynlig? Løsningsforslag: ca mass = 8*10^12 r = sqrt(m/(4*pi*ro)) % = ca 14 km som er ca 3x for stort stort. 51. I denne oppgaven skal vi se på en modell for samspillet mellom rovdyr og byttedyr. Vi lar x n og y n betegne hhv. antall rovdyr og antall byttedyr etter n uker, og vi antar at x n+1 = x n (1 r + c y n ) y n+1 = y n (1 dx n + q) der r, q, c og d er små, positive tall. a. Forklar tankegangen bak modellen. b. Velg r = 0.02, q = 0.04, c = , d = 0.001, x 1 = 50, y 1 = 200. Lag et program som regner ut x n og y n for n Plott følgene x n og y n i samme koordinatsystem. Hvorfor er toppene til x n forskjøvet i forhold til toppene til y n? 25

26 % rovdyr og byttedyr % antall dyr i en uke = antall dyr uka før - de døde + de nyfødte % antall nyfødte rovdyr avhengig av antall byttedyr % antall døde byttedyr avhengig av antall rovdyr nt=1000; % antall uker r=0.02; % def av fødselsrater og dødelighetrater q=0.04; c=0.0002; d=0.001; x=zeros(1,nt); y=zeros(1,nt); x(1)=50; % initialisering antall rovdyr y(1)=200; % initialisering antall byttedyr for n=2:nt x(n)=x(n-1)*(1-r+c*y(n-1)); y(n)=y(n-1)*(1-d*x(n-1)+q); figure hold on plot(x, r ) plot(y, b ) title( antall rovdyr (rød) og byttedyr (blå) ) hold off % er det mange byttedyr, øker antall rovdyr; er det få byttedyr, minker antall rovdyr 52. En dyrestamme består av tre årskull. Vi regner med at 40% av dyrene i det yngste årskullet lever videre året etter, mens 70% i det nest yngste årskullet lever videre året etter. Ingen dyr lever mer enn tre år. Et individ i det andre årskullet blir i gjennomsnitt forelder til 1.5 individer som blir født året etter. Et individ i det eldste årskullet blir i gjennomsnitt forelder til 1.4 individer som blir født året etter. La x n, y n, z n være antall dyr i hvert årskull etter n år, og forklar hvorfor x n+1 = 1.5y n + 1.4z n y n+1 = 0.4x n z n+1 = 0.7y n a. Anta at det er 100 dyr av hvert årskull det første året. Lag et program som regner ut x n, y n og z n for 1 n 100. Plott alle tre kurvene i samme vindu. Lag et nytt vindu der du plotter alle de relative bestandene x n = x n x n +y n +z n, y n = y n x n +y n +z n, z n = z n x n +y n +z n. 26

27 b. Gjenta a., men bruk andre startverdier, f.eks. x 1 = 300, y 1 = 0, z 1 = 0. Sammenlign med resultatene i 1. Gjør oppgavene a en gang med et nytt sett av startverdier. Ser du et mønster? : %oppgave med 3 årskull % x er antall yngste, y antall mellomste, og z antall eldste % indeksen k representerer hvilket år man er i. nt = 100; %antall år x=zeros(1,nt); y=zeros(1,nt); z=zeros(1,nt); x(1)=100; % initialisering antall dyr y(1)=100; z(1)=100; for k=2:nt % regne ut utviklingen x(k)=1.5*y(k-1)+1.4*z(k-1); y(k)=0.4*x(k-1); z(k)=0.7*y(k-1); figure hold on plot(x, : ) plot(y, -- ) plot(z, - ) %beregne og plotte de relative bestandene xr=x./(x+y+z) yr=y./(x+y+z) zr=z./(x+y+z) figure hold on plot(xr, : ) plot(yr, -- ) plot(zr, - ) 53. For å finne vinkelen til sola, θ 0, i forhold til et sted på jorda må man ta hensyn til tre vinkler. De er breddegrad, timevinkel og deklinasjonsvinkel. Breddegraden kalles φ og sier hvor langt nord-syd vi er i forhold til ekvator. Timevinkelen, h, forteller oss hvilken tid på døgnet det er. Timevinkelen er lik null midt på 27

28 dagen, og man legger til 15 grader(evt trekker fra) for hver time etter 12 (for hver time tidligere enn 12). Deklinasjonsvinkelen, δ, forteller om helningen til jorda i forhold til sola. Den er størst ved sommer- og vintersolverv, ±23.45 grader, og 0 ved høst-og vårjevndøgn. Formelen for å regne ut θ 0 er som følger: cos(θ 0 ) = sin(φ)sin(δ) + cos(φ)cos(δ)cos(h) a. Regn ut θ 0 for følge steder: 1. Oslo: 60N, kl 15.00, ved sommersolverv 2. New York City: 40N, kl 09.00, ved høstjevndøgn 3. Singapore: 1N, kl ved vårjevndøgn Løsningsforslag: Følge kode løser problemet: 1. Oslo: 60 N kl. 15:00, sommersolhverv f = 60; h = 45; delta = 23.45; Theta0 = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); og da er vinkelen θ New York: 40 N kl. 15:00, høstjevndøgn f = 40; h = -45; delta = 0; Theta0 = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); og da er vinkelen θ Singapore: 1 N kl. 12:00, vårjevndøgn f = 1; h = 0; delta = 0; Theta0 = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); og da er vinkelen θ 89 28

29 b. Nå skal vi se litt nærmere på når sola går opp og ned i Oslo og Tromsø: Oslo ligger 60N, mens Tromsø ligger 69N. I løpet av ett døgn varierer timevinkelen fra -180 ved midnatt til 180 ved midnatt ett døgn etter. Den skal være lik null kl Timevinkelen øker 15 grader pr. time. 1. Lag et array med lengde 24 som inneholder timevinklene fra midnatt til midnatt ett døgn senere. Hint: la timevinkelen variere fra -165 til 180, med skritt på La det være sommersolverv. Regn ut solvinklene for ett døgn for både Oslo og Tromsø. Plot resultatet i samme figur. Husk navn på aksene! 3. Plot en linje for θ 0 lik 90 i samme figur som i 1. Hva representerer denne linja? 4. Finn ut når sola går opp i Oslo og i Tromsø, og når den går ned. 5. Hvorfor er ikke θ 0 lik null midt på dagen? 6. La det så være vintersolverv. Gjør tilsvare som i oppgave 1) til 4) 7. Hvorfor får Tromsø så ekstreme verdier i forhold til Oslo? Løsningsforslag: Soloppgang og solnedgang i Oslo og Tromsø: 1. Følge kode løser problemet: h = -165:15:180; 2. Følge kode løser problemet: h = -165:15:180; f = 60; delta = 23.45; ThetaOslo = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); f = 69; ThetaTromso = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); hold on plot(thetaoslo); plot(thetatromso, r ); axis tight xlabel( Tid [24 timer] ); ylabel( Solvinkelen ); Title( Solvinkel for Oslo og Tromsø ); 29

30 3. Følge kode løser problemet: x = 1:24; plot(1:24,90, k* ); ylim([ ]); 4. Vi ser av figuren at Oslo har soloppgang ca. kl 03:00 og solnedgang ca. kl. 21:00. Tromsø har midnattssol og har derfor ikke soloppgang og solnedgang. 5. θ 0 er null bare ved ekvator. I Norge står sola i sør kl. 12: Her rere vi bare på delta variablen og gir den verdien grader før vi kjører programmene på nytt. 7. Fordi Tromsø ligger nord for polarsirkelen. c. Vi skal nå la timevinkelen være konstant lik null, dvs. at det er midt på dagen. Nå skal deklinasjonsvinkelen variere gjennom et helt år. Vi starter på sommersolverv. Deklinasjonsvinkelen pr. dag kan regnes ut vha: δ = cosd(m), der m = 0 : 360/364 : Regn ut hvordan solvinkelen for Oslo varierer i løpet av ett år. Gjør tilsvare beregninger for Tromsø. Plot resultatet i samme figur. 2. Hvor mange dager er uten sol i Tromsø? Har vi tilsvare dager i Oslo? Om du synes dette er gøy, gjør gjerne tilsvare oppgaver med andre byer. Informasjon om breddegrad finner du lett på Wikipedia. Løsningsforslag: Konstant timevinkel på 0 grader. 1. Følge kode løser problemet: h = 0; f = 60; m = 0:360/364:360; delta = * cosd(m); ThetaOslo = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); f = 69; ThetaTromso = asind(sind(f)*sind(delta) +cosd(f)*cosd(delta)*cosd(h)); hold on plot(thetaoslo); plot(thetatromso, r ); 30

31 axis tight xlabel( Dager [365] ); ylabel( Solvinkelen ); Title( Solvinkel for Oslo og Tromsø ); xlim([1 365]); ylim([ ]); plot(1:360,90, k ); 2. Tromsø har 53 dager uten sol og Oslo har ingen dager uten sol siden Oslo er sør for polarsirkelen. Vi kan lese dette ut fra figuren eller bruke en funksjon som heter find samt length slik length(find(thetatromso <= 0)) som gir antall dager der solvinkelen er mindre eller lik null (mørketid). 54. I denne oppgaven skal vi lage flere arrayer vi kan få bruk for. a. Lag et array x som går fra 0 til 2π, med 1000 punkter. Lag en figur der du plotter funksjonen S=sin(x). Løsningsforslag: Følge kode løser problemet: x = linspace(0,2*pi,1000); S = sin(x); plot(s); b. Man kan tilnærme funksjonen sin(x) med summen S m (x) = m j =0 ( 1) j 2j +1 x (2j + 1)!, der m er antall ledd i summen. Regn ut denne summen fra null til en gitt verdi m, som du setter i begynnelsen av programmet. m kan ha alle mulige positive verdier, men vi skal bruke verdier mellom 1 og 10. Bruk arrayen x som du definerte i a.. Selve for-løkka kan se slik ut: S_xm=0; for j = 1:m S_xm=S_xm+((-1)^(j-1)*(x.^(2*(j-1)+1))/factorial(2*(j-1)+1)); S_xm vil etter denne løkka være et array du kan plotte. factorial er Matlabfunksjonen for fakultet. Løsningsforslag: Følge kode løser problemet: 31

32 x = linspace(0,2*pi,1000); m = 10; S_xm = 0; for i = 1:m S_xm=S_xm+((-1)^(i-1)*(x.^(2*(i-1)+1))/factorial(2*(i-1)+1)); c. Lag en figur der du plotter sin(x) og S m (x). Ha ulik farge på de to grafene. Start med m = 1 og lag nye figurer for forskjellige m-verdier mellom 1 og 10. Forklar hva du ser. Hint: det kan være lurt å angi verdiene for y-aksen: ylim([min(s) max(s)]), der S=sin(x) fra a.. Løsningsforslag: Følge kode løser problemet: x = linspace(0,2*pi,1000); m = 10; S_xm = 0; for i = 0:m S_xm = S_xm+((-1)^(i)*(x.^(2*(i)+1))/factorial(2*(i)+1)); S = sin(x); plot(s); hold on; plot(s_xm, r ); ylim([min(s) max(s)]); Vi ser her at når m >= 10 så har vi en sammenfalle kurve med sin(x). 55. Kandidatene 1 til 10 har fått følge poengsum på eksamen: 51, 42, 70, 99, 65, 12, 78, 67, 33 og 90. Lag et program som skriver ut, med en linje per kandidat, kandidatnummer og hvor mange poeng kandidaten har fått. png=[ ]; %poeng per kandidat n=length(png); for j=1:n fprintf( Kandidat %i har fått %i poeng,j,png(j)) 32

33 Legg merke til at vi bruker indeksvariabelen j både til kandidatnummer og som indeks. 56. I denne oppgaven skal vi se mer på hvordan vi kan aksessere tegnene i en strengvariabel. a. Lag en strengvariabel az som inneholder alle bokstavene i alfabetet. az= abcdefghijklmnopqrstuvwxyz ; b. Hva blir H når: H(1)=az(8), H(2)= az(5), og H(3)= az(9)? Løsningsforslag: hei c. Skriv navnet ditt ved å trekke ut de riktige bokstavene fra az Hint: Trenger du mellomrom kan du legge til dette på slutten av alfabetet. disp([az(1),az(4),az(1)]) d. Bruk en løkke til å lage strengvariabelen za, som er alfabetet baklengs. n=length(az) for i=1:n za(i)=az(n+1-i); 57. gitt løkka: m=0; for i=1:10 m=m+i; a. Bruk sprintf til å skrive ut verdien til m for hvert steg i løkka sammen med hvilket steg det er i løkka Løsningsforslag: 33

34 m=0; for i=1:10 m=m+i; fprintf( verdien av m er %d og det er gått %d iterasjoner.,m,i) b. La m starte på 0.5, og gjenta det samme, slik at m får to desimaler. Løsningsforslag: m=0.5; fprintf( verdien av m er %.2f og det er gått %d iterasjoner.,m,i) 58. Gitt strengvariabelen tall = ( u2 liv3 4ever ). a. Bruk str2num til å legge sammen tallene i denne teksten. Løsningsforslag: a=str2num(tall(2))+str2num(tall(7))+str2num(tall(9)) b. Hva får du om du ikke bruker str2num? 59. Gitt strengvariablene dato1 = ; dato2 = ; dato3 = 5/01/2008 ; a. Bruk num2str, str2num og fprintf til å skrive ut disse datoene på formen Denne datoen er fra året yyyy og dagen er dd i mm b. Vanskelig: istedenfor tallet til måneden, skriv forkortelsen på tre bokstaver til den aktuelle måneden, som jan, feb, mar, osv. Denne datoen er fra året yyyy og dagen er dd.mnd dato1 = ; dato2 = ( ); dato3 = ( 5/01/2008 ); 34

35 dato = num2str(dato1); mnd1=str2num(dato(5:6)); dag1=str2num(dato(7:8)); aar1=str2num(dato(1:4)); fprintf( Denne datoen er fra året %d og dagen er %d i %2.d,aar1,dag1,mnd1) dag2=str2num(dato2(6:7)); mnd2=str2num(dato2(9:10)); aar2=str2num(dato2(1:4)); fprintf( Denne datoen er fra året %d og dagen er %d i %2.d,aar2,dag2,mnd2) dag=str2num(dato3(1)); mnd=str2num(dato3(3:4)); aar=str2num(dato3(6:9)); fprintf( Denne datoen er fra året %d og dagen er %d i %2.d,aar,dag,mnd) if mnd == 1 mnd= jan ; elseif mnd == 2 mnd = feb ; elseif mnd == 3; mnd = mar ; %osv fprintf( Denne datoen er fra året %d og dagen er %d.%s,aar,dag,mnd) 60. Skriv inn matrisene og A = B = og gjennomfør operasjonene C=[A,B] C(2,4) C(:,[2 3]) 35

36 C([1 3],3:5) For å få noe ut av oppgaven bø den gjøres først uten å bruke Matlab. Løsningsforslag: Svarene er: C = C(2,4) = 4 C(:,[2 3]) = C([1 3],3:5) = Undersøk hva kommandoen» [A;B] gjør når A og B er to matriser. 62. På begynnelsen av denne seksjonen har du fått oppgitt temperaturutviklingen på 4 målestasjoner. a. Regn ut temperaturforskjellene mellom stasjon 4 og stasjon 1 på alle dagene. b. Plott temperatur som en funksjon av tid på de fire målestasjonene i samme figur. Sett navn på begge aksene på figuren. T=[ ; ; ; ] t1=t(1,:) t2=t(2,:) t3=t(3,:) t4=t(4,:) figure hold on plot(t1, r ) 36

37 plot(t2, g ) plot(t3, k ) plot(t4, b ) xlabel( dag nummer ) ylabel( temperatur i Celsius grader ) 63. Gitt matrisen T=[ ; ] Matrisen T inneholder temperaturer fra 2 målestasjoner. Det er tatt en temperaturmåling pr. dag. Skriv matrisen inn i Matlab. Plott temperaturene fra de to stasjonene i samme figur, og bruk ulike farger på kurvene. Sett navn på aksene. La x-aksen gå fra 1 til 12. Lag stjerner i grønt som angir der temperaturen er lik null i figuren. Løsningsforslag: Følge kode løser problement: T = [ ; ]; x = 1:12; plot(x,t(1,:)); hold on plot(x,t(2,:), r ); plot(x,0, g* ); xlabel( Tid ); ylabel( Temperatur ); 64. Gitt matrisen A = [ ; ] B= [10 11; 12 13] a. Hvor mange rader/kolonner har A og B? Løsningsforslag: A har to rader og fire kolonner. B har to rader og to kolonner. b. Hvor mange rader/kolonner har C = [A, B]? Løsningsforslag: C = [A,B] har to rder og seks kolonner. c. Hvilken rad i C er lengst? Løsningsforslag: Radene i C er like lange. d. D = [C (:, 3 : 4)] Hvor mange rader/kolonner har D? Løsningsforslag: D har to rader og to kolonner. 37

38 65. Gitt matrisen P = [1 2; 3 4; 5 6; 7 8] Q= [10; 11; 12; 13] a. Hvor mange rader/kolonner har P og Q? Løsningsforslag: P har 4 rader og 2 kolonner. Q har 4 rader og 1 kolonne. b. Hvor mange rader/kolonner har R = [P,Q]? Løsningsforslag: R = [P,Q] har 4 rader og 3 kolonner. c. Hva blir P(1,2) +Q(2,1) Q(4,1)? Hvilke tall inngikk i regnestykket? Løsningsforslag: P(1,2) -> 2, Q(2,1) -> 11, Q(4,1) -> 13 så vi får som blir 0. d. Lag arrayer av hver kolonne i R. Løsningsforslag: Følge kode løser problement: Rc1 = R(:,1); Rc2 = R(:,2); Rc3 = R(:,3); e. Lag arrayer av hver rad i R. Løsningsforslag: Følge kode løser problement: Rr1 = R(1,:); Rr2 = R(2,:); Rr3 = R(3,:); Rr4 = R(4,:); f. Vanskelig: Klarer du ved hjelp av disse arrayene å lage matrisene Z = P og Y = Q? Løsningsforslag: Z=[Rc1,Rc2]; Y=Rc3; 66. Lag en matrise der første kolonne inneholder temperaturene fra 0 til 40 grader i Celsius, andre kolonne inneholder de tilsvare temperaturer i Fahrenheit, og tredje kolonne inneholder tilsvare temperaturer i Kelvin. Sammenhengen mellom Celsius(C) og Fahrenheit(F) er F = 1.8C + 32, og mellom Celsius 38

39 (C) og Kelvin (K) K = C + 273,15. Nb: Gjør dette ved å programmere, ikke skriv inn alle verdiene for hånd! T=0:40; F=(T*1.8)+32; K=T-273; t=[t; F; K]; t eller T = zeros(41,3); T(:,1) = 0:40; T(:,2) = T(:,1).* ; T(:,3) = T(:,1) ; 67. Lag en matrise med 5 rader og 5 kolonner der tallet i hvert punkt er gitt ved radnr*kolonnenr. Løsningsforslag: Følge kode løser problement: M = zeros(5,5); for j = 1:5 for i = 1:5 M(i,j) = i*j; 68. Vi definerer matrisen M = a. Legg inn matrisen i Matlab. Løsningsforslag: M = [ ; 0 1 2; 1 2 3]; b. Lag matrisen N som har radene til M som kolonner og kolonnene til M som rader. Løsningsforslag: 39

40 N = M ; c. Gir N(1:2, 2:3) og M(1:2, 2:3) det samme svaret? Løsningsforslag: Nei siden matrise N er den transponerte av matrise M. d. Gir N(1,1) og M(1:1,2:3) det samme svaret? Løsningsforslag: Nei siden vi bruker bare et element fra N og to elementer fra M. 69 (Flervalgsoppgave, kun ett riktig svar). For å få noe ut av oppgaven bør den gjøres uten å bruke Matlab. Hvilket av følge utsagn er sanne? Art = [1 1.2; 2.1 2; 7 8.9] Gir feilmelding siden dimensjonene ikke stemmer Ar t = ( ) Ar t = Ar t(1 : 3) = 7 Løsningsforslag: Det andre alternativet er riktig. 70 (Flervalgsoppgave, kun ett riktig svar). Hvilket av følge utsagn er sanne? En matrise kan ikke ha forskjellig antall rader og kolonner. Antall rader i en matrise varierer med hvilken kolonne du er i. Matriser brukes sjelden av proffe programmerere siden du mister kontrollen over data. Matriser kan ha mange flere enn 3 dimensjoner. Løsningsforslag: Det fjerde alternativet er riktig. 71. Gitt matrisen T=[ ; ] Matrisen T inneholder temperaturer fra 2 målestasjoner over 12 dager. a. Lag et array av hver rad i matrisen. 40

41 b. Legg til en tredje målestasjon med målingene slik at T nå har 3 rader. c. Finn temperaturene på dag 7. d. Lag en matrise som kun inneholder en ukes observasjoner som starter på dag 3 e. Lagre arbeidet ditt i en m fil eller diary. : T=[ ; ]; T1=T(1,:); %a T2=T(2,:); T3=[ ]; %b T=[T;T3]; Tdag7=T(:,7); %c Tuke=T(:,3:9); %d 72. Opprett arrayen» G=linspace(0,10,100); a. Hva blir summen av denne? b. Hvor lang er denne arrayen? c. Del arrayen opp i to arrayer, E og F, der E inneholder den første halvdelen av G, og F den andre halvdelen. d. Hva blir gjennomsnittet av F E? G=linspace(0,10,100); sum(g) length(g) E=G(1:50); F=G(51:100); H=F-E; mean(h) 41

42 hvor svarene er 500 og 100 for a) og b) 73. På begynnelsen av seksjonen om matriser har du fått oppgitt temperaturutvikling i 7 dager fra 4 stasjoner som ligger i samme område. a. Lag en figur over temperaturen som en funksjon av tid ved de 4 stasjonene. figure(1) plot(t(:,1)) hold on plot(t(:,2), r ) plot(t(:,3), k ) plot(t(:,4), g ) leg( st.1, st.2, st.3, st.4 ) title( Temperatur for fire stasjoner ); xlabel( Tid ); ylabel( Temperatur ) b. Beregn den gjennomsnittlige temperaturen for hver dag i dette området. Beregn også standardavviket. Bruk figuren fra a. for å kontrollere om verdiene du får her virker korrekte. Tmean = mean(t); disp(tmean) Tstd = std(t); disp(tstd) 74. Legg vannførselen for elvene fra tabellen nedenfor inn i en vektor med navn Vann. a. Beregn kun ved hjelp av arrayoperasjoner: 1. Total vannførsel. 2. Gjennomsnittslig vannførsel for elvene. 3. gjennomsnittet og summen av vannførselen dersom vi ikke regner med Amazonas. 4. Siden Madeira renner ut i Amazonas ønsker vi også å beregne uten denne. Hva blir nå total vannmengde (inkl. Amazonas)? 42

43 Tabell 1: Verdens 12 største elver etter vannførsel [m 3 /s]: # Navn Vannførsel [m 3 /s] lengde [km] 1) Amazonas ) Congo ) Ganges ) Orinoco ) Yangtze ) Rio Negro ) Parana ) Yenisei ) Lena ) Madeira ) Mississipi ) Mekong VANSKELIG: Hva blir snittet uten Madeira (inkl.amazonas)? Legg så lengdene til elvene inn i en vektor ved navn Lengde. b. Hvor lange er elvene til sammen? c. Gjør følge: 1. Gang elvens lengde [km] med dens vannførsel og lagre resultatet i et array Vannlengde 2. Hva blir gjennomsnittet til Vannlengde? 3. Hvilken elv er minst ved denne måten å se det på? -og hvor stor er den? Løsningsforslag: Svarene er Vann= [ ]; 1.a) sum(vann) = [m^3/s] 1.b) mean(vann) = [m^3/s] 1.c) sum(vann(2:12)) = [m^3/s] mean(vann(2:12))= [m^3/s] 43

44 1.d) sum(vann(1:9))+sum(vann(11:12))= e) Feks: (sum(vann(1:9))+sum(vann(11:12)))/(length(vann)-1)= Lengde =[ ]; 2. sum(lengde) = a) Vann.*Lengde 3.b) mean(vannlengde)= *10^8 3.c) min(vannlengde)= *10^7 75. Befolkningstallene nedenforer hentet fra Wikipedia i April Tabell 2: Land med høyest befolkning # Land Befolkning % av verdens befolkning 1) Kina 1,337,030, % 2) India 1,179,744, % 3) USA 309,034, % 4) Indonesia 231,369, % 5) Brasil 192,801, % 6) Pakistan 169,274, % 7) Bangladesh 162,221, % 8) Nigeria 154,729, % 9) Russland 141,927, % 10) Japan 127,380, % 11) Mexico 107,550, % 12) Filippinene 92,226, % På samme tidspunkt var verdens befolkning totalt milliarder. Legg tallene over befolkningen i de 12 landene inn i et array som du kaller populasjon. clear all close all befolkning=[ ]; prosent= [ ]; land=char( Kina, India, USA, Indonesia, Brasil, Pakistan,... Bangladesh, Nigeria, Russland, Japan, Mexico, Filippinene ); 44

45 %oppg a bar(befolkning) set(gca, XTickLabel,land); ylabel( Befolkning ) title( De 12 mest befolkede landene i verden ) %oppg b summen = sum(befolkning); %oppg c snitt=mean(befolkning); avvik=std(befolkning); %oppg d andel =sum(prosent); %oppg e norge= ; del_12=norge/snitt; %oppg f verden = 6.816*1e9; del_verden=norge/verden; %oppg g befolkning2=befolkning(3:length(befolkning)); prosent2= prosent(3:length(prosent)); summen = sum(befolkning2); snitt=mean(befolkning2); avvik=std(befolkning2); andel =sum(prosent2); del_12=norge/snitt; a. Lag et søylediagram over befolkningen i de 12 landene. b. Finn summen av befolkningen i de 12 landene. Løsningsforslag: c. Finn gjennomsnittet og standardavviket. Løsningsforslag: Gjennomsnitt: , standardavvik: d. Hvor stor del av jordas befolkning bor i de 12 mest befolkede landene? Løsningsforslag: 61.71% e. Pr. 1. Januar 2010 var befolkningen i Norge 4,858,200. Hvor mange prosent er dette i forhold til gjennomsnittet du fant i c.? Løsningsforslag: 0.014% 45

46 f. Hvor mange prosent er Norges befolkning av jordas befolkning? Løsningsforslag: % g. Kina og India har stor innvirkning på tallene du får siden det bor så mange her. Gjør oppgave b.-e. en gang til uten tallene for Kina og India, og se om du får et veldig ulikt resultat. Løsningsforslag: Vi får nå svarene b c Gjennomsnitt: , standardavvik: d 24.78% e % 76. Finn, uten å programmere, om det siste uttrykket er sant eller ikke. a=2; b=2*a; c=45; d=c-10*b; a<d & (b>c d<c) & ~(a==b) Kontroller med Matlab om du har riktig svar. Løsningsforslag: Hvordan man går fram: Regne ut verdiene: a=2 b=4 c=45 d=5 Sammenligne og kombinere sammenlignigene: 1.: a<d: sant 2.: b>c ikke sant; 3.: d<c sant; 4.: derfor blir 2. eller 3. sant 5.: a ulik b sant 6.: baade 1. og 4. og 5. er sant; derfor er det totale sant. 77. Skriv i en enklere form følge test: if ~(a>b) og test med noen verdier av a og b. 46

47 if a<=b 78. Funksjonen arcsin(a) er definert bare hvis verdien til a er mellom -1 og 1. Lag et program som tester verdien av a, tar arcsin hvis mulig, eller skriver ut en melding hvis det ikke går an å ta arcsin av a. if (abs(a)>1) disp ( arcsin kan ikke regnes ut for denne a ) else b=arcsin(a) 79. La oss lage et par typer enkle if-tester. a. Lag en if-test som tester om en tallvariabel er et heltall. a= 3.000; b= ceil(a); %fix, floor, round funker også if a==b disp( heltall ) else disp( ikke heltall ) b. Lag en if-test som tester om et heltall er partall eller oddetall. b=a/2; c=ceil(b); if a==b disp( partall ) else disp( oddetall ) c. Lag en if-test som tester hvilken variabel som er størst og deretter setter begge variablene lik hverandre. 47

48 if a <=b a=b else b=a 80. For å få noe utbytte av denne oppgaven må man la være å programmere den, og heller tenke gjennom den. a=2; b=3; if (a>1 & b<3) disp( ja ) else disp( nei ) a. Hva skrives ut? Hvorfor? Løsningsforslag: nei b. Hva skrives ut om a=0 og b=5? Løsningsforslag: nei c. Hva skrives ut dersom a=1 og b=4? Løsningsforslag: nei d. Hva skrives ut dersom a=2 og b=3? Løsningsforslag: nei 81. For å få noe utbytte av denne oppgaven må man la være å programmere den, og heller tenke gjennom den. a=2; b=3; if (a>1 b<3) disp( ja ) else disp( nei ) 48

49 a. Hva skrives ut? Hvorfor? Løsningsforslag: a>1 : sant; b<3 : feil, derfor feil; derfor nei. b. Hva skrives ut om a=0 og b=5? Løsningsforslag: a>1 : feil; b<3 : feil, derfor feil; derfor nei. c. Hva skrives ut dersom a=1 og b=4? Løsningsforslag: a>1 : feil; b<3 : feil, derfor feil; derfor nei. d. Hva skrives ut dersom a=2 og b=3? Løsningsforslag: a>1 : sant; b<3 : feil, derfor feil; derfor nei. 82. For å få noe utbytte av denne oppgaven må man la være å programmere den, og heller tenke gjennom den. a=1; b=3; if a>1 & b<3 disp( ja ) if a<1 & b>3 disp( hmm ) else disp( nei ) a. Hva skrives ut? Hvorfor? Løsningsforslag: nei b. Hva skrives ut om a=0 og b=5? Løsningsforslag: hmm c. Hva skrives ut dersom a=1 og b=4? Løsningsforslag: nei d. Hva skrives ut dersom a=2 og b=2? Løsningsforslag: ja nei e. Hva skrives ut dersom a=2 og b=3? Løsningsforslag: nei 49

50 f. Hvilke verdier kan a og b ha for at bare nei skal bli skrevet ut? Løsningsforslag: enten må a være lik 1 eller b lik Vi skal nå se litt på hvordan man kan bruke en if-test i en løkke. a. Lag en løkke som teller fra 1 til 100, og bruk denne løkken til å lage et array A, som inneholder verdiene 1 til 100 i stige rekkefølge. Løsningsforslag: Denne koden kan brukes: A = []; for i = 1:100 A(i) = i; b. Bruk samme løkke og en if-test til å lage et array B som inneholder alle tallene i løkka som går opp i 10. Løsningsforslag: Kode som løser problemet: B = []; j = 1; for i = 1:100 if(floor(i/10) == ceil(i/10)) B(j) = i; j = j + 1; c. Gjør om det inne i løkka slik at de tallene som er i B ikke er med i A. Hvor lange blir array A og B da? Løsningsforslag: Løsningsforslag: A = []; B = []; j = 1; k = 1; for i = 1:100 if(floor(i/10) == ceil(i/10)) B(j) = i; j = j + 1; else A(k) = i 50

51 k = k + 1; Lengdene : 10 og Kandidatene 1 til 10 har fått følge poengsum på eksamen: 51, 42, 70, 99, 65, 12, 78, 67, 33 og 90. Kandidatene står hvis de har minst 44 poeng. Lag et program som skriver ut, med en linje per kandidat, kandidatnummer og om han har stått eksamen eller ikke. png=[ ]; %poeng per kandidat grense=44; n=length(png); for i=1:n if png(i)<grense disp(sprintf( Kandidat %i har ikke bestått,i)) else disp(sprintf( Kandidat %i har bestått,i)) 85. Beregn snødybde ut fra følge meteorologiske data. Temperatur per dag i Celsius ( ) Nedbør per dag i millimeter ( ) Anta at det ikke var snø da målingene startet og at nedbør kommer som snø når det er temperatur mindre eller lik 1 C (1 mm nedbør gir omtrent 1 cm snø). Anta videre at ingen snø smelter. Lag et søylediagram over snødybde som funksjon av tid. : temp=[ ]; ned=[ ]; snotot=0; for i=1:length(temp); if (temp(i)<=1); 51

GEO1040: Grunnkurs i programmering for geofaglige problemstillinger

GEO1040: Grunnkurs i programmering for geofaglige problemstillinger UNIVERSITETET I OSLO Institutt for geofag GEO1040: Grunnkurs i programmering for geofaglige problemstillinger Valérie Maupin Gunnar Wollan Thomas Vikhamar Schuler Ada Gjermundsen Henrik Grythe Øyvind Ryan

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

Kapittel 4. 4. og 5. september 2012. Institutt for geofag Universitetet i Oslo. GEO1040 - En Introduksjon til MatLab. Kapittel 4.

Kapittel 4. 4. og 5. september 2012. Institutt for geofag Universitetet i Oslo. GEO1040 - En Introduksjon til MatLab. Kapittel 4. r r Institutt for geofag Universitetet i Oslo 4. og 5. september 2012 r r Ofte ønsker vi å utføre samme kommando flere ganger etter hverandre gjør det mulig å repetere en programsekvens veldig mange ganger

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS

if-tester Funksjoner, løkker og iftester Løkker og Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS Løkker og if-tester Gløer Olav Langslet Sandvika VGS 29.08.2011 Informasjonsteknologi 2 Funksjoner, løkker og iftester Læreplansmål Eleven skal kunne programmere med enkle og indekserte variabler eller

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Eksamen. Fag: AA6524 Matematikk 3MX. Eksamensdato: 4. juni 2007. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524 Matematikk 3MX. Eksamensdato: 4. juni 2007. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA6524 Matematikk 3MX Eksamensdato: 4. juni 2007 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Oppgåva ligg føre på begge

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Fysikkonkurranse 1. runde 6. - 17. november 2000

Fysikkonkurranse 1. runde 6. - 17. november 2000 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 )

FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) FYS-MEK 1110 OBLIGATORISK INNLEVERING 1 ROBERT JACOBSEN ( GRUPPE 1 ) Hvorfor holder enkelte dropper seg oppe? Ved å benytte beregning.m på små dråpestørrelser, kan man legge til merke at for at en dråpe

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

Mattespill Nybegynner Python PDF

Mattespill Nybegynner Python PDF Mattespill Nybegynner Python PDF Introduksjon I denne leksjonen vil vi se litt nærmere på hvordan Python jobber med tall, og vi vil lage et enkelt mattespill. Vi vil også se hvordan vi kan gjøre ting tilfeldige.

Detaljer

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv

Bygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som

Detaljer

Innføring i MATLAB - The language of Technical Computing

Innføring i MATLAB - The language of Technical Computing Innføring i MATLAB - The language of Technical Computing Hvordan bruke MATLAB til å analysere eksperimentelle data. TFY4145 Mekanisk fysikk Utstyr: Datarom med PC for studenter. Datamaskin med projektor

Detaljer

4 Funksjoner og andregradsuttrykk

4 Funksjoner og andregradsuttrykk 4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1

Detaljer

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012 INF1000 - Uke 10 Ukesoppgaver 10 24. oktober 2012 Vanlige ukesoppgaver De første 4 oppgavene (Oppgave 1-4) handler om HashMap og bør absolutt gjøres før du starter på Oblig 4. Deretter er det en del repetisjonsoppgaver

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre

Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre Repetisjon, del 2 TDT 4110 IT Grunnkurs Professor Guttorm Sindre Premieutdeling Kahoot Vinnere av enkeltrunder: Datamaskinens historie: mr.oyster (7311) Variable, aritmetiske op., etc.: Sha-ra (6155) if-setn.,

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59

Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Formål Formålet med denne oppgaven er å gi trening i hele pensum og i å lage et større program. Løsningen du lager skal være

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)

Detaljer

Oppgaver i matematikk 19-åringer, spesialistene

Oppgaver i matematikk 19-åringer, spesialistene Oppgaver i matematikk 19-åringer, spesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I matematikk ble det laget to oppgavetyper: en for elever

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Disclaimer Funksjoner Matriser Matriseoperasjoner

Detaljer

MATLAB for MAT 1110. Klara Hveberg og Tom Lindstrøm

MATLAB for MAT 1110. Klara Hveberg og Tom Lindstrøm MATLAB for MAT 1110 av Klara Hveberg og Tom Lindstrøm Dette lille notatet gir en kort innføring i MATLAB med tanke på behovene i MAT 1110. Hensikten er å gi deg litt starthjelp slik at du kommer i gang

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

2) Finn koordinatane til eventuelle topp- og botnpunkt på grafen til f ved rekning.

2) Finn koordinatane til eventuelle topp- og botnpunkt på grafen til f ved rekning. OPPGÅVE a) Deriver funksjonen f( ) = tan 2 ( ) b) Bestem integralet 4 lnd c) Bestem integralet + 2 d d) Gitt funksjonen f ( ) = cos 5 0, 2π ) Finn f ( ) 2) Finn koordinatane til eventuelle topp- og botnpunkt

Detaljer

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014 ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Plenum Kalkulus. Fredrik Meyer. 23. oktober 2015

Plenum Kalkulus. Fredrik Meyer. 23. oktober 2015 Plenum Kalkulus Fredrik Meyer. oktober 05 7. Oppgave (7.). Du skal lage en rektangulær innehengning til hesten din. Den ene siden dekkes av låven og på de tre andre sidene skal du bygge gjerde. Hva er

Detaljer

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 27.01.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Skript Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Skript I denne øvinga skal vi lære oss mer om skript. Et skript kan vi se på som et lite program altså en sekvens av kommandoer. Til sist skal vi se

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

MATLAB for MAT 1110. (revidert versjon våren 2008) Klara Hveberg og Tom Lindstrøm

MATLAB for MAT 1110. (revidert versjon våren 2008) Klara Hveberg og Tom Lindstrøm MATLAB for MAT 1110 (revidert versjon våren 2008) av Klara Hveberg og Tom Lindstrøm Dette lille notatet gir en kort innføring i MATLAB med tanke på behovene i MAT 1110. Hensikten er å gi deg litt starthjelp

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

Sprettball Erfaren ComputerCraft PDF

Sprettball Erfaren ComputerCraft PDF Sprettball Erfaren ComputerCraft PDF Introduksjon Nå skal vi lære hvordan vi kan koble en skjerm til datamaskinen. Med en ekstra skjerm kan vi bruke datamaskinen til å kommunisere med verden rundt oss.

Detaljer

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg

Detaljer

104 m 16 m du spissen 6 m/s

104 m 16 m du spissen 6 m/s Lørdasverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veilednin: 8. september kl 12:15 15:00. Løsninsforsla til øvin 1: Beveelse. Vektorer. Enheter. Oppave 1 a) Strekninen er s = 800 m o tiden

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato: 15. mai 2003 Varighet: Fagnummer: Fagnavn: Klasse(r): 3 timer LO116D Programmering i Visual Basic FU Studiepoeng:

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Funksjoner og plotting I denne øvinga skal vi først og fremst lære oss å lage plott i MATLAB. Ellers minner vi om at der er mange MATLAB-ressurser tilgjengelig.

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Løsningsforslag Eksamen 3MX - AA6524-04.06.2007. eksamensoppgaver.org

Løsningsforslag Eksamen 3MX - AA6524-04.06.2007. eksamensoppgaver.org Løsningsforslag Eksamen 3MX - AA65 -.6.7 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

EKSAMEN Styring av romfartøy Fagkode: STE 6122

EKSAMEN Styring av romfartøy Fagkode: STE 6122 Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette :

START MED MATLAB. Når du starter Matlab, kommer du inn i kommandovinduet. Dersom du har versjon 6.1, ser du dette : 1 START MED MATLAB Disse sidene er hovedsakelig ment for dem som ikke har brukt Matlab eller som trenger en oppfriskning. Start fra toppen og gå systematisk nedover. I tillegg brukes Matlablefsa. Noe av

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

Løsningsforslag til Eksamen 2P vår 2010 14 1 0,86 100

Løsningsforslag til Eksamen 2P vår 2010 14 1 0,86 100 Delprøve 1 OPPGAVE 1 a) 41,5 liter avrundet til 40 liter. 509,6 kroner avrundet til 500 kroner. 500 50 5 1,5 40 4 Ved å gjøre overslag ser vi at Liv må ha bensinbil. b) 4 3 3 3 1 16 5 4 3 5 16 1 5 5 3

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 21.10.2005, kl: 09:00-12:00

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, så regner symbolsk. Det vil si at

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

EKSAMEN ITF10208. Webprogrammering 1 Dato: Eksamenstid: Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne)

EKSAMEN ITF10208. Webprogrammering 1 Dato: Eksamenstid: Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne) EKSAMEN Emnekode: Emne: ITF10208 Webprogrammering 1 Dato: Eksamenstid: 01/06-2011 09.00-13.00 Hjelpemidler: 2 A4 ark (4 sider) med egenproduserte notater (håndskrevne/maskinskrevne) Faglærer: Tom Heine

Detaljer

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag.

RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. NITH 11. oktober 013 Oppgave 1 Skissér kraftutvekslingen i følgende situasjoner: En mann som dytter en bil: (b) En traktor som trekker en kjerre

Detaljer

Lokalt gitt eksamen 2013. Praktiske opplysninger til rektor

Lokalt gitt eksamen 2013. Praktiske opplysninger til rektor Lokalt gitt eksamen 2013 Praktiske opplysninger til rektor Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: 15.1.2014 Antall forberedelsesdager: Ingen Forhold som skolen må være oppmerksom

Detaljer

Eksamen 02.05.2008. VG1340 Matematikk 1MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen 02.05.2008. VG1340 Matematikk 1MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 02.05.2008 VG1340 Matematikk 1MX Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar

Detaljer

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000 GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014 Norsk informatikkolympiade 014 015 1. runde Sponset av Uke 46, 014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Løsningsforslag til eksamen i MAT111 Vår 2013

Løsningsforslag til eksamen i MAT111 Vår 2013 BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer