En matematisk modell for energiomsetningen i et. kajakkløp. Arne B. Sletsjøe. Problemstilling. Global modell. Lokal modell.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "En matematisk modell for energiomsetningen i et. kajakkløp. Arne B. Sletsjøe. Problemstilling. Global modell. Lokal modell."

Transkript

1 En pa celleniva

2 på En i et Matematisk institutt, UiO Åpen Dag, 5. mars 2009

3 1 på

4 på 1 2

5 på på

6 på på 4

7 på Under OL i Athen i 2000 vant Knut Holmann både 500m og 1000m. På 1000m var han favoritt, mens 500m-gullet kom som en overraskelse. Det blåste kraftig motvind under 500m-finalen. Er det mulig at motvinden var utsalgsgivende for at en ekspert på den dobbelte distansen kunne vinne over de typiske 500m-spesialistene?

8 på Vi antar at vi padler et mellomdistanseløp av varighet 1,30-4,00 minutter med konstant hastighet. A(t): Øyeblikkelig energiomsetning (effekt) y(t): Aerob del av λ(t) = A(t) y(t): Anaerob del av M: maximal aerob kapasitet, målt i effekt, y M. L(t) = t 0 λ(τ) dτ (Anaerob del = oksygenunderskudd)

9 på Input i modellen er effekten A(t), bestemt av utøveren, og utgangspunktet y(0) = y 0. Fordelingen mellom aerob (y) og anaerob (λ) energiomsetning er kontrollert av likningen dy dt = f (A, y, L) hvor funksjonen f har egenskapene i) For y < A; f > 0 og f y < 0. ii) f A 0. iii) f L 0 når L > L 0.

10 Løsningskurve på 100 Effekt Anaerob energiomsetning y(t) Aerob energiomsetning Tid: t Illustrasjon av en typisk løsningskurve for modellen, her med konstant A.

11 54 53, , , , , Sprintertype Langdistansetype En på Øvre skranke for A Øvre skranke for A er en avtagende funksjon av akkumulert anaerob energiomsetning L, dvs. jo stivere man blir, jo mindre kraft kan man produsere. En spurt vil derfor normalt gå langsommere og langsommere dersom man yter det maksimale av hva man kan. Effekt Laktat Illustrasjonen viser to kurver som gir øvre skranke for A som en funksjon av akkumulert laktat L. Den blå svarer til en sprintertype, mens den røde skal illustrere en langdistansetype.

12 på på Energiomsetning i en enkeltcelle: α = α(t) Summeres opp: α(t) = A(t) alle celler Variasjoner i laktatkonsentrasjonen i) Laktatkonsentrasjonen i blodet er konstant lik B gjennom ett tak (kort tidsrom) ii) Laktatkonsentrasjonen i cella er gitt ved β(t) og laktatproduksjonen er proporsjonal med α i cella, kα(t), for en konstant K. iii) Diffusjonen av laktat over i blodbanen er proporsjonal med differansen mellom konsentrasjonen i celle og i blod, c(β B), for en konstant c.

13 på Dette gir oss likning som har løsning dβ dt = kα c(β B) β = (B + α c k) (B + α c k β 0)e ct

14 på Vi antar at padletaket er stykkvis lineært. T er tiden mellom to tak på samme side, mens τ er den tiden som padleren legger kraft i taket, normalt mellom 25 og 30% av T. { Kα 0 t τ F = 0 τ < t T der K er en konstant. Anta at motstanden er gitt ved R er konstant gjennom taket. Det gir endring i hastighet V = c((kα R)τ R(T τ)) = c(kατ RT ) Betingelesen for konstant hastighet blir da R Kα = τ T

15 på Løsning for ett padletak Kombinerer vi dette med løsningen av likningen, får vi ved skillene t = τ og ved t = T og β τ = (B + α c k) (B + α c k β 0)e cτ Dette gir tilvekst i laktat c(t τ) β T = B (B β τ )e β = β T β 0 = e ct ( α c k(ecτ 1) (β 0 B)(e ct 1)) Hvis vi krever konstant hastighet, får vi β = e ct ( α c k(e crt Kα 1) (β0 B)(e ct 1))

16 på Diskusjon Størrelsen β forteller hvor mye mer laktat det er i muskelen etter at taket er gjennomført. Fortrinnsvis bør denne være så liten som mulig. Vi har i) e ct avtar med økende T, dvs. lav frekvens. ii) α crt c k(e Kα 1) avtar med økende α, dvs. større kraft. iii) Siden β > B så vil (β 0 B)(e ct 1) avta med økende T. For å bli minst mulig stiv i musklene skal man altså padle med lav frekvens og stor kraft i hvert tak.

17 på I motvind eller slak oppoverbakke vil R øke, dvs. større motstand. Det betyr at forholdet τ T øker, dvs. mindre opphold mellom hvert tak, som igjen betyr mindre kraft, men jevnere kraft. Når det totale laktatnivået i kroppen øker mot slutten av et løp vil motvindsforhold favorisere utøvere som har mindre fart og som tar ut stoørre del av sitt energibehov ved aerob energiomsetning. I medvind eller slakt nedover blr forholdet motsatt.

Løsningsforslag øving 4

Løsningsforslag øving 4 TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H16 UKE 45 Avsn. 6.1: 19, 31 Avsn. 7.9: 9, 17, 22 På settet: S.1, S.2 Oppgaver til seminaret 11/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 6.1 4, 5, 29

Detaljer

Arbeidsøkonomi: Arbeidsøkonomi er et mål på hvor mye energi en utøver forbruker på en gitt intensitet eller tilbakelagt distanse (teknikk)

Arbeidsøkonomi: Arbeidsøkonomi er et mål på hvor mye energi en utøver forbruker på en gitt intensitet eller tilbakelagt distanse (teknikk) PRESTASJONSUTVIKLING BEGREPSAVKLARING Aerob kapasitet: Aerob kapasitet representerer den totale aerobe energiomsetningen (oksygenopptaket) under en aktivitet og i løpet av en definert tidsperiode (VO 2

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Fysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk

Fysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk Åpen Sone for Eksperimentell Informatikk 9. mars 2012 Vektorer: posisjon og hastighet Posisjon og hastighet er gitt ved ( ) x r = y Ved konstant hastighet har vi som gir likningene v= r = r 0 + v t x =

Detaljer

Intensitetssoner ka e vitsen? Foredrag på «1. Wisnes-seminar» 22. November 2017 av Ørjan Madsen

Intensitetssoner ka e vitsen? Foredrag på «1. Wisnes-seminar» 22. November 2017 av Ørjan Madsen Intensitetssoner ka e vitsen? Foredrag på «1. Wisnes-seminar» 22. November 2017 av Ørjan Madsen Innhold Alex og meg et kort tilbakeblikk Historikk utviklingen av intensitetssoner - intensitetsskala Intensitetssoner,

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

IDR108 1 Treningslære og fysiologi

IDR108 1 Treningslære og fysiologi IDR108 1 Treningslære og fysiologi Oppgaver Oppgavetype Vurdering 1 Oppgave 1 Skriveoppgave Manuell poengsum 2 Oppgave 2 Skriveoppgave Manuell poengsum 3 Oppgave 3 Skriveoppgave Manuell poengsum 4 Oppgave

Detaljer

Norges Skøyteforbund. Utholdenhet/intensitetssoner

Norges Skøyteforbund. Utholdenhet/intensitetssoner Norges Skøyteforbund Utholdenhet/intensitetssoner Begrepsavklaring Aerob kapasitet: - Aerob kapasitet representerer den totale aerobe energiomsetningen (oksygenopptaket) under en aktivitet og i løpet av

Detaljer

Nei, jeg bare tuller.

Nei, jeg bare tuller. Eksempel En medisin skilles ut fra kroppen med en hastighet proporsjonal med mengden i kroppen. Halveringstiden er timer. Anta at en dose injiseres i en pasient hver sjette time fra et visst tidspunkt.

Detaljer

INTENSITETSSONER. Olympiatoppen anbefaler at treningen deles inn i åtte intensitetssoner Inndelingen i de åtte intensitetssonene er gjort ut fra:

INTENSITETSSONER. Olympiatoppen anbefaler at treningen deles inn i åtte intensitetssoner Inndelingen i de åtte intensitetssonene er gjort ut fra: INTENSITETSSONER Olympiatoppen anbefaler at treningen deles inn i åtte intensitetssoner Inndelingen i de åtte intensitetssonene er gjort ut fra: hensikten med treningen i hver intensitetssone hvordan ATP

Detaljer

Leif Inge Tjelta: Utholdenhet og. utholdenhetstrening

Leif Inge Tjelta: Utholdenhet og. utholdenhetstrening Leif Inge Tjelta: Utholdenhet og utholdenhetstrening Utholdenhet (definisjon) Evne til å motstå tretthet Å opprettholde en gitt intensitet (styrkeinnsats, fart, etc) begrenses av graden av tretthet og

Detaljer

BINGO - Kapittel 5. Celle som sender signaler mellom hjernen og andre kroppsceller (nerveceller, fig. side 77)

BINGO - Kapittel 5. Celle som sender signaler mellom hjernen og andre kroppsceller (nerveceller, fig. side 77) BINGO - Kapittel Bingo-oppgaven anbefales som repetisjon etter at kapittel er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke vannrett,

Detaljer

Norges Skøyteforbund Generell treningslære

Norges Skøyteforbund Generell treningslære Norges Skøyteforbund Generell treningslære Trener I Basis egenskaper skøyter Utholdenhet Styrke Hurtighet (fart) Fleksibilitet Koordinasjon (TEKNIKK) TRENINGSFORMER 1. Generell trening: Trener hele kroppen

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser

Detaljer

Kapittel 8. Varmestråling

Kapittel 8. Varmestråling Kapittel 8 Varmestråling I dette kapitlet vil det bli beskrevet hvordan energi transporteres fra et objekt til et annet via varmestråling. I figur 8.1 er det vist hvordan varmestråling fra en brann kan

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Poissonprosesser og levetidsfordelinger

Poissonprosesser og levetidsfordelinger Poissonprosesser og levetidsfordelinger Poissonfordeling som grensetilfelle for binomisk fordeling La X være binomisk fordelt med fordeling P (X = x) = ( ) n p x (1 p) n x, for x = 0, 1,... n. (1) x Forventningsverdien

Detaljer

Fysikk-OL Norsk finale 2006

Fysikk-OL Norsk finale 2006 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 6 3. uttakingsrunde Fredag 7. april kl 9. til. Hjelpemidler: Tabell/formelsamling og lommeregner Oppgavesettet består av 6 oppgaver

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Partieltderiverte og gradient

Partieltderiverte og gradient Partieltderiverte og gradient Kap 2 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Struktur Mye er repitisjon fra MAT1100, litt

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 2

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 2 ECON360 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning Diderik Lund Økonomisk institutt Universitetet i Oslo 30. august 0 Diderik Lund, Økonomisk inst., UiO () ECON360 Forelesning 30. august

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 2011 Løysingsforslag Øving 2 Oppgåver frå læreboka, s. xliv-xlv 9 Me finn først fjørkonstanten k. Når

Detaljer

Oppgavesett 6. FYS 1010 Miljøfysikk. Oppgave 1

Oppgavesett 6. FYS 1010 Miljøfysikk. Oppgave 1 FYS 1010 Miljøfysikk Oppgavesett 6 Oppgave 1 a) Massen til 1 mol Po-210 er 210 g. Antall atomer i 1 mol er N A = 6.023 10 23. Antall atomer: N = N A (5 10-6 g) / (210 g/mol) = 1.43 10 16 1.4 10 16 Den

Detaljer

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 14/16 Utsatt individuell skriftlig eksamen i IBI 4- Basal biomekanikk Torsdag 6. februar 15 kl. 1.-13. Hjelpemidler: kalkulator formelsamling

Detaljer

Kapittel 8. Inntekter og kostnader. Løsninger

Kapittel 8. Inntekter og kostnader. Løsninger Kapittel 8 Inntekter og kostnader Løsninger Oppgave 8.1 (a) Endring i bedriftens inntekt ved en liten (marginal) endring i produsert og solgt mengde. En marginal endring følger av at begrepet defineres

Detaljer

3. Ved hvor mange repetisjoner i styrketrening opphører forbedring av styrke (1RM)? a) ca 15 b) ca 40 c) ca 6 d) ca 100

3. Ved hvor mange repetisjoner i styrketrening opphører forbedring av styrke (1RM)? a) ca 15 b) ca 40 c) ca 6 d) ca 100 1. Newton s 2.lov Kraft = masse x akselerasjon tilsier at hvis en idrettsutøver øker styrken/kraftutviklingen sin med 30% uten å øke kroppsvekten, hvor mye fortere løper han en 10m sprint? a) 10% b) 30%

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett

Detaljer

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag: Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n

Detaljer

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK34 VIDEREGÅENDE MATEMATISK ANALYSE Faglig kontakt under eksamen: Arnt Ove Hopland Tlf.: 9 9 35 Eksamensdato:

Detaljer

TMA4100 Matematikk 1 Høst 2012

TMA4100 Matematikk 1 Høst 2012 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE-A 3H HiST-AFT-EDT Øving 7; løysing Oppgave Kretsen viser en reléspole med induktans L = mh. Total resistans i kretsen er R = Ω. For å unngå at det dannes gnister når bryteren åpnes,

Detaljer

EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur:

EKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (9264) EKSAMEN I NUMERISK MATEMATIKK(TMA425) Lørdag 2. desember

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

NKF Trener II Sportsklatring

NKF Trener II Sportsklatring NKF Trener II Sportsklatring Utholdenhet & Klatring Anders Kindlihagen Innhold Grunnleggende treningsprinsipper Hva er utholdenhet? Arbeidsspesifikasjon Fysiologiske prosesser Klatrespesifikke forhold

Detaljer

Et godt resultat. er konsekvensen av. En god prestasjon. er konsekvensen av. med. Foredrag sykkeltrening av Atle Kvålsvoll.

Et godt resultat. er konsekvensen av. En god prestasjon. er konsekvensen av. med. Foredrag sykkeltrening av Atle Kvålsvoll. Et godt resultat er konsekvensen av En god prestasjon er konsekvensen av Riktig aktivitet med Riktig kvalitet OLT s tilnærming til prestasjonsforbedring -på individnivå- Sette mål Tydeliggjøre krav Evaluere

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

Individuell skriftlig eksamen. IBI 315- Fysiologisk adaptasjon til trening. Mandag 26. mai 2014 kl. 10.00-14.00. Hjelpemidler: kalkulator

Individuell skriftlig eksamen. IBI 315- Fysiologisk adaptasjon til trening. Mandag 26. mai 2014 kl. 10.00-14.00. Hjelpemidler: kalkulator BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2013/2015 Individuell skriftlig eksamen IBI 315- Fysiologisk adaptasjon til trening i Mandag 26. mai 2014 kl. 10.00-14.00 Hjelpemidler: kalkulator

Detaljer

Fasit MFEL1050 høst 2010

Fasit MFEL1050 høst 2010 1. 1-MET økning i ytelse på tredemølle er assosiert med følgende forbedring i overlevelse: a. 3 % b. 12 % c. 24 % d. 48 % 2. En økning i MET er assosiert med: a. Redusert risiko for kreft, KOLS og hjerte

Detaljer

Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll

Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll Sammendrag: TØI-rapport 701/2004 Forfatter(e): Per G Karlsen Oslo 2004, 52 sider Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll Med hensyn på trafikksikkerhet er det viktig at kjøretøy

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 05 06 Andre runde:. februar 06 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag: Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske

Detaljer

Differensialligninger

Differensialligninger Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

TIØ 4258 TEKNOLOGILEDELSE EINAR BELSOM 2013

TIØ 4258 TEKNOLOGILEDELSE EINAR BELSOM 2013 TIØ 4258 TENOOGIEDESE EINAR BESOM 2013 OSTNADSFUNSJONEN Dette notatet som ikke er pensum i seg selv, men som formidler en del av pensum på en annen måte enn boken tar sikte på å gi interesserte studenter

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

NIAK: Laktat, løpskapasitet og løpsteknikk. Av: Espen Tønnessen, Fagsjef utholdenhet

NIAK: Laktat, løpskapasitet og løpsteknikk. Av: Espen Tønnessen, Fagsjef utholdenhet NIAK: Laktat, løpskapasitet og løpsteknikk Av: Espen Tønnessen, Fagsjef utholdenhet Dagens foredrag 1. Laktattesting 2. Hvordan trene og utvikle løpskapasiteten 3. Løpsteknikk Hvorfor trene og utvikle

Detaljer

Løsningsforslag Obligatorisk oppgave 1 i FO340E

Løsningsforslag Obligatorisk oppgave 1 i FO340E Løsningsforslag Obligatorisk oppgave i FO340E 0. februar 2009 Det er nt om dere har laget gurer hvor kreftene er tegnet inn, selv om det er utelatt i dette notatet av praktiske årsaker. En oppgave kan

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Vår 2013.

EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Vår 2013. EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Vår 2013. Hver oppgave gir ett poeng, og har kun ett riktig svar. Det gis ikke trekk for feil svar. Oppgavearket

Detaljer

Eksamen MFEL1050 HØST 2012

Eksamen MFEL1050 HØST 2012 Eksamen MFEL1050 HØST 2012 1. Hva er hypertrofi? a) Flere aktin og troponin proteintråder i parallell b) Flere aktin og myosin proteintråder i parallell c) Flere transkripsjoner av proteinene myoglobin

Detaljer

Trening av elite- og seniorsvømmere. Litt av hvert

Trening av elite- og seniorsvømmere. Litt av hvert Trening av elite- og seniorsvømmere Litt av hvert litt fra world clinic Europeere; åpne, systematiske, kunnskapsbaserte Amerikanere; karismatiske, gode coacher?, tut og kjør, holder kortene til brystet

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

Dyreceller. - oppbygning. - celleånding

Dyreceller. - oppbygning. - celleånding Dyreceller - oppbygning - celleånding Du skal kunne Beskrive og tegne hvordan dyreceller er bygd opp og hvordan de fungerer. Skille mellom de tre ulike typene av celler, og gi eksempler på forskjeller

Detaljer

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. IBI 315- Fysiologisk adaptasjon til trening. Mandag 25. februar 2013 kl

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. IBI 315- Fysiologisk adaptasjon til trening. Mandag 25. februar 2013 kl STUDIEÅRET 2012/2013 Utsatt individuell skriftlig eksamen IBI 315- Fysiologisk adaptasjon til trening i Mandag 25. februar 2013 kl. 10.00-14.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 5 sider

Detaljer

EKSAMEN MFEL Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Høst 2008.

EKSAMEN MFEL Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Høst 2008. EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Høst 2008. Hver oppgave gir ett poeng, og har kun ett riktig svar. Det gis ikke trekk for feil svar. Sett

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

OPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11

OPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11 OPPGAVESETT MAT111-H16 UKE 47 Avsn. 7.1: 1, 11 På settet: S.1, S.2, S.3, S.4 Oppgaver til seminaret 25/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn.

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

MAT jan jan jan MAT Våren 2010

MAT jan jan jan MAT Våren 2010 MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive

Detaljer

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Fasiter til diverse regneoppgaver:

Fasiter til diverse regneoppgaver: Fasiter til diverse regneoppgaver: Ukeoppgavesett 5 Forelesning 9 Ukeoppgavesett 8 Co-59+n Co-60 Halveringstida til Co-60 er 5,3 år Det bestråles med nøytroner til Co-60 aktiviteten er 1 Ci. Hvor mange

Detaljer

Kondensator. Symbol. Lindem 22. jan. 2012

Kondensator. Symbol. Lindem 22. jan. 2012 UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator

Detaljer

Forelesningsnotater ECON 2910 VEKST OG UTVIKLING, HØST Naturressurser og økonomisk vekst

Forelesningsnotater ECON 2910 VEKST OG UTVIKLING, HØST Naturressurser og økonomisk vekst 7. oktober 2004 Forelesningsnotater ECON 2910 VEKST OG UTVIKLING, HØST 2004 8. Naturressurser og økonomisk vekst I Solow-modellen (uten teknisk fremgang i første omgang) var produksjonen antatt å avhenge

Detaljer

EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Vår 2009.

EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Vår 2009. EKSAMEN MFEL 1050. Innføring i idrettsfysiologi - Trening for prestasjon, helse og livskvalitet. Vår 2009. Hver oppgave gir ett poeng, og har kun ett riktig svar. Det gis ikke trekk for feil svar. Sett

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Fredag 26. mai 2006

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØONOMI, FINANS OG REGNSAP EINAR BESOM HØST 2017 FOREESNINGSNOTAT 5 Produksjonsteknologi og kostnader* Dette notatet tar sikte på å gi innsikt om hva som ligger bak kostnadsbegrepet i mikroøkonomi

Detaljer

BIL-HIFI TRIMMING 4 X 4 BÅTANVENDELSER

BIL-HIFI TRIMMING 4 X 4 BÅTANVENDELSER BIL-HIFI TRIMMING 4 X 4 BÅTANVENDELSER OPTIMA YELLOWTOP DYPSYKLUSBATTERI FOR EKSTREME ANVENDELSER LAV INTERN MOTSTAND SØRGER FOR BEDRE LYDKVALITET INGEN GASSUTSLIPP ELLER VOND LUKT, 100 % LEKKASJESIKKERT

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

BASISÅR I IDRETTSVITENSKAP 2011/2012. Individuell skriftlig eksamen. i IDR 120- Naturvitenskapelige perspektiver på idrett 1 - treningslære 1

BASISÅR I IDRETTSVITENSKAP 2011/2012. Individuell skriftlig eksamen. i IDR 120- Naturvitenskapelige perspektiver på idrett 1 - treningslære 1 BASISÅR I IDRETTSVITENSKAP 2011/2012 Individuell skriftlig eksamen i IDR 120- Naturvitenskapelige perspektiver på idrett 1 - treningslære 1 Mandag 12. desember 2011 kl. 10.00-13.00 Hjelpemidler: ingen

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155

Detaljer

- kunne gjennomføre og forklare prinsippene for hensiktsmessig oppvarming

- kunne gjennomføre og forklare prinsippene for hensiktsmessig oppvarming Gym Teori GK Webmaster ( 09.12.03 09:11 ) Målform: Bokmål Karakter: Ingen karakter men fikk kommentaren meget bra Videregående --> Gymnastikk Teori om Oppvarming, Utholdenhet, Svømming og Basket Oppvarming:

Detaljer

Samarbeidsprosjektet treningskontakt

Samarbeidsprosjektet treningskontakt Samarbeidsprosjektet treningskontakt - en videreutvikling av støttekontaktordningen Utholdenhetstrening Lisa Marie Jacobsen Fysioterapeut Mål for undervisningen Få et innblikk i hva utholdenhetstrening

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag

Detaljer

Trener 1 kurs 2. Utgave 13. januar 2014

Trener 1 kurs 2. Utgave 13. januar 2014 Trener 1 kurs 2. Utgave 13. januar 2014 1) Skjelettet - 2) Nervesystemet - 3) Det kardiovaskulære systemet (Hjerte og blodårer) 4-5) Ulike organsystemer: fordøyelse og åndedrett 6) Muskler og ligamenter

Detaljer

Optimalisering av utholdenhetstrening!

Optimalisering av utholdenhetstrening! .9. Optimalisering av utholdenhetstrening! Agenda Intensitetsstyring Hvordan trener de beste? Hva kan du lære av de beste? Formtopping Av Øystein Sylta oysteinsylta@hotmail.com CV Øystein Sylta Utdanning:

Detaljer

Høgskolen i Sør-Trøndelag

Høgskolen i Sør-Trøndelag 1 Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Individuell skriftlig eksamen i MATEMATISK MODELLERING, LTMAGMA111 111-B 10 studiepoeng ORDINÆR EKSAMEN 9.05.09. Sensur faller innen.06.09.

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Lørdag 4. juni 2005

Detaljer

Individuell skriftlig eksamen. IBI 240- Basal biomekanikk. Tirsdag 16. desember 2014 kl

Individuell skriftlig eksamen. IBI 240- Basal biomekanikk. Tirsdag 16. desember 2014 kl Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016 Individuell skriftlig eksamen i IBI 240- Basal biomekanikk Tirsdag 16. desember 2014 kl. 10.00-13.00 Hjelpemidler: kalkulator formelsamling

Detaljer

Normal- og eksponentialfordeling.

Normal- og eksponentialfordeling. Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt

Detaljer