Q-Q plott. Insitutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk. Kvantiler fra sannsynlighetsfordeling

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Q-Q plott. Insitutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk. Kvantiler fra sannsynlighetsfordeling"

Transkript

1 Q-Q plott Notat for TMA/TMA Statistikk Insitutt for ateatiske fag, NTNU. august En ønsker ofte å trekke slutninger o populasjonen til en stokastisk variabel basert på et forholdsvis lite antall observasjoner, so antas å være et tilfeldig utvalg. Spesielt er det interessant å vite hva slags sannsynlighetsfordeling variabelen følger. Det er da vanlig å plotte et histogra av observasjonene. Vi ser på observasjonene so realisasjoner fra sannsynlighetsfordelingen, og histograet gir dered et inntrykk av hvordan sannsynlighetstetthetsfunksjonen ser ut. En annen ulighet er å plotte observasjonene på en slik åte at an får et bilde av den kuulative fordelingsfunksjonen til utvalget. Dette kan oppnås ved å lage et kvantilplott. En annen vanlig problestilling er å kontrollere hvorvidt en variabel so antas å følge en gitt fordeling, faktisk gjør det. Man ønsker ed andre ord å sjekke hvor godt antakelsen steer. Man kan da bruke et Q-Q plott eller et P-P plott for å saenlikne observasjonene ed den antatte fordelingen. Kvantiler fra sannsynlighetsfordeling Betrakt den stokastiske variabelen X. Vi kaller k,q den kte q-kvantilen til X hvis P (X k,q ) = k/q. Alternativt: k,q = F X (k/q) hvor F X() er den kuulative fordelingsfunksjonen til X. Se gur. k/q.8.6 F(). F (k/q). k/q 3 Figur Plott av grafen til den kuulative fordelingsfunksjonen F () til kjikvadratfordelingen ed frihetsgrader. k/q og k/q er arkert for k = 9 og q =. Notatet er skrevet av Jacob Skauvold i saarbeid ed Arvid Næss og Ingelin Steinsland. Derso du nner feil eller har forslag til forbedringer, ta kontakt ed Ingelin Steinsland,

2 Eksepel: Gitt den trekantede sannsynlighetstetthetsfunksjonen {, < / f X () = ( ), / < <, nn den 9. persentilen, dvs. nn u (, ) slik at P (X u) = 9/ =.9. Løsning: Finner først den kuulative fordelingsfunksjonen ved integrasjon. {, < / F X () =, / < < Se gur for et plott av f X () og F X (). Ser at vi å ha / < u <. Bruker F X () for f X () F X () Figur Plott av f X () og F X () for. Laget ed trekantford.. å nne u. P (X u) =.9 F (u) =.9 u u =.9 Denne likningen har løsningene u =.89 og u =.8. Siden u (, ) ser vi bort fra denne løsningen, og konkluderer ed at den 9. persentilen er 9, =.89. Siden denne sannsynlighetsfordelingen har en spesielt enkel for, er det lett å kontrollere svaret ved å betrakte arealet under grafen. la A være arealet under grafen til f X () og til høyre for den vertikale linja = u, se g. 3. Da er A = ( u)f X(u) = ( u) ( u) = ( u). Hvis an så krever at arealet til venstre for = u skal være A =.9 får an ( u) = u = ± so gir de sae verdiene u og u so før. Kvantiler fra observasjoner Hvis et antall observasjoner av en stokastisk variabel X sorteres i stigende rekkefølge og deles opp i q like store bolker, så er den kte q-kvantilen til observasjonene den verdien av X so skiller bolk nr. k fra bolk nr. k +, der < k < q. Hvis q for eksepel er lik, deles observasjonene inn i to like store bolker, og den første (og eneste) -kvantilen er edianen til utvalget. Hvis q = får an re bolker adskilt av de tre kvartilene Q, Q og Q 3. erk at Q, den andre kvartilen, også er edianen.

3 Figur 3 Kvantil so vertikal skillelinje. Eksepel: Gitt følgende utvalg trukket tilfeldig fra den unifore fordelingen over heltallene til, nn alle tre kvartilene, og beregn kvartildieransen Q 3 Q so er et ål for spredningen i dataene. Løsning: I stigende rekkefølge er tallene Siden vi har et odde antall observasjoner, å vi bruke gjenosnittet av de to idterste observasjonene for å nne edianen. La de ti tallene i sortert rekkefølge være,,...,. Da er Q = + 6 = = = 7.. Q deler observasjonene inn i to bolker, hver bestående av fe observasjoner. Q og Q 3 vil være i idten av hver sin bolk, slik at Q = 3 = og Q 3 = 8 =. Kvartildieransen blir Q 3 Q = =. Kvantilplott Anta at den stokastiske variabelen X følger en fordeling f X () og at vi trekker et tilfeldig utvalg X, X,..., X n. Derso utvalget sorteres fra laveste til høyeste verdi, får en ordningsvariablene X (), X (),..., X (n). La µ () = E [ F X (X () ) ] hvor F X () er den kuulative fordelingsfunksjonen til populasjonen. Altså: µ () er den andelen av populasjonen so forventes å ligge under X (). Det er ulig å nne et uttrykk for µ () selv o f X () og F X () er ukjente. Fra denisjonen av forventningsverdi for kontinuerlige variable har en µ () = E [ F X (X () ) ] = F X ()f X() ()d. Tetthetsfunksjonen til ordningsvariabelen X () er ( ) n f X() = n F X () ( F ()) n f X () n! = ( )!(n )! F X() ( F ()) n f X (), 3

4 (se notat o ordningsvariabler) slik at en ved innsetting får n! µ () = F X () ( F ()) n f X ()d. ( )!(n )! Hvis en lar y = F X () så blir dy = df X() d d = f X ()d, og integralet kan skrives o til µ () = n! ( )!(n )! y ( y) n dy = n! B( +, n + ). ( )!(n )! Integrasjonsgrensene er endret siden F X () kun antar verdier på intervallet [, ] når gjennoløper R. B er betafunksjonen B(, y) = t ( t) y dt. Når og y er positive heltall, er B(, y) = ( )!(y )! (+y )!. Dered blir uttrykket for µ () n!!(n )! = ( )!(n )! (n + )! n +. ( ) Et plott av (), n+ for =,,..., n gir et bilde av kurven til F X (), og gir på den åten inforasjon o hva slags fordeling utvalget kan tenkes å koe fra. Eksepel: La n =. De sorte kryssene på g. har -koorinater () og y-koordinater.8 ( (),/) Φ().6.. Figur Kvantilplott av ot () for =,,...,. Laget ed cdfplott.. for =,,...,. Tallene,,..., n er trukket fra standard noralfordelingen. Den kuulative fordelingsfunksjonen, Φ() er plottet so en rød heltrukken linje for saenlikning. Kvantil-kvantilplott ønsker vi å undersøke hvorvidt utvalget følger en bestet fordeling f X () ed tilhørende kuulativ fordeling F X (), kan vi bruke et kvantil-kvantilplott, eller Q-Q plott. Vi gjør da det sae so over, en i stedet for n+ plotter vi nå FX ( n+ ) på y-aksen, dvs. inversfunksjonen til F X () evaluert i punktene n+, =,,..., n. Hvis utvalget koer fra en fordeling so er nær f X () vil plottet bli tilnæret lineært. Q-Q plott er derfor nyttig for å kontrollere antakelser o hvordan stokastiske variable er fordelt. Eksepel: Plottet i gur viser sae utvalg so tidligere, en y-koordinatene er nå Φ ( ) for =,,...,. Linja y = er plottet for saenlikning.

5 ( (),Φ (/)) Figur Q-Q plott av Φ ( ) ot () for =,,...,. Laget ed cdfplott.. Noralfordeling ed andre paraetre La X N(µ, ) og Z N(, ) være to noralfordelte stokastiske variable. Da har X µ og Z sae fordeling, og de kuulative fordelingsfunksjonene F X () og F Z (z) = Φ(z) til X og Z er relatert på følgende åte. ( X µ F X () = P (X ) = P µ ) ( = P Z µ ) ( ) µ = Φ Anta at F X () = Φ( µ ) = p. Da er FX (p) =, ens Φ (p) = µ. Det følger at F X (p) = µ + Φ (p). Når vi bruker plotteposisjonene p = n+ og plotter Φ (p ) ot () får vi, siden n+ F X( () ), Φ (p ) = F X (p ) µ () µ so er lineært i (). Hvis X, X,..., X n følger en annen noralfordeling enn N(, ) vil altså plottet fortsatt se lineært ut, en linja punktene ligger langs vil da ha et annet stigningstall og et annet konstantledd. Φ (p) kan altså brukes for å undersøke o et utvalg koer fra en noralfordelt populasjon uansett hvilke paraetre den åtte ha. Saenlikne to sett ed observasjoner Anta at vi har to sett ed observasjoner,,,..., n og y, y,..., y, og at vi ønsker å sjekke o det er rielig å anta at de koer fra sae fordeling. Vi kan da bruke et epirisk Q-Q plott, hvor kvantilene til det ene utvalget plottes ot kvantilene til det andre. Resultatet blir et plott so det i g. 6. Plottet tolkes på sae åte so når an saenlikner ed teoretiske kvantiler; jo er rettlinjet plottet ser ut, jo større likhet ello fordelingene. Eksepler på Q-Q plott En svært vanlig anvendelse av Q-Q plott er å kontrollere antakelser o noralitet, dvs. sjekke o data er noralfordelte. En plotter da kvantilene til dataene ot de teoretiske

6 6 Y Quantiles X Quantiles Figur 6 Epirisk Q-Q plott for to sett data fra t-fordelingen. kvantilene i standard noralfordelingen. Ekseplene nedenfor viser histogra og Q-Q plott av n = observasjoner fra ulike fordelinger. Et plott av tetthetsfunksjonen er tatt ed for saenlikning. Den generelle regelen er at kruning i Q-Q plottet tilsier avvik fra noralitet Figur 7 Standard noralfordeling, X N(, ) Figur 8 Noralfordeling, X N(, 3 ) 6

7 Figur 9 Γ-fordeling, X Gaa(, ) Figur χ -fordeling, X χ Figur Eksponentialfordeling, X ep(.6) 7

8 Figur t-fordeling, X t 8

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for ateatiske fag Øving nuer, blokk I Løsningsskisse Oppgave a X kan eksepelvis være resultatet av en flervalgsoppgave ed 0 sp og svaralternativ

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).

Detaljer

Binomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2

Binomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2 MAT0100V Sannsynlighetsregning og kobinatorikk Oppgaver o Binoisk og hypergeoetrisk fordeling Forventning varians og standardavvik Tilnæring av binoiske sannsynligheter Konfidensintervall Ørnulf Borgan

Detaljer

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.

Detaljer

Forslag til endringar

Forslag til endringar Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk Klassisering Notat for TMA4240/TMA4245 Statistikk Insitutt for matematiske fag, NTNU 21. august 2012 Innen maskinlæring studerer man algoritmer som tillater datamaskiner å utvikle atferd på grunnlag av

Detaljer

Notasjon. Løsninger. Problem. Kapittel 7

Notasjon. Løsninger. Problem. Kapittel 7 3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)

Detaljer

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) =

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) = TMA Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for ateatiske fag Løsigsforslag - Eksae deseber 9 Oppgave a Besteer k ved å kreve fxdx =, fxdx = De kuulative fordeligsfuksjoe Fx er gitt

Detaljer

Gråtone-transformasjoner Hovedsakelig fra kap i DIP

Gråtone-transformasjoner Hovedsakelig fra kap i DIP INF 31 3..9 - AS Gråtone-transforasjoner Hovedsakeli fra kap. 3.1-3. i DIP Historaer Lineære råtonetransforer Standardiserin av bilder ed lineær transfor Ikke-lineære, paraetriske transforer Hvordan endre

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Høgskolen i Gjøviks notatserie, 2001 nr 5

Høgskolen i Gjøviks notatserie, 2001 nr 5 Høgskolen i Gjøviks notatserie, 2001 nr 5 5 Java-applet s for faget Statistikk Tor Slind Avdeling for Teknologi Gjøvik 2001 ISSN 1501-3162 Sammendrag Dette notatet beskriver 5 JAVA-applets som demonstrerer

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b: OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet

Detaljer

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned

Detaljer

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem?

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem? Hva er størrelsen (n) av et proble? Algorite-Analyse Algoriter og Datastrukturer Antall linjer i et nettverk Antall tegn i en tekst Antall tall so skal sorteres Antall poster det skal søkes blant Antall

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Løsningsforslag Eksamen 3MX - AA

Løsningsforslag Eksamen 3MX - AA Løsningsforslag Eksamen 3MX - AA654-04.06.007 eksamensoppgaver.org September 0, 008 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Ett utvalg: estimere forventningsverdi og intervall [9.4] Student-t fordeling [8.6] Quiz fra SME og konfidensintervall Mette Langaas Institutt for matematiske fag, NTNU wiki.math.ntnu.no/emner/tma4240/2015h/start/

Detaljer

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

Eksamen vår 2009 Løsning Del 1

Eksamen vår 2009 Løsning Del 1 S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Fredag 13.10.2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2

Detaljer

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2 eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

ECON Statistikk 1 Forelesning 2: Innledning

ECON Statistikk 1 Forelesning 2: Innledning ECON2130 - Statistikk 1 Forelesning 2: Innledning Data, beskrivende statistikk, visualisering Jo Thori Lind j.t.lind@econ.uio.no 1. Beskrivende statistikk Typer variable Nominelle: Gjensidig utelukkende

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24

Detaljer

MA155 Statistikk TI-nspire cx Kalkulator Guide

MA155 Statistikk TI-nspire cx Kalkulator Guide MA155 Statistikk TI-nspire cx Kalkulator Guide Magnus T. Ekløff, Kristoffer S. Tronstad, Henrik G. Fauske, Omer A. Zec Våren 2016 1 Innhold 1 Basics... 4 2 1.1 Dokumenter... 4 1.1.1 Regneark... 4 1.1.2

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout

ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout Kjell Arne Brekke January 27, 20 Inledning Dette notatet er noen begreper og noen oppgaver som kan hjelpe deg til å forberede deg til forelesningen.

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Bruk av Matlab i statistikk

Bruk av Matlab i statistikk Bruk av Matlab i statistikk Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 Dette notatet er ment som en kort innføring i bruk av Matlab i forbindelse med introduksjonskurset

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

En innføring i MATLAB for STK1100

En innføring i MATLAB for STK1100 En innføring i MATLAB for STK1100 Matematisk institutt Universitetet i Oslo Februar 2017 1 Innledning Formålet med dette notatet er å gi en introduksjon til bruk av MATLAB. Notatet er først og fremst beregnet

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Breddegradene er linjene som gôr parallelt med ekvator. Lengdegradene er linjene som gôr fra pol til pol. Den vannrette aksen, ogsô kalt försteaksen

Breddegradene er linjene som gôr parallelt med ekvator. Lengdegradene er linjene som gôr fra pol til pol. Den vannrette aksen, ogsô kalt försteaksen Breddegrader Lengdegrader Koordinatsystem Breddegradene er linjene som gôr parallelt med ekvator. Lengdegradene er linjene som gôr fra pol til pol. Et koordinatsystem bestôr av to akser. Aksene er tallinjer

Detaljer

TMA4100 Matematikk 1 Høst 2012

TMA4100 Matematikk 1 Høst 2012 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,

Detaljer

ECON2130 Obligatorisk Oppgave

ECON2130 Obligatorisk Oppgave 201303 ECON2130 Obligatorisk Oppgave Oppgave 1 Vi lar være uavhengige og normalfordelte,, setter og ønsker å vise at og at den teoretiske korrelasjonskoeffisienten mellom og er. Vi betrakter her en standard

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer