Elastisitetsteori. Spesiell relativitetsteori

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Elastisitetsteori. Spesiell relativitetsteori"

Transkript

1 Elastisitetsteori Spesiell relativitetsteori FYS-MEK

2 man tir ons tor fre uke forelesning: spes. relativitet innlev. olig gruppe: spes. relativitet forelesning: spes. relativitet forelesning: repetisjon gruppe: spes. relativitet Himmelfart gruppe: spes. relativitet gruppe: repetisjon ingen forelesning gruppe: repetisjon gruppe: repetisjon ingen forelesning orakel FØ394 ingen forelesning orakel 1-14 FV39 ingen forelesning EKSMEN

3 Elastisitetsteori Hookes lov E Elastisitetsmodul E spenning F tøyning tverrkontraksjon y y y E Poissons tall skjærspenning: y F y G y G: skjærmodul for isotrope materialer: G E (1 ) FYS-MEK

4 Bøying av en jelke midtlinjen: den nøytrale linjen ovenfor komprimeres jelken nedenfor forlenges jelken forlengelsen l i avstand fra den nøytrale linjen: l ( R ) R l R l l R Hookes lov: ( ) E l l E R spenning i jelken FYS-MEK

5 FYS-MEK R E l l E ) ( en jelke med øyde og redde : totalkraft på tverrsnitt: / / ) ( ) ( d d F / / d R E nettokraft er null, men det virker et kraftmoment 0 R E

6 en jelke med øyde og redde : kraftmoment om O: i r F i i r df ( ) d R E d E R I I d flatetregetsmoment øyningen er gitt ved: 1 R I E τ: kraftmoment fra ytre krefter E: materialegenskap I : geometrisk jo større flatetregetsmoment, jo større motstand mot øyning ( ) E l l E R FYS-MEK

7 FYS-MEK Eksempel: flatetregetsmoment for en 4 cm trevirke: / / dy y d y I y F to orienteringer: F cm 3 8 cm 1 4 I cm 3 3 cm 1 4 I I

8 ttp://pingo.up.de/ access numer:718 Tre like lange jelker er laget av samme type stål og ar samme ytre dimensjoner og på tverrsnittet. Hvis alle jelkene utsettes for det samme kraftmomentet, vilken jelke vil øyes minst? 1. jelke. jelke B 3. jelke C 4. samme øying for alle tre Tverrsnitt av jelkene B C FYS-MEK

9 H H I B 1 BH 1 3 I B ( BH 1 ) B H 10 cm 9.4 cm 8 cm I 833 cm 100 cm 4 I 43 cm 4.8 cm 4 1 R I E FYS-MEK

10 Spesiell relativitetsteori Einsteins mirakelår 1905 an var 6 år gammel og joet som patenteandler ved det sveitsiske patentyrået i Bern i 1905 puliserte an fire artikler: forklaring av Brownske evegelser forklaring av den fotoelektriske effekten spesiell relativitetsteori forklarte forold mellom masse og energi lert Einstein ( ) FYS-MEK

11 Oppfatninger på denne tiden: ølger trenger et medium for å forplante seg verdensrommet må være fylt av eter slik at lysølger kan forplante seg konsekvens: jorden eveger seg relativ til eteren lysets astiget på jorden er avengig av retning relativ til eteren Micelson Morley eksperiment i 1887: prøvde å påvise effekten av jorden evegelse gjennom eteren men fant at lysastigeten er den samme uansett vilken retning den måles. nå kommer lert Einstein: Newtons lover er de samme i alle inertialsystemer Hvorfor krever elektromagnetisme (lysølger) et spesielt referansesystem tilknyttet ti eteren? FYS-MEK

12 Einsteins postulatene 1. Fysikkens lover er de samme i alle inertialsystemer.. Lysastigeten er den samme i alle inertialsystemer, og er uavengig av oservatørens evegelse. Newtonske mekanikk er ikke lenger gyldig får å eskrive vordan lys oppfører seg. FYS-MEK

13 Galileo transformasjon to koordinatsystemer: S (f.eks. jorden) S (f.eks. romskip) S eveger seg relativ til S med astiget u langs aksen, vor og aksene er parallelle O og O er på samme sted ved tid t=0 vi eskriver posisjonen til et partikkel P i system S: i system S : Galileo transformasjon: ut y y z z r (, y, z) r (, y, z) v v v v y v y z v z u va vis partikkelen er et foton som eveger seg med lysastiget? c c u Einsteins. postulat: c c vis Einsteins. postulat er riktig, så må vi modifisere Galileo transformasjonen er tiden den samme i S og S? FYS-MEK

14 Definisjon av endelse En endelse er en egivenet (noe) som kan lokaliseres i rom og tid dvs. gis koordinater (,y,z,t). Definisjon av samtidiget To endelser er samtidige dersom de inntreffer ved samme tid i ett og samme system S. S z y FYS-MEK

15 ttp://pingo.up.de/ access numer:718 En nao snekker i agen. Du merker at det er en liten forsinkelse mellom når du ser at an slår på en spiker og når du ører lyden. Når inntreffer endelsen ammeren treffer spikeren? 1. Idet du ører ammeren treffe spikeren.. Idet du ser ammeren treffe spikeren. 3. Litt etter at du ser ammeren treffe spikeren. 4. Litt etter at du ører ammeren treffer spikeren. 5. Litt før du ser ammeren treffe spikeren. z S y lydølger lysølger FYS-MEK

16 Samtidiget Matilde lyn treffer egge endene av en vogn og akken ved siden leander Matilde eveger seg mot lysølgen som kommer fra fremre enden av vognen og ort fra lysølgen som kommer fra akre enden. FYS-MEK

17 Matilde ser lyset fra den fremre enden først; un konkluderer at lynet ar truffet den fremre enden først. leander ser lyset kommer samtidlig fra egge endene; an konkluderer at lynet ar truffet egge endene samtidlig. (Lyset fra den akre enden ar ikke ennå kommet til Matilde.) to endelser: lyn treffer fremre enden lyn treffer akre enden Hendelsene er samtidig i system S (leander), men ikke samtidig i system S (Matilde) FYS-MEK

18 Tidsintervaller speil kilde Matilde efinner seg i toget (system S ) og maler tidsintervall mellom to endelser: 1. et lysglimt er sendt ut fra en kilde i O. lyset er påvist i en detektor på samme sted etter refleksjon av et speil i avstand d Hun måler: t d c leander står på plattformen. I system S inntreffer de to endelser på forskjellige steder. Lyset eveger seg med samme astiget, men distansen er lenger. l ut t d t c t t c u 1 c ut c FYS-MEK vi definerer: t t det kreves at u c 1 u 1 c

19 Tidsdilatasjon To endelser inntreffer på samme sted. En oservatør som er i ro i samme system måler et tidsintervall t 0 mellom endelsene. En annen oservatør som eveger seg med konstant fart u relativ til den første måler et tidsintervall: t t 0 u 1 c Et tidsintervall som er målt mellom to endelser i et referansesystem der posisjonen er identisk for egge endelser, kalles en egentid. t t vi ser at: 0 tidsdilatsjon vi ruker u 1 c t t 0 Tidsdilatasjonen er ikke relatert til tiden lyset trenger for å komme til oservatøren. I systemet som eveger seg inntreffer de to endelser på forskjellige steder. FYS-MEK

20 ttp://pingo.up.de/ access numer:718 Matilde flyr i et romskip med v = 0.6 c. I øyelikket un flyr fori leander på jorden starter egge to sin klokke. Litt senere flyr Matilde fori en romstasjon. Hennes klokke viser t = 1.0 s. Hva viser klokken til leander?. 0.8 s B. 1.0 s C. 1.5 s M 1. endelse: Matilde flyr fori leander. endelse: Matilde flyr fori romstasjonen M I system romskip inntreffer egge endelser på samme sted og Matilde måler egentiden t 0 = 1.0 s. leander eveger seg med fart v = 0.6 c relativ til Matilde og an maler tidsintervallet: t t 1.0 s s FYS-MEK

21 ttp://pingo.up.de/ access numer:718 Når Matilde flyr fori leander med v = 0.6 c vinker an til enne. Matilde måler at leander vinker i ett sekund. Hvor lenge ar an vinket? M. 0.8 s B. 1.0 s C. 1.5 s 1. endelse: leander egynner å vinke. endelse: leander slutter å vinke I system jorden inntreffer egge endelser på samme sted og leander måler egentiden t 0. Matilde eveger seg med fart v = 0.6 c relativ til leander og un maler tidsintervallet: leander måler tidsintervallet: t 1 t 0 t s FYS-MEK t 0.8 s

22 Eksempel: myoner Myoner er elementærpartikler som kan oppstår når øyenergetisk kosmisk stråling treffer på jordens atmosfæren. enfall: e e med gjennomsnittlig levetid. μs endelse 1: myon oppstår i atmosfæren endelse : myon enfaller I systemet tilknyttet myonet inntreffer egge endelser på samme sted og tidsintervallet er t 0 =. s (egentid) Pga. den øyenergetisk kosmisk stråling ar myoner øy astiget: v 0. 99c Sett fra jorden er levetid til myonet t t 1. μs μs Uten tidsdilatasjon vil myonet komme så langt: c.10 6 s m/s 660 m Pga. den relativistiske astigeten eveger myonet seg gjennom atmosfæren og kan li påvist på akken. 4.7 km FYS-MEK

Elastisitetsteori. Spesiell relativitetsteori

Elastisitetsteori. Spesiell relativitetsteori lastisitetsteori Spesiell relativitetsteori 14.05.013 FYS-MK 1110 14.05.013 1 man tir uke 0 1 3 13 0 7 3 gruppe: elastisitet 14 1 8 4 forelesning: spes. relativitet Pinsemandag forelesning: repetisjon

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relativitetsteori 23.05.2016 FYS-MEK 1110 23.05.2016 1 man tir uke 21 uke 22 uke 23 23 30 6 forelesning: spes. relativitet gruppe 5: gravitasjon+likevekt Ingen datalab forelesning: repetisjon

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relativitetsteori 13.05.015 FYS-MEK 1110 13.05.015 1 Spesiell relativitetsteori Einsteins mirakelår 1905 6 år gammel patentbehandler ved det sveitsiske patentbyrået i Bern i 1905 publiserte han

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 08.05.017 YS-MEK 1110 08.05.017 1 uke 19 0 1 3 8 15 9 5 man forelesning: elastisitetsteori forelesning: spes. relativitet Eksamensverksted Pinse 9 16 3 30 6 tir ons

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relativitetsteori 8.05.05 FYS-MEK 0 8.05.05 Einsteins postulatene. Fysikkens lover er de samme i alle inertialsystemer.. Lyshastigheten er den samme i alle inertialsystemer, og er uavhengig av

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 9.05.06 YS-MEK 0 9.05.06 man tir uke 0 3 6 3 forelesning: 30 forelesning: 6 Pinse 7 4 3 7 7. mai spes. relativitet gruppe 5: gravitasjon+likevekt repetisjon gruppe

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori.05.05 YS-MEK 0.05.05 man uke 0 3 forelesning: 8 5 elastisitetsteori gruppe: gravitasjon+likevekt innlev. oblig 0 forelesning: spes. relativitet gruppe: spes. relativitet

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relativitetsteori 6.05.03 FYS-MEK 0 6.05.03 Einsteins postlatene. Fysikkens lover er de samme i alle inertialsystemer.. Lyshastigheten er den samme i alle inertialsystemer, og er avhengig av observatørens

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relativitetsteori 4.05.04 FYS-MEK 0 4.05.04 Einsteins postlatene. Fysikkens lover er de samme i alle inertialsystemer.. Lyshastigheten er den samme i alle inertialsystemer, og er avhengig av observatørens

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 07.05.04 YS-MEK 0 07.05.04 man tir ons tor fre uke 9 0 3 5 9 6 forelesning: likevekt innlev. oblig 9 innlev. oblig 0 6 3 0 7 3 gruppe: gravitasjon+likevekt 7 4 8 4

Detaljer

Repetisjon

Repetisjon Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 014. Løsningsforslag til øving 1 Oppgave 1 a) I følge Galileo: (S = Sam, S = Siv, T = Toget) I følge Einstein: Dermed: Her har vi brukt

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

ØVING 13. Oppgave 1 a) Løs oppgave 1a i Øving 2 gjengitt nedenfor ved å bruke kompleks representasjon.

ØVING 13. Oppgave 1 a) Løs oppgave 1a i Øving 2 gjengitt nedenfor ved å bruke kompleks representasjon. TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1 ØVING 13 Veiledning: 22.11 og 25.11 Innleveringsfrist: 26.11 Oppgave 1 a) Løs oppgave 1a i Øving 2 gjengitt nedenfor ved å bruke kompleks representasjon.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

Fiktive krefter. Gravitasjon og planetenes bevegelser

Fiktive krefter. Gravitasjon og planetenes bevegelser iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:

Detaljer

VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO

VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO SOSIALE MEDIA facebook/fysikk fysikkunioslo @fysikkunioslo Fysikk_UniOslo INTRODUKSJON TIL PARTIKKELFYSIKK INTERNATIONAL

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Einsteins relativitetsteori

Einsteins relativitetsteori Einsteins relativitetsteori Grunnprinsipper og relativistisk tid Øyvind G. Grøn Ingeniørenes hus, 8. mars 2010 Grunnlaget for det 20. århundrets fysikk Kvantemekanikken er teorien for fenomener på atomært

Detaljer

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff Innholdsfortegnelse Tvillingparadokset-8.4 2 Simulering Relativitetsteori 3 Veiledning til simulering Relativitetsteori 4 Oppgavetekst

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og ikevekt Eastisitetsteori 07.05.013 YS-MEK 1110 07.05.013 1 man tir uke 19 0 1 3 6 13 0 7 3 innev. obig 10 gruppe: statikk 7 14 1 8 4 foreesning: eastisitetsteori gruppe: eastisitet foreesning:

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

Løsning til øving 1 for FY1004, høsten 2007

Løsning til øving 1 for FY1004, høsten 2007 Løsning til øving 1 for FY1004, østen 2007 1 Oppgave 4 fra læreboka Modern Pysis, 3 utgave: a Bruk Stefan Boltzmanns lov kalt Stefans lov i boka til å regne ut total utstrålt effekt pr areal for en tråd

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 19. august 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Mekanikk 1/19/2017. Forelesning 3: Mekanikk og termodynamikk

AST1010 En kosmisk reise. De viktigste punktene i dag: Mekanikk 1/19/2017. Forelesning 3: Mekanikk og termodynamikk AST1010 En kosmisk reise Forelesning 3: Mekanikk og termodynamikk De viktigste punktene i dag: Mekanikk: Kraft, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magnetisme:

Detaljer

Repetisjon 20.05.2015

Repetisjon 20.05.2015 Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser

Detaljer

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Mekanikk Termodynamikk Innhold Elektrisitet og magnecsme ElektromagneCske bølger 1 Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

Spesiell relativitetsteori

Spesiell relativitetsteori Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

Masterclass i partikkelfysikk

Masterclass i partikkelfysikk Masterclass i partikkelfysikk Katarina Pajchel på vegne av Maiken Pedersen, Erik Gramstad, Farid Ould-Saada Mars, 18 2011 Innholdsfortegnelse Det I: Masterklass konseptet Det II: Teori Introduksjons til

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK

Detaljer

Turn plan: Jugendfeber/ Mal din by - H16

Turn plan: Jugendfeber/ Mal din by - H16 Man 17. okt. 2016 trinn: 5, antall: 28 Kontakt 6400 Б7Љ4 70 10 49 70 Man 17. okt. 2016 antall: 28 Kontakt Tir 18. okt. 2016 trinn: 6, antall: 27 Kontakt Tir 18. okt. 2016 trinn: 5, antall: 29 Kontakt http://nasjonalmuseet.ksys2.comingsoon.no/turne/94491

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 23. mars 2017 Tid for eksamen: 14.30-17.30, 3 timer Oppgavesettet er på 8 sider Vedlegg: Formelark

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk Energisprang, bølgelengder og spektrallinjer i hydrogen Viktig detalj: Kortere bølgelengde betyr høyere energi

Detaljer

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst? TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Newtons (og hele universets...) lover

Newtons (og hele universets...) lover Newtons (og hele universets...) lover Kommentarer og referanseoppgaver (2.25, 2.126, 2.136, 2.140, 2.141, B2.7) Newtons 4 lover: (Gravitasjonsloven og Newtons første, andre og tredje lov.) GL: N I: N III:

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde

Detaljer

Onsdag isolator => I=0

Onsdag isolator => I=0 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!! TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Klikk på sidetallet for å komme til det enkelte lysark. De svarte sidetallene viser hvor illustrasjonen står i læreboka.

Klikk på sidetallet for å komme til det enkelte lysark. De svarte sidetallene viser hvor illustrasjonen står i læreboka. 3FY lysark meny Klikk på sidetallet for å komme til det enkelte lysark. De svarte sidetallene viser hvor illustrasjonen står i læreboka. 1 Fire ideer som forandret verden Et geosentrisk verdensbilde, side

Detaljer

Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen,

Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen, I partikkelfysikken (CERN) studeres materiens minste byggestener og alle kreftene som virker mellom dem. I astrofysikken studeres universets sammensetting (stjerner og galakser) og utviklingen fra Big

Detaljer

Løsningsforslag Fys-mek1110 V2012

Løsningsforslag Fys-mek1110 V2012 Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil

Detaljer

Introduksjon til partikkelfysikk. Trygve Buanes

Introduksjon til partikkelfysikk. Trygve Buanes Introduksjon til partikkelfysikk Trygve Buanes Tidlighistorie Fundamentale byggestener gjennom historien De første partiklene 1897 Thomson oppdager elektronet 1919 Rutherford oppdager protonet 1929 Skobeltsyn

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 6: Teleskoper Innhold Op>kk og teleskop Linse- og speilteleskop De vik>gste egenskapene >l et teleskop Detektorer og spektrometre Teleskop for andre bølgelengder enn

Detaljer

Prosjektoppgave i FYS-MEK 1110

Prosjektoppgave i FYS-MEK 1110 Prosjektoppgave i FYS-MEK 1110 03.05.2005 Kari Alterskjær Gruppe 1 Prosjektoppgave i FYS-MEK 1110 våren 2005 Hensikten med prosjektoppgaven er å studere Jordas bevegelse rundt sola og beregne bevegelsen

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

AST1010 En kosmisk reise. Forelesning 9: Teleskoper

AST1010 En kosmisk reise. Forelesning 9: Teleskoper AST1010 En kosmisk reise Forelesning 9: Teleskoper De viktigste punktene i dag: Optikk og teleskop Linse- og speilteleskop De viktigste egenskapene til et teleskop Detektorer og spektrometre Teleskop for

Detaljer

De vik=gste punktene i dag:

De vik=gste punktene i dag: AST1010 En kosmisk reise Forelesning 6: Teleskoper De vik=gste punktene i dag: Op=kk og teleskop Linse- og speilteleskop De vik=gste egenskapene =l et teleskop Detektorer og spektrometre Teleskop for andre

Detaljer

AST1010 En kosmisk reise. Forelesning 6: Teleskoper

AST1010 En kosmisk reise. Forelesning 6: Teleskoper AST1010 En kosmisk reise Forelesning 6: Teleskoper Innhold Optikk og teleskop Linse- og speilteleskop De viktigste egenskapene til et teleskop Detektorer og spektrometre Teleskop for andre bølgelengder

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Høgskolen i Agder Avdeling for EKSAMEN

Høgskolen i Agder Avdeling for EKSAMEN Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,

Detaljer

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng HiN TE 73 8. juni 0 Side av 8 HØGSKOLEN NRVK Teknologisk avdeling Studieretning: ndustriteknikk Studieretning: llmenn ygg Studieretning: Prosessteknologi E K S M E N MEKNKK Fagkode: TE 73 5 studiepoeng

Detaljer

Kortfattet løsningsforslag / fasit

Kortfattet løsningsforslag / fasit 1 Kortfattet løsningsforslag / fasit Ordinær eksamen i FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF / FY-ME 100 Eksamensdag onsdag 8. juni 2005 (Versjon 10. juni kl 1520) 1. Forståelsesspørsmål

Detaljer

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever. 6. juni Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N LÆRINGSSENTERET Fysikk 3FY AA6227 Elever 6. juni 2003 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste side. Eksamenstid:

Detaljer

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn AKTIVITET 8-10. trinn Baneberegninger modellraketter Utviklet av Tid Læringsmål Nødvendige materialer 1-2 timer Bruke egne målinger, formler og tabellverdier til å gjøre baneberegninger på modellraketten.

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999

Fysikk 3FY AA6227. (ny læreplan) Elever og privatister. 28. mai 1999 E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 (ny læreplan) Elever og privatister 28. mai 1999 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

FYS 3120: Klassisk mekanikk og elektrodynamikk

FYS 3120: Klassisk mekanikk og elektrodynamikk FYS 3120: Klassisk mekanikk og elektrodynamikk 1 Analytisk mekanikk Lagrangefunksjonen Formelsamling (bokmål) L = L(q, q, t), (1) er en funksjon av systemets generaliserte koordinater q = {q i ; i = 1,

Detaljer