Konsumentteori. Kjell Arne Brekke. Mars 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Konsumentteori. Kjell Arne Brekke. Mars 2017"

Transkript

1 Konsumentteori Kjell Arne Brekke Mars Budsjettbetingelser Vi skal betrakter en konsument som kan bruke inntekten m på to varer. Konsumenten kjøper et kvantum x 1 av vare 1 til en pris p 1 per enhet, som gir en total kostnad på p 1 x 1, og med tilvarende notasjon for vare 2 blir utgiften her x 2. Vi skal se på en situasjon der konsumenten bare kan velge mellom disse to varene. Med inntektene gitt må han da velge slik at p 1 x 1 + x 2 m Dette kaller vi budsjettbetingelsen. I de tilfellene vi skal se på vil det alltid lønne seg å bruke hele inntekten, det blir da Dette kaller vi budsjettlinja. p 1 x 1 + x 2 = m 1.1 Preferanser og nyttefunksjon Den neste ingrediensen i teorien er preferanser, som vi her skal gi ved hjelp av en nyttefunksjon. Konsumenten skal alså velge et kvantum av x 1 og x 2. Vektoren (x 1, x 2 ) kaller vi en "varekurv". Om en varekurv (x 1, x 2) er bedre enn en annen (x 1, x 2) skriver vi det som (x 1, x 2) (x 1, x 2) En nyttefunksjon er en funksjon som representerer preferansene, det vil si en funksjon U med den egenskapen atvi vil anta at en slik "numerisk representasjon" av preferansene alltid gjelder. Merk at dersom φ( ) er en strengt voksende funksjon, så vil funksjonen ha den egenskapen at V (x 1, x 2 ) = φ (U(x 1, x 2 )) V (x 1, x 2) > V (x 1, x 2) hvis og bare hvis U(x 1, x 2) > U(x 1, x 2) 1

2 med andre ord vil V også være en nyttefunksjon som representerer akkurat de samme preferansene. Vi kaller V for en voksende monoton transformasjon av U og noterer at vi kan foreta slike voksende monotone transformasjoner uten at det endrer preferansene. Et eksempel er U(x 1, x 2 ) = x 1 x 2 og V (x 1, x 2 ) = ln x 1 + ln x 2. Disse to funksjonene representerer de samme preferansene da V er en monoton transformasjon av U: V (x 1, x 2 ) = ln U(x 1, x 2 ) = ln (x 1 x 2 ) = ln x 1 + ln x 2. Legg også merke til at om vi nå ser på tre forskjellige varekurver A,B og C, så gir de to funksjonene samme rangering: A U( 1 4, 1 4 ) = 1 16 V ( 1 2, 1 2 ) = 4 ln 2 B U(1, 1) = 1 V (1, 1) = 0 C U(2, 2) = 4 V (2, 2) = 2 ln 2 Om vi ser på U er det størst nytteforskjell mellom B og C (4 versus 3) mens om vi ser på V så er det større forskjell mellom A og B enn mellom B og C. Siden begge nyttefuksjonene representerer de samme preferansene, kan vi ikke si om en av dem representere preferansene bedre enn den andre. Det gir derfor ingen mening å snakke om hvor stor nytteforskjellen er eller at det er større forskjell mellom A og B enn mellom B og C. Det vil alltid avhenge av hvilken tranformasjon vi bruker. 2 Nyttemaksimering Vi har nå innført nyttefunksjon og budsjettbetingelser. Vi antar at konsumenten velger den beste varekurven hun har råd til. Siden nyttefunksjonen representerer preferansene blir det det samme som å maksimere nytten. max U(x 1, x 2 ) gitt p 1 x 1 + x 2 = m x 1,x 2 Problem 1 Løs nyttemaksimeringsproblemet med nyttefunksjonen ovenfor U(x 1, x 2 ) = ln x 1 + ln x 2 Løsningsforslag 1 - innsetting Om vi bruker nyttefunksjonen ovenfor blir problemet max x 1,x 2 ln x 1 + ln x 2 gitt p 1 x 1 + x 2 = m Dette kan løses på to måter, enten ved innsetting, da ser vi fra budsjettbetingelsen at x 2 = m p 1x 1 2

3 så problemet blir å velge x 1 for å maksimere funksjonen f(x 1 ) der f(x 1 ) = ln x 1 + ln m p 1x 1 Vi ser nå at f (x) < 0, (regn ut f og sjekk selv at dette stemmer) og vi har da et maksimum når f (x) = 0 som gir f (x 1 ) = 1 ( + p ) 1 = 0 x 1 m p 1 x 1 som gir Siden x 2 = m p1x1 p 1 x 1 = m p 1 x 1 x 1 = m 2p 1 får vi etter litt mellomregning, x 1 = m 2 Løsningsforslag 2 - Lagranges metode Alternativt kan vi bruke Lagranges metode L = ln x 1 + ln x 2 λ (p 1 x 1 + x 2 m) For å finne stasjonærpunktene til L deriverer vi med hensyn på begge variable, og setter dem lik 0: som gir L x 1 = 1 x 1 λp 1 = 0 L x 2 = 1 x 2 λ = 0 p 1 x 1 = x 2 = 1 λ Dette betyr at vi konsumutgiften til begge varene er den samme, altså vil bruke halve budsjettet på hver av varene. Formlet ser vi det vet å kombinere med budsjettligningen p 1 x 1 + x 2 = m Dette gir (Tenk på y = p 1 x 1 og z = x 2 som ukjente, da sier ligningene y = z(= 1 λ ) og y + z = m, som gir y = z = m/2.) p 1 x 1 = x 2 = m 2 3

4 2.1 Generelt La oss nå bruke Lagranges metode på et generelt nyttemaksimeringsproblem. Vi ønsker altså å løse og lager Lagrange funksjonen. max U(x 1, x 2 ) gitt p 1 x 1 + x 2 = m x 1,x 2 L = U(x 1, x 2 ) λ (p 1 x 1 + x 2 m) For å finne stasjonærpunktene til L deriverer vi med hensyn på begge variable, og setter dem lik 0: som gir Den siste ligningen kan skrives om som L x 1 = U x 1 λp 1 = 0 L x 2 = U x 2 λ = 0 λ = U x 1 p 1 = U x 2 (1) U x 1 U x 2 = p 1 (2) som sier at den marginale substitusjonsbrøken er lik prisforholdet. Merk: Siden hensikten med dette notatet er å gi en kort presentasjon av en mer formell konsumentteori diskuteres ikke betingelser som de ovenfor ytterligere, det er diskutert i læreboka. Men det betyr ikke at det er uviktig. Skal du lære dette faget tilfredsstillende må du kunne fortelle med ord - uten å snakke om deriverte - hva som ligger i de to numererte ligningenen ovenfor. Det handler om bytteforhold, substitusjonsbrøk og hva de uttrykker, og det handler om hvor mye "nytte" du får for en krone. 2.2 Marshall-etterspørsel og Indirekte nytte Løsningen på maksimeringsproblemet gir oss det vi kaller Marshall-etterspørselen. Vi kan skrive dette som (x 1 (m, p 1, ), x 2 (m, p 1, )) = arg max U(x 1, x 2 ) gitt p 1 x 1 + x 2 = m der "arg max" betyr den verdien av (x 1, x 2 ) som løser problemet, altså de argumentene som gir funksjonen sin maksimale verdi. I oppgaven vi løste ovenfor så fant vi at vi maksimerte nytten ved å velge x 1 = m 2p 1 og x 2 = m 2 4

5 Det betyr at Marshall-etterspørselen er x 1 (m, p 1, ) = m 2p 1 x 2 (m, p 1, ) = m 2 Når vi finner Marshall-etterspørselen er det tre ting vi tar som gitt: inntekten og de to prisene, derfor er dette argumenter i denne funksjonen. Et annet begrep som noen ganger er nyttig er indirekte nytte, som vi ofte skriver V (p 1,, m). Det er det nyttenivået vi når når vi maksimerer nytten, gitt priser og inntekt, formelt: V (p 1,, m) = max x 1,x 2 U(x 1, x 2 ) gitt p 1 x 1 + x 2 = m Igjen kan vi se på oppgaven ovenfor, om vi setter inn løsningen i nyttefunsjonen får vi ( ) ( ) m m V (p 1,, m) = ln + ln = 2 ln m 2 ln 2 ln p 1 ln 2p Elastisiteter Vi er ofte interessert i hva som skjer med etterspørselen om vi endrer priser eller inntekter, men ofte er det nyttigere å se på elastisitetene som uttrykker de relative endringene i etterspørselen for en relativ endring i prisen, eller mer konkret: Hvor mange prosent øker etterspørselen om vi øker inntekten med en prosent. Alle endringer måles altså i prosent når vi ser på elastisiteter. Vi har to viktige elastisiteter: Inntektselastisiteten (også kalt Engel-elastisistet). Denne uttrykker nettopp det vi sa ovenfor: hvor mange prosent øker etterspørselen om vi øker inntekten med en prosent? Inntektselastisiteten til vare i kaller vi E i og defineres som E i = m inntektselastisiteten til vare i m c i Det andre vi er interessert i er pris-elastisisteter, noen ganger også kalt Cournot elastisiteter, disse uttrykker hvor mange prosent øker etterspørselen etter vare i om vi øker prisen på vare j med en prosent, vi skriver denne som e ij. Om i og j er samme vare, i = j, så kaller vi det egenpriselastisitet. Merk at når prisen øker vil etterspørselen typisk falle, så elastisiteten er negativ. Ulike lærebøker vil her bruke litt ulike standarder og noen vil refererer til egenpriselastisteten som absoluttverdien av dette tallet. Formelt e ij = p j c i 5

6 2.3.1 Identiteter for elastisitetenene Etterspørselen må tilfredsstille budsjettligningen, og vi kan bruke dette til å utlede noen ligninger for elastisitetene. p 1 c 1 (m, p 1, ) + c 2 (m, p 1, ) = m Om vi deriverer med hensyn på m så ser vi at p 1 c 1 m c 1 p 1 m + p c 2 2 m = 1 c 1 m + c 2 c 2 m m c 1 m m c 2 = 1 α 1 E 1 + α 2 E 2 = 1 Her er α i = p ic i m budsjettandel vare i, merk α 1 + α 2 = 1 Altså de veide inntektselastistitetene skal være lik 1. Vi kan si litt mer. Merk først at (x 1, x 2 ) er en vektor som oppfyller budsjettbetingelsen p 1 c 1 + c 2 = m så gjelder også kp 1 c 1 + k c 2 = km Det endrer altså ikke budsjettbetingelsen om vi ganger priser og inntekter med m, og når budsjettbetingelsen ikke endres og vi har de samme preferansene må konsumet også være det samme. Altså må vi ha følgende likhet Deriver denne med hensyn på k : om vi så deler på c i får vi c i (kp 1, k, km) = c i (p 1,, m) p m m = 0 p 1 c i + c i + m c i m = 0 e i1 + e i2 + E i = 0 Summen av Cournot og Engel-elastisiteten blir lik 0. 3 Utgiftsminimering Vi stiller her det hypotetiske spørsmålet. Gitt at vi skal nå nyttenivået u, hvor mye inntekt trenger vi. Y (u, p 1, ) = min (p 1 c 1 + c 2 ) c 1,c 2 gitt U(c 1, c 2 ) = u 6

7 Løsningen på dette problemet kaller vi Hicks-etterspørsel h i (u, p 1, ) Denne kan også kalles kompensert etterspørsel. Vi kan nå bruke omhylningsteoremet. Omhylningsteoremet for betinget optimalisering, sier at dersom L(u, p 1, ) = (p 1 c 1 + c 2 ) λ (U(c 1, c 2 ) u) er Lagrangefunksjonen til minimeringsproblemet, så er Y = L Om vi ikke hadde omhlvi skal ikke vise denne versjonen av omhylningsteoremet i dette kurset. Dette gir oss. dvs Y = L = (p 1 c 1 + c 2 λ(u(c 1, c 2 ) u)) = c 1 Y = c 1 men c 1 her er den optimale etterspørselen gitt priser og nytte, altså hicketterspørselen, dvs Y = h 1 (u, p 1, ) Siden vi ikke viser omhylningsteoremet kan det være nyttig å tenke på intuisjonen. For å være litt konkret, la vare 1 være kopper kaffe på kaffebar per måned. La oss tenke oss en student som drikker 300 slike kopper i året. Om prisen på kaffen øker med en krone, hvor mye høyere inntekt trenger studenten for å være like godt stilt. Vel svarert sier at Y = h 1 = 300, altså 300 kroner, nok til å kjøpe akkurat like mye kaffe som før uten å ha mindre penger igjen til andre ting. Er ikke det opplagt? Vel, teorien tilsier også at student skulle revurdere sitt kaffeforbruk når prisen går opp, kanskje konsumerer studenten nå bare 298 kopper. Men hvorfor betyr dette ingenting? Fordi optimal tilpassning vil tilsi at studenten har samme nytte av siste krone enten den ble brukt på vare 1 eller vare 2. En liten vridning av forbruket har ingen betydning for nytten. 3.1 Slutsky ligningen Merk nå at h i (u, p 1, ) er forbruket av vare i om konsumenten skal nå nyttenivå u, mens c i (m, p 1, ) er konsumet om inntekten er m.videre er Y (u, p 1, ) den inntekten konsumenten trenger for å nå nyttenivå u. Altså må: h i (u, p 1, ) = c i (Y (u, p 1, ), p 1, ) 7

8 Vi deriver denne ligningen med hensyn på p j, det gir Så bruker vi Y h i = Y + m = h i c j m = h j = c j som vi fant ovenfor. Dette gir ligningen = h i c j m Dette kaller vi Slutsky-ligningen.Denne er sentral i mange anvendelser og diskuteres videre i læreboka, jeg skal derfor være kort i omtalen her. Slutskyligningen ser på effekten av en prisendring. Merk at en prisendring har to effekter: (1) Når prisen på var j øker så har vi råd til mindre - kjøpekraften svekkes. (2) Vare j blir nå relativt dyrere sammenlignet med andre varer. Slutskyligningen skiller disse to effektene. Ligningen består av tre ledd : Hva skjer med etterspørselen etter vare i når prisen på vare j øker h i : Som ovenfor, men nå for gitt nytte. Dvs uten at kjøpekraften svekkes. c j m : Her endres ingen priser. Dette er effekten av at kjøpekraften svekkes. Hvorfor ganger vi med c j foran ci m og hvorfor er fortegnet negativt. Jo det er negativt fordi kjøpekraften svekkes. Og hvor mye kjøpekraften svekkes når vi øker prisen på vare j avhenger av hvor mye konsumenten bruker av denne varen. Jeg leier aldri lystyatch men kjøper mye poteter. Mitt forbruk av poteter er upåvirket av en økning i leieprisen på lystyatcher fordi jeg aldri leier dem: c j = 0. At jeg bruker mye poteter, c i er stor, er irrelevant for effekten av en økning i leieprisen på lystyatcher Elastisitetsform Vi kan skrive Slutskyligningen på elastisitetsform. Vi ganger da med pj c i : p j = h i p j p j m c j c i c i c i m m = h i p j c jp j m c i m m c i e ij = S ij α j E i 8

Mikroøkonomien med matematikk

Mikroøkonomien med matematikk Mikroøkonomien med matematikk Kjell Arne Brekke March 11, 2011 1 Innledning I Varian: Intermediate Microeconomics, er teorien i stor grad presentert med gurer og verbale diskusjoner. Da vi som økonomer

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

Indifferenskurver, nyttefunksjon og nyttemaksimering

Indifferenskurver, nyttefunksjon og nyttemaksimering Indifferenskurver, nyttefunksjon og nyttemaksimering Arne Rogde Gramstad Universitetet i Oslo 18. oktober 2013 En indifferenskurve viser alle godekombinasjoner som en konsument er likegyldig (indifferent)

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2200 Matematikk 1/Mikro 1 (MM1) Eksamensdag: 19.05.2017 Sensur kunngjøres: 09.06.2017 Tid for eksamen: kl. 09:00 15:00 Oppgavesettet er på 6 sider

Detaljer

Oppsummering: Innføring i samfunnsøkonomi for realister

Oppsummering: Innføring i samfunnsøkonomi for realister Oppsummering: Innføring i samfunnsøkonomi for realister ECON 1500 Kjell Arne Brekke Økonomisk Institutt May 6, 2014 KAB (Økonomisk Institutt) Oppsummering ECON 1500 May 6, 2014 1 / 30 Innledning Rekker

Detaljer

Fasit ekstraoppgaver (sett 13); 10.mai ax x K. a a

Fasit ekstraoppgaver (sett 13); 10.mai ax x K. a a Eric Nævdal og Jon Vislie Økonomisk institutt Universitetet i OSLO Fasit ekstraoppgaver (sett ); 0.mai 007 Oppgave a) Løs likningen mht. a + + 4 = K Først skriver man likningen slik: a + + 4 = K K a K

Detaljer

Konsumentteori. Pensum: Mankiw & Taylor, kapittel 21. Arne Rogde Gramstad. Universitetet i Oslo a.r.gramstad@econ.uio.no. 13.

Konsumentteori. Pensum: Mankiw & Taylor, kapittel 21. Arne Rogde Gramstad. Universitetet i Oslo a.r.gramstad@econ.uio.no. 13. Konsumentteori Pensum: Mankiw & Taylor, kapittel 21 Arne Rogde Gramstad Universitetet i Oslo a.r.gramstad@econ.uio.no 13. februar, 2014 Arne Rogde Gramstad (UiO) Konsumentteori 13. februar, 2014 1 / 46

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

b) Gjør rede for hvilke forutsetninger modellen bygger på og gi en økonomisk tolkning av ligningene.

b) Gjør rede for hvilke forutsetninger modellen bygger på og gi en økonomisk tolkning av ligningene. EKSAMEN ECON500 Sensorveilednig Oppgave, Makroøkonomi, 50% (Det er fem delpunkter, og en naturlig poengfordeling er 5+0+0+0+5.) Ta utgangspunkt i modellen () Y C I G X Q () C c 0 c(y T ) c 0 0, og 0 c

Detaljer

Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014

Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014 Obligatorisk innleveringsoppgave Econ 3610/4610, Høst 2014 Oppgave 1 Vi skal i denne oppgaven se nærmere på en konsuments arbeidstilbud. Konsumentens nyttefunksjon er gitt ved: U(c, f) = c + ln f, (1)

Detaljer

Faktor. Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Konsumentteori. Pensum: Mankiw & Taylor, kapittel 21. Arne Rogde Gramstad. Universitetet i Oslo a.r.gramstad@econ.uio.no. 19.

Konsumentteori. Pensum: Mankiw & Taylor, kapittel 21. Arne Rogde Gramstad. Universitetet i Oslo a.r.gramstad@econ.uio.no. 19. Konsumentteori Pensum: Mankiw & Taylor, kapittel 21 Arne Rogde Gramstad Universitetet i Oslo a.r.gramstad@econ.uio.no 19. september, 2013 Arne Rogde Gramstad (UiO) Konsumentteori 19. september, 2013 1

Detaljer

Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013

Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013 Obligatorisk innleveringsoppgave - Veiledning Econ 3610, Høst 2013 Oppgave 1 Vi ser på en økonomi der det kun produseres ett gode, ved hjelp av arbeidskraft, av mange, like bedrifter. Disse kan representeres

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk 1 / Mikro 1 Eksamensdag: 14.06.01 Tid for eksamen: kl. 09:00 1:00 Oppgavesettet er på sider Tillatte hjelpemidler: Ingen tillatte

Detaljer

Sensorveiledning til ECON 2200 Vår 2007

Sensorveiledning til ECON 2200 Vår 2007 Sensorveiledning til ECON 00 Vår 007 Oppgave. x γ x Vi har fått oppgitt f ( x) = xe + e, med γ som en konstant. x x γ x a) Vi finner f ( x) = e xe e og γ γ f ( x) = e x e x + xe x + e x = xe x + e x e

Detaljer

Forelesning 10 og 11: Nåverdi og konsumentteori

Forelesning 10 og 11: Nåverdi og konsumentteori Forelesning 10 og 11: Nåverdi og konsumentteori Frikk Nesje Universitetet i Oslo Kurs: ECON1210 Pensum: K&W, kap 9 (berre app.) og 10 (inkl. app.) + notat om nåverdier Dato: 6. november og 13. november

Detaljer

Løsningsforslag til eksamen i ECON 2200 vår løsningen på problemet må oppfylle:

Løsningsforslag til eksamen i ECON 2200 vår løsningen på problemet må oppfylle: Oppgave 3 Løsningsforslag til eksamen i ECON vår 5 = + +, og i) Lagrangefunksjonen er L(, y, λ) y A λ[ p y m] løsningen på problemet må oppfylle: L y = λ = λ = = λ = p + y = m L A p Bruker vi at Lagrangemultiplikatoren

Detaljer

ECON2200: Oppgaver til for plenumsregninger

ECON2200: Oppgaver til for plenumsregninger University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Oppsummering matematikkdel ECON 2200

Oppsummering matematikkdel ECON 2200 Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 Diderik Lund Økonomisk institutt Universitetet i Oslo 23. september 2011 Vil først se nærmere på de siste sidene fra forelesning

Detaljer

Oppgave 6.1 Konsumentens optimale tilpasning er kjennetegnet ved at marginal substitusjonsrate er lik prisforholdet: U x 1 U x 2

Oppgave 6.1 Konsumentens optimale tilpasning er kjennetegnet ved at marginal substitusjonsrate er lik prisforholdet: U x 1 U x 2 Kapittel 6 Konsumentens etterspørsel Løsninger Oppgave 6. Konsumentens optimale tilpasning er kjennetegnet ved at marginal substitusjonsrate er lik prisforholdet: U U x = p Dette kalles også tangeringsbetingelsen,

Detaljer

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte Oppgave 1 (10 poeng) Finn den første- og annenderiverte til følgende funksjoner. Er funksjonen strengt konkav eller konveks i hele sitt definisjonsområde? Hvis ikke, bestem for hvilke verdier av x den

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 ECON360 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 Diderik Lund Økonomisk institutt Universitetet i Oslo 9. september 20 Diderik Lund, Økonomisk inst., UiO () ECON360 Forelesning

Detaljer

201303 ECON2200 Obligatorisk Oppgave

201303 ECON2200 Obligatorisk Oppgave 201303 ECON2200 Obligatorisk Oppgave Oppgave 1 Vi deriverer i denne oppgaven de gitte funksjonene med hensyn på alle argumenter. a) b) c),, der d) deriveres med hensyn på både og. Vi kan benytte dee generelle

Detaljer

b) Sett modellen på redusert form, dvs løs for Y uttrykt ved hjelp av eksogene størrelser. Innsetting gir Y=c0+c(Y-T)+G+I+X-aY som igjen giry

b) Sett modellen på redusert form, dvs løs for Y uttrykt ved hjelp av eksogene størrelser. Innsetting gir Y=c0+c(Y-T)+G+I+X-aY som igjen giry SENSORVEILEDNING EKSAMEN ECON500 BOKMÅL Oppgave, Makroøkonomi, 0% Ta utgangspunkt i modellen () Y = C+ I + G+ X Q () C = c 0 + c(y T ) c 0 > 0, og 0 < c < (3) Q = ay 0 < a < Symbolforklaring: Y er bruttonasjonalprodukt

Detaljer

Nåverdi og konsumentteori

Nåverdi og konsumentteori Nåverdi og konsumentteori Pensum: Mankiw & Taylor, kapittel 5 + notat om nåverdier Arne Rogde Gramstad Universitetet i Oslo a.r.gramstad@econ.uio.no 15. september, 2014 Arne Rogde Gramstad (UiO) Nåverdi

Detaljer

Nåverdi og konsumentteori

Nåverdi og konsumentteori Nåverdi og konsumentteori Pensum: Mankiw & Taylor, kapittel 5 + notat om nåverdier Arne Rogde Gramstad Universitetet i Oslo a.r.gramstad@econ.uio.no 21. og 28. oktober, 2015 Arne Rogde Gramstad (UiO) Nåverdi

Detaljer

Derivér følgende funksjoner med hensyn på alle argumenter:

Derivér følgende funksjoner med hensyn på alle argumenter: Obligatorisk innleveringsogave ECON våren LØSNINGSFORSLAG med vekter for delsørsmålene Ogave (vekt %) Derivér følgende funksjoner med hensyn å alle argumenter: % (a) f( x) 7x x x Her finner vi f '( x)

Detaljer

ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout

ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout Kjell Arne Brekke January 27, 20 Inledning Dette notatet er noen begreper og noen oppgaver som kan hjelpe deg til å forberede deg til forelesningen.

Detaljer

ALLE FIGURER ER PÅ SISTE SIDE!

ALLE FIGURER ER PÅ SISTE SIDE! OPPGAVER 28.10.15 ALLE FIGURER ER PÅ SISTE SIDE! Oppgave 1 Du har valget mellom å motta 50 kr nå eller 55 kr om ett år. 1) Beregn nåverdien av 55 kr om ett år for en gitt rente PV = 55/(1+r) 2) Til hvilken

Detaljer

Seminar 7 - Løsningsforslag Econ 3610/4610, Høst 2013

Seminar 7 - Løsningsforslag Econ 3610/4610, Høst 2013 Seminar 7 - Løsningsforslag Econ 3610/4610, Høst 2013 Oppgave 1 Vi ser på en lukket økonomi, der vi har en stor gruppe like konsumenter (oppfattet som én representativ aktør) som konsumerer to individualgoder

Detaljer

Velferd og økonomisk politikk: Byggesteiner fra mikroøkonomisk teori

Velferd og økonomisk politikk: Byggesteiner fra mikroøkonomisk teori Velferd og økonomisk politikk: Byggesteiner fra mikroøkonomisk teori Elisabeth Isaksen ECON1220: Velferd og økonomisk politikk Hjelpestoff til forelesning 2 August 2016 1 / 23 Sentrale begrep i mikroøkonomisk

Detaljer

Forelesning 10 og 11: Nåverdi og konsumentteori

Forelesning 10 og 11: Nåverdi og konsumentteori Forelesning 10 og 11: Nåverdi og konsumentteori Elisabeth T. Isaksen Universitetet i Oslo Kurs: ECON1210 Pensum: M&T, kap 5 + notat om nåverdier Dato: 2. og 9. nov 2016 Elisabeth T. Isaksen (UiO) Nåverdi

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk / Mikro Eksamensdag: 8.06.03 Tid for eksamen: kl. 09:00 5:00 Oppgavesettet er på 5 sider Tillatte hjelpemiddel: - Ingen tillatte

Detaljer

Obligatorisk øvelsesoppgave - Løsning

Obligatorisk øvelsesoppgave - Løsning Obligatorisk øvelsesoppgave - Løsning Vår 2017 Oppgave 1 a) f (x) = 6x 5 b) Bruk at (ln x) x = e ln(ln x)x = e x ln ln x slik at: g(x) = 4x 2 e x x ln ln x + e ( g (x) = 8xe x + 4x 2 e x + e x ln ln x

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON00 Matematikk /Mikro (MM) Eksamensdag: 3.05.06 Sensur kunngjøres:.06.06 Tid for eksamen: kl. 09:00 5:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 2014

Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 2014 Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 014 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og. Denne aktøren representerer mange aktører i

Detaljer

, alternativt kan vi skrive det uten å innføre q0

, alternativt kan vi skrive det uten å innføre q0 Semesteroppgave i econ00 V09 Oppgave (vekt % Deriver følgende funksjoner mhp alle argumenter: 4 a f ( + + b g ( + c h ( ( p( k z d e k gf (, ( F( hf (, ( ( t, s ( t + s + ( t s La q D( p være en etterspørselsfunksjon

Detaljer

Eksamen ECON mai 2010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål.

Eksamen ECON mai 2010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål. Eksamen ECON00 1. mai 010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål. Vi gir poeng for hvert svar. Maksimalt poengtall på hver oppgave

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2200 Matematikk 1/Mikro 1 Dato for utlevering: 27.3.2017 Dato for innlevering: 7.4.2017 innen kl. 15.00 Innleveringssted: Fronter Øvrig informasjon:

Detaljer

Lukket økonomi (forts.) Paretooptimum Markedet

Lukket økonomi (forts.) Paretooptimum Markedet ECON3610 Forelesning 2: Lukket økonomi (forts.) Paretooptimum Markedet c 2, x 2 Modell for en lukket økonomi Preferanser: Én nyttemaksimerende konsument Teknologi: To profittmaksimerende bedrifter Atferd:

Detaljer

Den realøkonomiske rammen i denne økonomien er gitt ved funksjonene (1) (3). Siden økonomien er lukket er c1 x1. (4), og c2 x2

Den realøkonomiske rammen i denne økonomien er gitt ved funksjonene (1) (3). Siden økonomien er lukket er c1 x1. (4), og c2 x2 EKSMANESBESVARELSE ECON 3610/4610 Karakter A Oppgave 1 a) Den realøkonomiske rammen i denne økonomien er gitt ved funksjonene (1) (3). Siden økonomien er lukket er c1 x1 (4), og c x (5). Vi har 6 endogene

Detaljer

ECON2200: Oppgaver til plenumsregninger

ECON2200: Oppgaver til plenumsregninger University of Oslo / Department of Economics / Nils Framstad, denne versjonen: π-dagen ECON2200: Oppgaver til plenumsregninger 1. plenumsregning 1. feb.: derivasjon. Oppgave 1.1 der A er en konstant. Funksjonen

Detaljer

Faktor. Eksamen høst 2004 SØK 1002 Besvarelse nr 1: Innføring i mikro. -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2004 SØK 1002 Besvarelse nr 1: Innføring i mikro. -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 004 SØK 00 Besvarelse nr : Innføring i mikro OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer det studentene har

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk /Mikro (MM) Eksamensdag: 0.06.05 Sensur kunngjøres: 0.07.05 Tid for eksamen: kl. 09:00 5:00 Oppgavesettet er på 4 sider Tillatte

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 4

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 4 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 4 Diderik Lund Økonomisk institutt Universitetet i Oslo 16. september 2011 Diderik Lund, Økonomisk inst., UiO () ECON3610 Forelesning

Detaljer

Dagens forelesning. Forelesning 10 og 11: Nåverdi og konsumentteori. Nåverdi og pengenes tidsverdi Konsumentteori del 1 (del 2 neste uke) Frikk Nesje

Dagens forelesning. Forelesning 10 og 11: Nåverdi og konsumentteori. Nåverdi og pengenes tidsverdi Konsumentteori del 1 (del 2 neste uke) Frikk Nesje Innledning Dagens forelesning Forelesning 0 og : og konsumentteori Frikk Nesje og pengenes tidsverdi Konsumentteori del (del 2 neste uke) Universitetet i Oslo Kurs: ECON20 Pensum: K&W, kap 9 (berre app.)

Detaljer

Praksis har vært å bruke følgende poenggrenser for de forskjellige karakterene på ECON2200:

Praksis har vært å bruke følgende poenggrenser for de forskjellige karakterene på ECON2200: Kjell Arne Brekke Vidar Christiansen Sensorveiledning ECON 00, Vår Vi gir oeng for hvert svar. Maksimalt oengtall å hver ogave svarer til den vekt som er ogitt i rosent. Maksimal total oengsum blir dermed

Detaljer

Handout 12. forelesning ECON 1500 - Monopol og Arbeidsmarked

Handout 12. forelesning ECON 1500 - Monopol og Arbeidsmarked Handout 2. forelesning ECON 500 - Monopol og Arbeidsmarked April 202 Monopol Pensum: SN Kap 4 fram til SECOND-DEGREE... s. 465 og unntatt: "A formal treatment of quality", (p 459). (466-47 er altså ikke

Detaljer

Løsningsskisse. May 28, 2010

Løsningsskisse. May 28, 2010 Løsningsskisse May 28, 200 Oppgave a) Det skal være lik avkastning på innenlandske og utenlandske plasseringer. Utenlands avkastning av en krone: Kjøpe Euro E Veksle tilbake etterpå E ( + i )E e t+ Lik

Detaljer

Faktor - En eksamensavis utgitt av Pareto

Faktor - En eksamensavis utgitt av Pareto aktor - En eksamensavis utgitt av Pareto SØK 2001 Offentlig økonomi og økonomisk politikk Eksamensbesvarelse Høst 2003 Dette dokumentet er en eksamensbesvarelse, og kan inneholde feil og mangler. Det er

Detaljer

Løsningveiledning for obligatorisk oppgave

Løsningveiledning for obligatorisk oppgave Løsningveiledning for obligatorisk oppgave Econ 3610/4610, Høst 2016 Oppgave 1 a) Samfunnsplanleggeren ønsker å maksimere konsumentens nytte gitt den realøkonomiske rammen: c 1,c 2,x 1,x 2,z,N 1,N 2 U(c

Detaljer

Forelesning 10 og 11: Nåverdi og konsumentteori

Forelesning 10 og 11: Nåverdi og konsumentteori Forelesning 10 og 11: Nåverdi og konsumentteori Elisabeth T. Isaksen Universitetet i Oslo Kurs: ECON1210 Pensum: M&T, kap 5 + notat om nåverdier Dato: 2. og 9. nov 2016 Elisabeth T. Isaksen (UiO) Nåverdi

Detaljer

Leseveiledning til 02.03

Leseveiledning til 02.03 Leseveiledning til 0.03 Fortsetter på konsumentens valg mellom goder: Hva er det beste valget for konsumenten gitt at hun må holde seg på budsjettbetingelsen? Indifferenskurvene (IK) bestemmer konsumentens

Detaljer

Løsningsforslag seminar 1

Løsningsforslag seminar 1 Løsningsforslag seminar Econ 360/460, Høst 06 Oppgave a) dx = a dn dx = dn N = N Tolkning: Økning i produksjonen (av henholdsvis vare og ) når mengden arbeidskraft som benyttes i produksjonen økes med

Detaljer

Econ 2200 H04 Litt om anvendelser av matematikk i samfunnsøkonomi.

Econ 2200 H04 Litt om anvendelser av matematikk i samfunnsøkonomi. Vidar Christiansen Econ 00 H04 Litt om anvendelser av matematikk i samfunnsøkonomi. Et viktig formål med kurset er at matematikk skal kunne anvendes i økonomi, og at de matematiske anvendelser skal kunne

Detaljer

Forelesning 5: Nåverdi og konsumentteori

Forelesning 5: Nåverdi og konsumentteori Forelesning 5: Nåverdi og konsumentteori Elisabeth T. Isaksen Universitetet i Oslo Kurs: ECON1210 Pensum: M&T, kap 5 + notat om nåverdier Dato: 23. feb 2015 Elisabeth T. Isaksen (UiO) Nåverdi og konsumentteori

Detaljer

Aksjeavkastningsparadoxet

Aksjeavkastningsparadoxet Aksjeavkastningsparadoxet Kjell Arne Brekke October 16, 2001 1 Mer om risikofrie sannsynligheter Vi skal nå tilbake til modellen vi studerte ovenfor, med to tidsperioder og en konsumvare i hver periode.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON00 Dato for utlevering: 1.03.01 Dato for innlevering: 9.03.01 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved SV-infosenter mellom kl. 1.00-14.00 Øvrig informasjon:

Detaljer

Tips og kommentarer til løsning av repetisjonsoppgaver (altså ikke fullstendige løsningsforslag som ville egne seg i en eksamensbesvarelse)

Tips og kommentarer til løsning av repetisjonsoppgaver (altså ikke fullstendige løsningsforslag som ville egne seg i en eksamensbesvarelse) Tips og kommentarer til løsning av repetisjonsoppgaver (altså ikke fullstendige løsningsforslag som ville egne seg i en eksamensbesvarelse) Oppgave 1 Når prisen på medisinen ZZ økte med 20% gikk etterspørselen

Detaljer

Konsumentenes etterspørsel

Konsumentenes etterspørsel Konsumentenes etterspørsel Astrid Marie Jorde Sandsør Torsdag 14.02.2013 Dagens forelesning Hva ligger bak etterspørselskurven? En konsument som kan velge mellom to goder Hvilke kombinasjoner av godene

Detaljer

Innledning. Offentlig sektor i Norge. teori. sektors produksjon av varer og tjenester.

Innledning. Offentlig sektor i Norge. teori. sektors produksjon av varer og tjenester. I dag: Innledning uke 35 Innledning Offentlig sektor i Norge Noen byggesteiner fraenkel mikroøkonomisk teori Hva er offentlig økonomi? I mange økonomikurs lærer vi om privat sektors produksjon av varer

Detaljer

En oversikt over økonomiske temaer i Econ2200 vår 2009.

En oversikt over økonomiske temaer i Econ2200 vår 2009. En oversikt over økonomiske temaer i Econ2200 vår 2009. Konsumentteori Består av tre deler: i) Grunnmodell: kjøp av to goder i en periode, ii) valg av forbruk og sparing i to perioder, iii) valg av fritid

Detaljer

Modell for en blandingsøkonomi

Modell for en blandingsøkonomi ECON3610 Forelesning 5 Skiftanalyse: Blandingsøkonomi Marked og optimalitet Effektivitetsbegreper Modell for en blandingsøkonomi Fra sist: 3 typer aktører husholdningssektoren (nyttemaksimerende) private

Detaljer

Sensorveiledning. Econ 3610/4610, Høst 2016

Sensorveiledning. Econ 3610/4610, Høst 2016 Sensorveiledning Econ 3610/4610, Høst 2016 Deloppgavene i oppgaven har selvfølgelig forskjellig vanskelighetsgrad Oppgave 1 er helt enkel, men også oppgave 2 og 3 er ganske elementære For å bestå eksamen

Detaljer

SØK2AVD Mikro Offentlig økonomikk

SØK2AVD Mikro Offentlig økonomikk SØK2AVD Mikro Offentlig økonomikk Professor Nils-Henrik M. von der Fehr 4. mai 2003 Contents 1 Innledning 1 2 Pareto-optimal beskatning 2 2.1 Lump-sumbeskatning... 2 2.2 Proporsjonalbeskatningavallegoder...

Detaljer

Løsningsveiledning, Seminar 9

Løsningsveiledning, Seminar 9 Løsningsveiledning, Seminar 9 Econ 3610/4610, Høst 2016 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og 2. Denne aktøren representerer mange aktører

Detaljer

Veiledning til Obligatorisk øvelsesoppgave ECON 3610/4610 høsten 2009

Veiledning til Obligatorisk øvelsesoppgave ECON 3610/4610 høsten 2009 Jon Vislie Oktober 009 Veiledning til Obligatorisk øvelsesogave ECON 360/460 høsten 009 Ogave. I den lukkede økonomien du betrakter er det to gruer av arbeidstakere; en grue vi kaller og en grue vi kaller.

Detaljer

BESLUTNINGER UNDER USIKKERHET

BESLUTNINGER UNDER USIKKERHET 24. april 2002 Aanund Hylland: # BESLUTNINGER UNDER USIKKERHET Standard teori og kritikk av denne 1. Innledning En (individuell) beslutning under usikkerhet kan beskrives på følgende måte: Beslutningstakeren

Detaljer

Veiledning oppgave 3 kap. 2 i Strøm & Vislie (2007) ECON 3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk

Veiledning oppgave 3 kap. 2 i Strøm & Vislie (2007) ECON 3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk 1 Jon Vislie; august 27 Veiledning oppgave 3 kap. 2 i Strøm & Vislie (27) ECON 361/461 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Vi betrakter en lukket økonomi der vi ser utelukkende på bruk av

Detaljer

SØK400 våren 2002, oppgave 9 v/d. Lund

SØK400 våren 2002, oppgave 9 v/d. Lund SØK400 våren 2002, oppgave 9 v/d. Lund Igjen har vi en eksamensoppgave som ligger veldig nær noe som står under Applications i boka, nemlig 4.B4 og oppgave 13 til kapittel 4. Boka bruker toppskrift G der

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 Diderik Lund Økonomisk institutt Universitetet i Oslo 30. september 2011 Vil først gå gjennom de fire siste sidene fra forelesning

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Eksamensdag: Tirsdag 17. desember 2013 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet

Detaljer

I denne delen skal vi anvende det generelle modellapparatet for konsumentens valg til å studere beslutninger om arbeidstid.

I denne delen skal vi anvende det generelle modellapparatet for konsumentens valg til å studere beslutninger om arbeidstid. ECON 1210 Forbruker, bedrift og marked Forelesningsnotater 26.09.07 Nils-Henrik von der Fehr ARBEID OG FRITID Innledning I denne delen skal vi anvende det generelle modellapparatet for konsumentens valg

Detaljer

Veiledning til enkelte oppgaver i ECON2200 Matematikk 1/Mikroøkonomi 1, Våren 2012

Veiledning til enkelte oppgaver i ECON2200 Matematikk 1/Mikroøkonomi 1, Våren 2012 niversitetet i Oslo Jon Vislie Veiledning til enkelte oppgaver i ECON00 Matematikk /Mikroøkonomi, Våren 0 Oppgave. Produksjons og markedsteori (Se også oppgave 5 i kap. 5 og oppgave 9 i kap. 3 i Strøm

Detaljer

Forelesning 12. Optimal skatt Vridende skatter, skattekostnad

Forelesning 12. Optimal skatt Vridende skatter, skattekostnad ECON3610 Forelesning 12 Optimal skatt Vridende skatter, skattekostnad Fagutvalget og Økonomisk institutt inviterer til møte om Finanskrisen i Norge onsdag 12. november kl. 14.15 16.00 i auditorium 1 i

Detaljer

Offentlig sektor i en blandingsøkonomi

Offentlig sektor i en blandingsøkonomi ECON3610 Forelesning 4 Generell likevekt, blandet økonomi Offentlig versus privat produksjon Anvendelse av ressurser: Konsum versus innsatsfaktorer Offentlig sektor i en blandingsøkonomi Realløsningen

Detaljer

ECON3730, Løsningsforslag obligatorisk oppgave

ECON3730, Løsningsforslag obligatorisk oppgave ECON3730, Løsningsforslag obligatorisk oppgave Eva Kløve eva.klove@esop.uio.no 14. april 2008 Oppgave 1 Regjeringen har som mål å øke mengden omsorgsarbeid i offentlig sektor. Bruk modeller for arbeidstilbudet

Detaljer

ECON 3610/4610 høsten 2012 Veiledning til seminaroppgave 2 uke 37

ECON 3610/4610 høsten 2012 Veiledning til seminaroppgave 2 uke 37 Jon Vislie ECO 360/460 høsten 0 Veiledning til seminaroppgae uke 37 I de første forelesningene har i sett på følgende problemstilling (modell): Velg den allokering a arbeidskraft til fremstilling a to

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 12. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 12. mars 2002 Usikkerhet, disposisjon Denne og neste forelesning: o Et individs beslutninger under usikkerhet o Varian kapittel 11 De to forelesningene deretter: o Markeder under usikkerhet, finansmarkeder o Frikonkurranse;

Detaljer

ECON3730, Løsningsforslag deler av seminar 5

ECON3730, Løsningsforslag deler av seminar 5 ECON3730, Løsningsforslag deler av seminar 5 Eva Kløve eva.klove@esop.uio.no 24.april B Konsum i to perioder 2) Budsjettbetingelse og helning Budsjettlinjen er c 1 + c 2 1+r = y. Helningen er (1 + r).

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

Så deriverer jeg denne funksjonen på hensyn av hver av de tre variablene jeg sitter igjen med.

Så deriverer jeg denne funksjonen på hensyn av hver av de tre variablene jeg sitter igjen med. Eksamensbesvarelse ECON3610 Oppgave 1 At en situasjon er paretooptimal vil si at man er i en situasjon der man gjennom omallokering ikke har muligheten til å gjøre at noen av partene får det bedre uten

Detaljer

Løsningsforslag til eksamen i 2200, mai 06

Løsningsforslag til eksamen i 2200, mai 06 Løsningsforslag til eksamen i 00, mai 06 1. (a) f (K) = (1 K )( K) = 4K(1 K ), ved kjerneregelen. (llers kan en multilisere ut og så derivere.) (b) dy/dt = F 1(K, t)(dk/dt) +F (K, t) = F 1(K, t)( rk 0

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØONOMI, FINANS OG REGNSAP EINAR BESOM HØST 2017 FOREESNINGSNOTAT 5 Produksjonsteknologi og kostnader* Dette notatet tar sikte på å gi innsikt om hva som ligger bak kostnadsbegrepet i mikroøkonomi

Detaljer

Obligatorisk oppgave

Obligatorisk oppgave Obligatorisk oppgave ECON 500 Kjell Arne Brekke Økonomisk Institutt May 3, 200 KAB (Økonomisk Institutt) Oblig ECON 500 May 3, 200 / 8 Generelt Makrodelen ikke et eksempel på en eksamensoppgave, men en

Detaljer

Mikroøkonomi - Superkurs

Mikroøkonomi - Superkurs Mikroøkonomi - Superkurs Oppgave dokument Antall emne: 7 Emner Antall oppgaver: 104 Oppgaver Antall sider: 27 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet.

Detaljer

Mikroøkonomi - Intensivkurs

Mikroøkonomi - Intensivkurs Mikroøkonomi - Intensivkurs Oppgave dokument Antall emne: 7 Emner Antall oppgaver: 52 Oppgaver Antall sider: 15 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet.

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

Mer om generell likevekt Åpen økonomi, handelsgevinster

Mer om generell likevekt Åpen økonomi, handelsgevinster ECON3610 Forelesning 3 Mer om generell likevekt Åpen økonomi, handelsgevinster Fra sist: Transformasjonskurvens krumning c 2, x 2 T funksjonen: T(x 1, x 2 ; N) := F 1 (x 1 ) + G 1 (x 2 ) N = 0 T kurven:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: Econ 00 - MMI Dato for utlevering: Mandag 16. mars 009 Dato for innlevering: Tirsdag 1. mars 009 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Dato for utlevering: 16.09.2016 Dato for innlevering: 07.10.2016 innen kl. 15.00

Detaljer

Econ1220 Høsten 2006 Forelesningsnotater

Econ1220 Høsten 2006 Forelesningsnotater Econ1220 Høsten 2006 Forelesningsnotater Hilde Bojer 18. september 2006 1 29 august: Effektivitet Viktige begrep Paretoforbedring Paretooptimum = Paretoeffektivitet Effektivitet i produksjonen Effektivitet

Detaljer

Mikroøkonomi - Intensivkurs

Mikroøkonomi - Intensivkurs Mikroøkonomi - Intensivkurs Fasit dokument Antall emne: 7 Emner Antall oppgaver: 52 Oppgaver Antall sider: 29 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet.

Detaljer

Seminar 6 - Løsningsforslag

Seminar 6 - Løsningsforslag Seminar 6 - Løsningsforslag Econ 3610/4610, Høst 2016 Oppgave 1 Vi skal her se på hvordan en energiressurs - som finnes i en gitt mengde Z - fordeles mellom konsum for en representativ konsument, og produksjon

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer