Permutasjoner og utvalg

Størrelse: px
Begynne med side:

Download "Permutasjoner og utvalg"

Transkript

1 Permutasjoner og utvalg En permutasjon av en samling objekter er en eller annen rekkefølge objektene i samlingen kan settes opp i. Eksempel 1 Gitt bokstavene a, b, c og d. Da er følgende oppstillingen en permutasjon: a, b, c, d c, b, a, d d, a, b, c b, a, d, c De fire bokstavene kan permuteres på = 4! = 24 måter. Eksempel 2 Gitt tallene 11, 12, 13, 14, 15 og 16. Da er følgende oppstillingen en permutasjon: 11, 12, 13, 14, 15, 16 13,16, 14, 11, 12, 15 16, 15, 14, 13, 12, 11 15, 14, 11, 12, 13, 16 De seks tallene kan permuteres på = 6! = 720 måter. Antall forskjellige permutasjoner Gitt n forskjellige objekter. Det er n muligheter for å velge det som skal stå først, n-1 mulighet for å velge det som skal stå nest først, osv. Til sammen blir det: n (n-1) (n-2). 2 1 = forskjellige permutasjoner. NB! leses som «n fakultet». 1

2 Ordnede r-utvalg (eller r-permutasjoner) Gitt n forskjellige objekter. Ut fra disse n objektene skal vi velge r objekter i rekkefølge. Et slikt utvalg kalles et ordnet r- utvalg eller en r-permutasjon fordi rekkefølgen objektene velges i har betydning. Spørsmål: Hvor mange forskjellige ordnede r-utvalg er det? Svar: n muligheter for å velge det som skal stå først, n-1, mulighet for å velge det som skal stå nest først, osv. til n-r+1 muligheter for å velge det siste av de r objektene som skal velges. Dermed får vi: n (n-1) (n-2). (n-r+1) = (n r)! Læreboka bruker formelen P(n, r) = (n r)! (P står for Permutasjon, som betyr at rekkefølgen objektene velges i har betydning.) Eksempel 1 Gitt tallene 1 til 6. Hvor mange ordnede 3-utvalg er det? Her er n = 6 og r = 3. Vi får da = 6! = 6! = (n r)! (6 3)! 3! = = 120 Eksempel 2 Gitt bokstavene A til Å. Hvor mange ordnede 5-utvalg er det? Her er n = 29 og r = 5. Vi får da = 29! = 29! = = (n r)! (29 5)! 24! 2

3 Eksempel 3 En forening har 50 medlemmer. De skal velges et styre på fire personer (leder, nestleder, kasserer og sekretær). Hvor mange forskjellige styresammensetninger er det mulig å få til? Her er n = 50 og r = 4. Vi får da 50! = 50! = = (50 4)! 46! Legg merke til at antall faktorer i svaret er lik r. Uordnede r-utvalg eller r-kombinasjoner Hvis en velger et utvalg på r stykker fra en samling på n forskjellige objekter og rekkefølgen ikke er av betydning, kalles det et uordnet r-utvalg eller en r-kombinasjon. Ta som eksempel tallene fra 1 til 10. Vi skal velge tre tall, f.eks. 2, 5, 8. De samme tallene kan også velges ut i disse rekkefølgene: 2, 8, 5 5, 2, 8 8, 5, 2 8, 2, 5. De tre tallene 2, 5 og 8 kan velges på 3! forskjellige måter, men når rekkefølgen ikke betyr noe, vil alle disse 3! utvalgene utgjøre det samme utvalget. Dermed må vi dele det tilsvarende 3-permutasjonen på 3!: 10! (10 3)! 3! = 10! (10 3)! 3! = ! forskjellige uordnede r-utvalg. = = 120 3

4 Dette gir oss følgende viktige formel: (n r)! r! = (n r)! r! Læreboka bruker formelen C(n, r) = (n r)! r! (C står for Combination, som betyr at rekkefølgen objektene velges i ikke har betydning.) Eksempel Gitt en kortstokk med 52 kort. Hvor mange korthender på 5 kort finnes det. Rekkefølgen av kortene velges i spiller ingen rolle. Her er n = 52 og r = 5. Vi får: = 52! (n r)! r! = 52! = (52 5)! 5! 47! 5! = = Denne formelen er så viktig at den har fått sitt eget symbol: ( n r ) = (n r)! r! r 0, n 0 Symbolet ( n ) leses som «n over r» og kalles for en r binomialkoeffisient. Læreboka bruker som sagt 4

5 C(n, r) istedenfor ( n ) og P(n, r) istedenfor r Merk! r = 0 gir mening: ( n ) = 1 fordi 0! = 1 0 (n r)! Eksempel Hvor mange bit-sekvenser av lengde 8 har nøyaktig 3 1-ere (og dermed 5 0-ere)? Vi kan velge de 3 plassene der det skal være 1-ere på ( 8 3 ) forskjellige måter: ( 8 3 ) = 8! (8 3)! 3! = = 56 Av de 2 8 = 256 mulige bit-sekvensene er det 56 som har nøyaktig 3 1-ere. Vi kunne ha tenkt omvendt: Det må være like mange bitsekvenser av lengde 8 som har nøyaktig 5 0-ere som det er bit-sekvenser med nøyaktig 3 1-ere, dvs. ( 8 3 ) = (8 5 ) ( 8 5 ) = 8! (8 5)! 5! = = = 56 Dette gir oss følgende formel: ( n r ) = ( n n r ) 5

6 Andre viktige observasjoner: 0! = 1 ( 0 0 ) = 1 (n 0 ) = 1 (n 1 ) = n (n n ) = 1 Utvalg med tilbakelegging Gitt n forskjellige objekter. Vi skal velge r objekter på en slik måte at for hvert objekt vi velger, noterer vi hvilket det er og legger det tilbake. Det betyr at vi kan velge det samme objektet flere ganger. 1. Ordnet r-utvalg med tilbakelegging. Hvis rekkefølgen objektene velges i har betydning kalles det et ordnet r-utvalg med tilbakelegging. (eng. permutation with reptition) Det første objektet kan velges på n måter. Når objektet legges tilbake vil det også være n måter å velge neste objekt, osv. Dermed får vi følgende antall mulige utvalg: n n n n n = n r Eksempel Gitt bokstavene A, B og C. Hvor mange ordnede 5-utvalg med tilbakelegging finnes det? Svar: = 3 5 = Uordnet r-utvalg med tilbakelegging. Hvis rekkefølgen objektene velges i ikke har betydning kalles det et uordnet r-utvalg med tilbakelegging. (eng. combination with repetition) Eksempel. 6

7 Gitt bokstavene A, og B. Hvor mange uordnede 3-utvalg med tilbakelegging finnes det? Vi finner først alle ordnede 3-utvalg: Vi fikk 2 3 = 8 ordnede utvalg. De tre utvalgene med to A er og en B sees på som samme utvalg når vi ser bort fra rekkefølgen. Tilsvarende for de tre utvalgene med utvalgene med to B er og en A. Dermed er har vi kun fire forskjellige uordnede utvalg: AAA, AAB, BBA, BBB. Vi har følgende formel for uordnede utvalg med tilbakelegging: n + r 1 ( ) r Oppsummering Gitt n forskjellige objekter og r objekter som vi skal velge: Ordnet Uten tilbakelegging (n r)! Med tilbakelegging n r Uordnet ( n r ) n + r 1 ( ) r Alternativ form for tilbakelegging: Vi skal nå tenke oss at samlingen av objekter vi skal velge fra har nok eksemplarer av hvert type (n forskjellige typer) til å velge alle mulige r-utvalg. 7

8 Eksempel. I fruktdisken i butikken er det epler, pærer og appelsiner. Vi skal kjøpe 4 frukter. På hvor mange måter kan dette gjøres? Vi har et uordnet 4-utvalg (med tilbakelegging 1 ) der n = 3 og r = 4. ( ) = ( ) = (6 2 ) = = 15 Permutasjon der det inngår like verdier. Hvis vi har n forskjellige objekter, kan de permuteres på forskjellige måter. Men hvis noen av objektene er like er det annerledes! Eksempel Gitt bokstavene A, A, A, B, B, C, dvs. 6 bokstaver. Hvor mange måter kan disse permuteres på? Vi kan dele hele oppgaven opp i 3 deloppgaver: 1. Vi starter med å beregne hvor mange måter vi kan plassere A ene på. Vi har 6 plasser å velge mellom og skal plassere 3 stykker. Dette kan sammenlignes med å skulle velge ut 3 plasser av 6 mulige. Dermed får vi n = 6 (antall mulige valg av plass for A) r = 3 (antall plasser som skal velges A ene) Mulige plasseringer for A ene blir: ( n r ) = (6 3 ) A A A 1 NB! «med tilbakelegging» menes det i denne forbindelse at samme type frukt kan velges flere ganger. 8

9 2. Etter at A ene er plassert skal vi plassere B ene. Det er nå 3 ledige plasser å velge mellom og skal vi velge 2 av dem (fordi vi har 2 B er). Dermed blir n = 3 og r = 2 og vi får ( n r ) = (3 2 ) mulige plasseringer av B ene etter at A ene er plassert. A B A B A 3. Etter at alle A er og begge B ene er plassert skal C en plasseres. Nå er det imidlertid kun en plass som skal velges, men også bare en ledig plass igjen slik at n = r = 1. Bruker vi samme formel får vi ( n r ) = (1 ) = 1 plass å plassere C-en. 1 Løsningen på hele oppgaven blir produktet av de tre deloppgavene: ( 6 3 ) (3 2 ) (1 1 ) = (6 3 ) ( ) =(6 3 ) ( )= 1 3 = Generelt. Gitt n objekter der k av dem er forskjellige. Anta at det er n 1 stykker av type 1, n 2 stykker av type 2, n 3 stykker av type 3, osv. til n k stykker av type k. Da har vi at n = n 1 + n 2 + n n k De n objektene kan permuteres på ( n n 1 ) ( n n 1 n 2 ) ( n n 1 n 2 n 3 ). = n 1! n 2! n 3! n k! 9

10 Eksempel 1 Hvor mange måter kan bokstavene i ordet RABARBRA stokkes om? Totalt er det 8 bokstaver hvorav det er 3 A er, 3 R er og 2 B er. Dermed blir svaret: 8! 3! 3! 2! = = = Eksempel 2 Hvor mange måter kan bokstavene i ordet SUPPEPOSE stokkes om? Totalt er det 9 bokstaver hvorav det er 3 P er, 2 S er, 2 E er, 1 U, og 1 O. Dermed blir svaret: 9! 3! 2! 2! 1! 1! = = 3 7! = Eksempel 3 Hvor mange måter kan bokstavene i ordet KULTURUKE stokkes om? Totalt er det 9 bokstaver hvorav det er 3 U er, 2 K er, 1 L, 1 T, 1 R og 1 E. Dermed blir svaret: 9! 3! 2! 1! 1! 1! 1! = = Dikteren Jan Erik Vold utgav i 1969 diktsamlingen «Kykelipi». Et av diktene handler om omstokking av bokstavene i ordet KULTURUKE. Det inneholdt følgende omstokking: 10

11 Hør dikterens egen opplesing på Youtube: Samme ide i en annen sammenheng. Anta at vi har n forskjellige objekter som skal deles i k grupper. Det skal være n 1 stykker i gruppe 1, n 2 stykker i gruppe 2, n 3 stykker i gruppe 3, osv. til n k stykker i gruppe k. Vi har at n = n 1 + n 2 + n n k Dette kan gjøres på følgende antall måter: n 1! n 2! n 3! n k! Eksempel I kortspillet Bridge fordeles hele kortstokken på 52 kort på 4 spillere slik at de hver får 13 kort. På hvor mange måter kan kortene deles ut? (NB! Her spiller rekkefølgen en rolle.) Svar: 52! 13! 13! 13! 13! = 11

12 12

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n forskjellige objekter. Vi skal velge r objekter på en slik måte at for hvert objekt vi velger, noterer vi hvilket det er og legger det tilbake. Det betyr at vi kan velge

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller

Detaljer

10.5 Mer kombinatorikk

10.5 Mer kombinatorikk bestemt person skal utvikle en hjertesykdom er 70 %. Har du noen forslag på hvilket grunnlag en slik sannsynlighet kan settes opp? 10.5 Mer kombinatorikk Den måten å nærme seg løsningen på kombinatoriske

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT3 Diskret Matematikk Forelesning 2: Mer kombinatorikk Dag Normann Matematisk Institutt, Universitetet i Oslo 3. april 2 (Sist oppdatert: 2-4-3 4:3) Kapittel 9: Mer kombinatorikk MAT3 Diskret Matematikk

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

Øvingsforelesning 6. Kombinatorikk, generaliserte permutasjoner, og MP13. TMA4140 Diskret Matematikk. 08. og 10. oktober 2018

Øvingsforelesning 6. Kombinatorikk, generaliserte permutasjoner, og MP13. TMA4140 Diskret Matematikk. 08. og 10. oktober 2018 Kombinatorikk, generaliserte permutasjoner, og MP13 Øvingsforelesning 6 TMA4140 Diskret Matematikk 08. og 10. oktober 2018 Dagen i dag Per forespørsmål, MP15.4 Trediagram Produktssetningen Permutasjoner

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,

Detaljer

Microsoft Mathematics Brukermanual matematikk vgs

Microsoft Mathematics Brukermanual matematikk vgs Microsoft Mathematics Brukermanual matematikk vgs Generelt om Microsoft Mathematics... 2 Nedlasting... 2 Innholdsoversikt... 2 Fremgangsmåte... 3 Tall og algebra... 4 Omgjøring mellom enheter... 4 Likninger...

Detaljer

Sannsynlighet oppgaver

Sannsynlighet oppgaver Sannsynlighet oppgaver Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 4 3.3 Sannsynlighetsberegninger... 8 3.4 Hypergeometrisk sannsynlighetsmodell... 9 3.5 Binomisk sannsynlighetsmodell...

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 21: Mer kombinatorikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 15. april 2009 (Sist oppdatert: 2009-04-15 00:05) Kapittel 9: Mer kombinatorikk

Detaljer

Sannsynlighet løsninger

Sannsynlighet løsninger Sannsynlighet løsninger Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 5 3.3 Sannsynlighetsberegninger... 10 3.4 Hypergeometrisk sannsynlighetsmodell... 12 3.5 Binomisk sannsynlighetsmodell...

Detaljer

Sannsynlighet S1, Prøve 1 løsning

Sannsynlighet S1, Prøve 1 løsning Sannsynlighet S, Prøve løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave a) Bruk figuren til høyre og fyll inn tall i rutene slik at figuren viser de fem første linjene i Pascals trekant. I et

Detaljer

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon.

Vi definerer en mengde ved å fortelle hva den inneholder. Vi kan definere den på listeform eller ved hjelp av en utsagnsfunksjon. Mengder En mengde (eng:set) er en uordnet samling av objekter. Vi bruker vanligvis store bokstaver, A, B, C, osv., til å betegne mengder. Objektene som inngår i mengden kalles for elementer i mengden (eller

Detaljer

Hvorfor sannsynlighetsregning og kombinatorikk?

Hvorfor sannsynlighetsregning og kombinatorikk? Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Sannsynlighet og kombinatorikk i videregående skole

Sannsynlighet og kombinatorikk i videregående skole Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Oppgaver som utfordrer og engasjerer

Oppgaver som utfordrer og engasjerer 1 av 5 Oppgaver som utfordrer og engasjerer Forfatter: Anne-Gunn Svorkmo Publisert: 8. januar 2019 2 av 5 Alle elever trenger å bli utfordret kognitivt i matematikkundervisningen, også elever som presterer

Detaljer

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland Kapittel 2, Sannsyn 2.1 Utfallsrom Onsdag 2.2 Hendingar Onsdag 2.3 Telle mogeleg utfall: I dag 2.4 Sannsyn for ei hending: Onsdag 2.5 Addetive reglar: Onsdag 2.6 Betinga sannsyn, uavhengighet og produktregelen

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/21 Produktregel for valgprosess TEO 2.1

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger.

Detaljer

Backtracking: Kombinatorikk og permutasjoner

Backtracking: Kombinatorikk og permutasjoner Backtracking: Kombinatorikk og permutasjoner Litt kombinatorikk Kombinatorikk: Metoder og formler for å telle opp antall mulige måter som vi kan gjennomføre steg-for-steg prosesser på Eksempler: Hvor mange

Detaljer

Kompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk...

Kompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk... Sannsynlighet Innhold Kompetansemål Sannsynlighet, S1... 2 Innledning... 2 3.1 Pascals talltrekant... 3 Binomialkoeffisienter... 6 3.2 Kombinatorikk... 9 Ordnet og uordnet utvalg... 10 Med og uten tilbakelegging...

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017

Løsningsforlag til eksamen i Diskret matematikk. 29. november 2017 Løsningsforlag til eksamen i Diskret matematikk 29. november 2017 Oppgave 1, 2, 3, 4, 5 og 6 teller likt. For å få full score må man vise hvordan man har kommet frem til svarene (ved f. eks. figurer eller

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018

Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018 Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk Oppgave 1. ( 9 3 ) = 9 8 7 3 2 1 = 3 4 7 = 84 Høsten 2018 {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, { 2, 5, 8}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7},

Detaljer

INF1800 Forelesning 2

INF1800 Forelesning 2 INF1800 Forelesning 2 Mengdelære Roger Antonsen - 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste av det vi gjør her kan leses uavhengig av boken. Følgende avsnitt i boken

Detaljer

Relasjoner - forelesningsnotat i Diskret matematikk 2017

Relasjoner - forelesningsnotat i Diskret matematikk 2017 Relasjoner Utdrag fra avsnitt 9.1, 9.3, 9.4 og 9.5 i læreboka 9.1 - Relasjoner 9.3 - Operasjoner på relasjoner 9.4 - Utvidelser av relasjoner - tillukninger 9.5 - Ekvivalensrelasjoner og ekvivalensklasser

Detaljer

Opptelling - counting

Opptelling - counting Opptelling - counting Kombinatorikk og sannsynlighetsregning er en viktig del av diskret matematikk. Her studeres ulike beregnings- og telleteknikker for å beregne sannsynlighet, antall, kapasitet eller

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

Løsningsforslag til tidligere mappeoppgaver

Løsningsforslag til tidligere mappeoppgaver til tidligere mappeoppgaver Avdeling for Lærerutdanning Høgskolen i Vestfold M1 høst 007 9. november 007 Her legger vi ut løsningsforslag til noen oppgaver fra tidligere i år. Se på http://www-lu.hive.no/team/t06ab/todelt-logg.htm

Detaljer

Mengdelære INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE. Læreboken. Mengder. Definisjon (Mengde) Roger Antonsen

Mengdelære INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE. Læreboken. Mengder. Definisjon (Mengde) Roger Antonsen INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Mengdelære Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Læreboken Mengder Definisjon

Detaljer

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk.

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.

Detaljer

Emnekode: LGU Emnenavn: Matematikk 2 (5 10), emne 2. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU Emnenavn: Matematikk 2 (5 10), emne 2. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 52003 Emnenavn: Matematikk 2 (5 10), emne 2 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Grafen i Vedlegg 1 viser farten som en deltaker i et ultramaraton holder

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

I tillegg trengs 2 terninger.

I tillegg trengs 2 terninger. SORIA MORIA 1 Informasjonsdokument Element - og andre spill - Spilleregler for kortspillene Element, Guldag, Slagmark, Svinepels/Niding & Kul Spillene består av en kortstokk med 72 kort. På kortene finner

Detaljer

Forelesning 19. Kombinatorikk. Dag Normann mars Oppsummering. Oppsummering. Oppsummering

Forelesning 19. Kombinatorikk. Dag Normann mars Oppsummering. Oppsummering. Oppsummering Forelesning 19 Dag Normann - 26. mars 2008 Oppsummering Før påske gikk vi gjennom kapitlene 1-7 i læreboka. De omfattet Eksempler på algoritmer og bruk av pseudokoder. Forskjellige tallsystemer. Hvordan

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 19: Kombinatorikk

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 19: Kombinatorikk Oppsummering MAT1030 Diskret matematikk Forelesning 19: Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mars 2008 Før påske gikk vi gjennom kapitlene 1-7 i læreboka. De omfattet Eksempler på

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Opptelling - forelesningsnotat i Diskret matematikk 2015. Opptelling

Opptelling - forelesningsnotat i Diskret matematikk 2015. Opptelling Opptelling Produktregelen. Anta at en oppgave kan deles opp i to deloppgaver og at hver av dem kan løses uavhengig av hverandre. Anta et første deloppgave kan løses på m forskjellige måter og at andre

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Binomialkoeffisienter

Binomialkoeffisienter Binomialkoeffisienter Litt repetisjon: ( n r ) = n! (n r)! r! r 0, n 0 Dette gir oss fordi ( n r ) = ( n n r ) ( n n 1 ) = n ( n n 1 ) = ( n n (n 1) ) = (n 1 ) = n Andre viktige observasjoner: 0! = 1 (

Detaljer

Forelesningsnotat i Diskret matematikk 27. september 2018

Forelesningsnotat i Diskret matematikk 27. september 2018 Kvadratiske matriser Hvis en matrise A er kvadratisk kan den multipliseres med seg selv. Vi skriver vanligvis A 2 istedenfor AA, A 3 istedenfor AAA, osv. Spesielt er A 1 = A. Enhetsmatriser, også kalt

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 26: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk

Detaljer

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn

Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot. barn Forelesning 26 Trær Dag Normann - 28. april 2008 Oppsummering Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot barn barn barnebarn barnebarn barn blad Her er noen

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning 6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

INF1040 Oppgavesett 6: Lagring og overføring av data

INF1040 Oppgavesett 6: Lagring og overføring av data INF1040 Oppgavesett 6: Lagring og overføring av data (Kapittel 1.5 1.8) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende oppgaver

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller.

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller. "FBI-spillet" ------------- Et spill for 4 spillere av Henrik Berg Spillmateriale: --------------- 1 vanlig kortstokk - bestående av kort med verdi 1 (ess) til 13 (konge) i fire farger. Kortenes farger

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

Utforskende samarbeidsoppgaver som metode for dybdelæring

Utforskende samarbeidsoppgaver som metode for dybdelæring Utforskende samarbeidsoppgaver som metode for dybdelæring Kjerneelementer matematikk utforsking og problemløsing modellering og anvendelser resonnering og argumentasjon representasjon og kommunikasjon

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2010 (Sist oppdatert: 2010-02-17 12:41) MAT1030 Diskret Matematikk

Detaljer

Egenskaper til relasjoner på en mengde A.

Egenskaper til relasjoner på en mengde A. Egenskaper til relasjoner på en mengde A. Refleksivitet Relasjonen er refleksiv hvis (a, a) R for alle a A. Vi kan se det ut fra: 1) Grafen: R er refleksiv hvis alle punktene i grafen har en sløyfe. 2)

Detaljer

1 av 7. Institutt for lærerutdanning Matematikksenteret. Hvordan utfordre? Forfatter: Anne-Gunn Svorkmo. Publisert: 8. januar Matematikksenteret

1 av 7. Institutt for lærerutdanning Matematikksenteret. Hvordan utfordre? Forfatter: Anne-Gunn Svorkmo. Publisert: 8. januar Matematikksenteret 1 av 7 Hvordan utfordre? Forfatter: Anne-Gunn Svorkmo Publisert: 8. januar 2019 2 av 7 For å lykkes i matematikk er det blant annet viktig å kunne arbeide systematisk og strukturert. Dette er noe alle

Detaljer

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk Forrige forelesning oppsummert på 90 sekunder "stokastisk forsøk": myntkast, terningkast, trekking av kort,... utfallsrom: alle de mulige utfallene av et stokastisk forsøk eksempel på utfallsrom: kaster

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Læreplan. Forsøk og simuleringer. Sannsynlighet 3.3 Sum av sannsynligheter 5.4 Multiplikasjonsprinsippet 9.5 Uavhengige hendinger 0. Avhengige hendinger 5 Symboler, formler og eksempler

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

ECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind

ECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 3: Sannsynlighet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Hva er sannsynlighet? 2. Grunnleggende regler for sannsynlighetsregning 3. Tilfeldighet i datamaskinen

Detaljer

Emnenavn: Geometri, måling, statistikk og sannsynlighetsregning 2 (5-10) Eksamenstid: 09:00 15:00 Faglærere: Russell Hatami

Emnenavn: Geometri, måling, statistikk og sannsynlighetsregning 2 (5-10) Eksamenstid: 09:00 15:00 Faglærere: Russell Hatami EKSAMEN Emnekode: LMAT10415 og LUMAT10415 Dato: Torsdag 14. juni 2018 Hjelpemidler: Kalkulator Emnenavn: Geometri, måling, statistikk og sannsynlighetsregning 2 (5-10) Eksamenstid: 09:00 15:00 Faglærere:

Detaljer

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008 MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Å ARBEIDE MED MATEMATIKK SAMMEN MED BARNET DITT

Å ARBEIDE MED MATEMATIKK SAMMEN MED BARNET DITT Å ARBEIDE MED MATEMATIKK SAMMEN MED BARNET DITT Matema&kk kan omhandle både antall, rom og form. Barn trenger mange og varierte erfaringer med å telle, tegne og snakke om tall. Kanskje er den matema&kken

Detaljer

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5 Forelesning 9 Mengdelære Dag Normann - 11. februar 2008 OVER TIL KAPITTEL 5 De fleste som tar MAT1030 har vært borti mengder i en eller annen form tidligere. I statistikk og sannsynlighetsteori på VGS

Detaljer

Backtracking som løsningsmetode

Backtracking som løsningsmetode Backtracking Backtracking som løsningsmetode Backtracking løser problemer der løsningene kan beskrives som en sekvens med steg eller valg Kan enten finne én løsning eller alle løsninger Bygger opp løsningen(e)

Detaljer

Avsnitt 6.1 Opptelling forts.

Avsnitt 6.1 Opptelling forts. Avsnitt 6.1 Opptelling forts. Sumregelen. Anta at en oppgave kan løses ved hjelp av kun en av to teknikker. Oppgaven kan løses på m måter ved hjelp av første teknikk og n måter ved hjelp av andre teknikk.

Detaljer

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger.

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger. Plenumsregning 10 Diverse ukeoppgaver Roger Antonsen - 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs følgende rekurrenslikning (c) t(n) 6t(n 1) + 9t(n 2) = 0, t(1) = 3, t(2)

Detaljer

Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15

Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 http://www.idi.ntnu.no/~algdat algdat@idi.ntnu.no Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 b c g a f d e h The pitch drop experiment. Foreløpig kjørt fra 1927 til nå. Åtte dråper har

Detaljer

Oppgaveløsninger til undervisningsfri uke 8

Oppgaveløsninger til undervisningsfri uke 8 1 HG Februar 2013 Oppgaveløsninger til undervisningsfri uke 8 Oppgave 3.17 Definer to begivenheter Oppgitt A = løgntesten sier at Per lyver B = Per lyver faktisk PAB ( ) = 0.85 PA ( B) = 0.70 PB ( ) =

Detaljer

QED 5-10, Bind 1 TRYKKFEIL

QED 5-10, Bind 1 TRYKKFEIL QED 5-10, Bind 1 TRYKKFEIL S 34: Linja rett over Eksempel 7: Skal være = 30, = 40, = 50 Tallet 34 i Eksempel 7 skal være δ S 37: Andre linje i 124: Det skal være «kile og hakk», dvs at symbolet som står

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

Backtracking som løsningsmetode

Backtracking som løsningsmetode Backtracking Backtracking som løsningsmetode Backtracking brukes til å løse problemer der løsningene kan beskrives som en sekvens med steg eller valg Kan enten finne én løsning eller alle løsninger Bygger

Detaljer

Først litt repetisjon

Først litt repetisjon Først litt repetisjon En relasjon er en mengde av verdipar, der første koordinaten a er fra mengden A og andrekoordinaten b er fra mengden B. Verdiparet beskriver en forbindelse (en relasjon) fra a til

Detaljer

S1-eksamen høsten 2017

S1-eksamen høsten 2017 S1-eksamen høsten 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Løs likningene a) x x 80, a 1, b, c 8 b b 4ac 4 1 ( 8) 4 6 1

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. 1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

LØSNINGSFORSLAG EKSAMEN V06, MA0301

LØSNINGSFORSLAG EKSAMEN V06, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket

Detaljer