B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning."

Transkript

1 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed er større enn opptredende skjærkraft. Horisontalfugen lages derfor vanligvis på enkleste måte som glatt fuge, og med minst mulig tverrarmering. Den aktuelle formelen for skjæroverføringen i horisontalfugen er: V Rdi = 0,03 f ctd i + 0,5 f yd s + 0,5 N Ed 0,5 ν f cd [Tabell 16.5, svært glatt, urisset] Vær spesielt oppmerksom på at i kan være svært liten i knutepunktene se figur For seismiske laster anbefales det å skille armering for skjær og moment. Nødvendig strekk/trykkarmering plasseres i kantene (flensene), og nødvendig skjærarmering fordeles i området mellom (steget) se figur For ordinære horisontale laster kan man delvis utnytte den armeringen som allerede er valgt med hensyn til dimensjonering for moment og aksiallast, det vil si overdimensjonert strekkarmering og ikke utnyttet trykkarmering (vind blåser begge retninger). Vanligvis er det så stor avstand mellom strekk og trykkarmering at det er ønskelig med en viss minimumsarmering langs fuger (punkt 8.4) og en maksimum senteravstand mellom tverrstengene, som anvendes som skjærarmering. Dersom skjærkraften er stor og aksiallasten er liten, kan det være aktuelt å bruke stålplater til skjæroverføring se skjæroverføring i vertikale fuger. Det henvises til beregningseksemplene i ind, punktene 13.2, 13.3 og Horisontalfuger rmering for strekk og trykk kjærarmering Figur Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning Kraftoverføring i vertikalfuger Prinsippene er grundig gjennomgått i punkt Det normale er å beregne snittkreftene i et horisontalsnitt for hver etasje. Eventuelle horisontale fuger legges nesten alltid ved etasjeskillet, slik at disse snittkreftene er enkle å finne. kivene deles ofte opp med vertikale fuger, og spørsmålet blir som regel om disse skal utføres med eller uten skjæroverføring. Ytre laster på hele veggen Ytre laster fordelt på del-veggene I figur er det vist en skive uten skjæroverføring i vertikalfugene. Fordelingen av ytre last skjer i henhold til stivhetstallene, som vist i punkt Hver skive, her tre stykker, påkjennes av sin del av Figur Veggskive uten skjæroverføring i vertikalfuger.

2 KIVEYTEM ytre horisontal- og vertikallast. For en enkelt skive går man frem på samme måte som vist for hele skiver i figurene og Virkningen av å dele veggen som vist vil normalt være å forsterke bjelkevirkningen, det vil si redusere effekten av aksiallasten. I figur er vist en rektangulær skive med skjæroverføring i vertikalfugene. Man ønsker å finne kreftene som virker på skive, og. o σ co ksialspenninger u σcu kjærspenninger Ytre laster Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft. Fordelingen av den horisontale skjærkraften langs den horisontale fugen (horisontal skjærspenning) til elementene, og er derimot vanskeligere å finne fordi aksialkraftens variasjon påvirker fordelingen. Den sikreste metoden er å finne de vertikale skjærkreftene først, fordi fordelingen av disse som oftest kan regnes rettlinjet fra etasje til etasje. Når de vertikale skjærspenningene i et punkt er kjent, kan man benytte seg av at de horisontale skjærspenningene i samme punkt er like store. v dette følger at beregningen av skjærkreftene i et snitt alltid må følge sammen med beregningen av aksialkraft og moment med samme dimensjoneringsmodell og samme lastkombinasjon. Elementet skal være i statisk likevekt! Figur Rektangulær skive med skjæroverføring i vertikalfugene, stadium 2. Først bestemmes snittkreftene i horisontalfugen over og under skive, og som for hel skive. Deretter beregnes strekk- og trykkspenninger i de samme fugene som anvist i tilknytning til figurene eller 12.83, fremdeles som for en hel skive. iden vertikalfugene skal overføre skjærkrefter, skal skivene, og fungere som hel skive, og man finner de vertikale skjærkreftene nøyaktig som anvist i tilknytning til figurene eller I figur er dette vist dersom skiven er i stadium 2.

3 12 KIVEYTEM 143 I figur er vist en I-formet skive hvor strekkarmeringen er plassert i flensene. Dersom skiven skal fungere som planlagt, må det overføres vertikale skjærkrefter i fugen mellom flens og steg. Metoden for å finne disse kreftene er nøyaktig som for skiven i figur Vertikallaster i alle etasjer Figur Veggskive med I-tverrsnitt og skjæroverføring i vertikalfugene stadium 2. Ytre laster o σ co ksialspenninger u σ cu kjærspenninger

4 KIVEYTEM ammensatt skive med trykk over hele horisontalfugen (stadium 1). Hvordan finne de vertikale skjærkreftene? Man beregner først alle snittkreftene M, N og V langs elementets øverste kant, og finner deretter strekk- og trykkspenninger ifølge figur Deretter beregnes M, N og V og derav strekk- og trykkspenninger langs elementets nederste kant. Den vertikale skjærkraften V v i et valgt snitt finnes nå som vist på figur h N o M o V ho Figur kjærkrefter i stadium 1. l G = elementvekt Laster, påkjenninger V hu M u σo1 No σ o N u σo2 g a V v = N u N o g a ksialspenninger σ u1 N u a σu σ u2 maks. V v kjærspenninger nitt - maks. I stadium 1 får man i snitt : N o = 0,5 (σ o1 + σ o ) a t N u = 0,5 (σ u1 + σ u ) a t Vertikal skjærkraft i snitt = V v = N u N o g a g a = elementvekt over lengden a Vertikal skjærspenning i snitt = = V v / (l t)

5 12 KIVEYTEM 145 ammensatt skive med strekk og trykk over hele horisontalfugen (stadium 2). Hvordan finne de vertikale skjærkreftene? Man beregner først alle snittkreftene M, N og V langs elementets øverste kant, og finner deretter strekk- og trykkspenninger ifølge figur Deretter beregnes M, N og V og derav strekk- og trykkspenninger langs elementets nederste kant. Den vertikale skjærkraften V v i et valgt snitt finnes nå som vist på figurene h N o M o V ho l G = elementvekt Laster, påkjenninger Figur kjærkrefter i stadium 2. V hu N u M u o x o σ co N co g a V v = u o + g a1 ksialspenninger V v = u o + g a2 N cu + N co N cu σ cu u x u a 2 a 1 x o V v kjærkrefter nitt - I stadium 2 får man: Når snittet er utenfor trykksonen ( ): Vertikal skjærkraft i snitt = V v = u o + g a1 Når snittet kommer innenfor trykksonen ( ): Vertikal skjærkraft i snitt = V v = u o + g a2 N cu + N co Vertikal skjærspenning i snittene = = V v / (l t) x u

6 146 En-etasjes skive som deles i to (stadium 2). Hvordan finne vertikal skjærkraft i delingsfugen? eregningen viser at horisontalfugen i underkant får strekkraften og trykkresultanten N c. Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt i figur V v = + g 1 H 12 KIVEYTEM V v g 1 g 2 Horisontale skjærspenninger I stadium 1 vil den horisontale skjærkraften fordele seg tilnærmet parabelformet, og maksimal skjærspenning kan med god nøyaktighet settes lik τ maks = 1,5 V h / (h t) = V h / (z t) i et homogent rektangeltverrsnitt. [Figur 12.91] Det er ikke behov for en nøyaktig beregning av de vertikale skjærspenningene. I stadium 2 vil maksimal skjærspenning være nesten konstant fra strekkresultanten til trykksonens begynnelse. Deretter reduseres skjærspenningen etter en parabelform ned til null ved trykkranden. [Figur 12.92] I praktisk beregning er det vanligvis nøyaktig nok å regne skjærkraften likt fordelt over lengden l eller h. N c Figur Deling av en-etasjes skive. z Dimensjonering for skjærkraft i vertikalfuge Under normale forhold er det bare tre typer utførelser som er aktuelle: Fortannet mørtelfuge med tverrarmering i dekkenivå. Fortannet mørtelfuge med tverrarmering jevnt fordelt. Åpen fuge med sveiseplater ktuell formel for fortannet mørtelfuge er: V Rdi = 0,5 f ctd i + 0,9 f yd s [Tabell 16.5] veiseplater kan lages i mange varianter og er alltid tilpasset prosjektet. tandard løsninger er vist i ind, punkt Virkning av utsparinger, hakk og sprang Dette er tilsvarende det som er behandlet tidligere, se punkt om utsparinger i vertikale skiver og punkt om dekkeskiver med figurene til Horisontale deformasjoner (utbøyninger) Generelt Det foreligger ikke noen konkrete krav til begrensning av utbøyningene i det norske regelverket, derfor er det blitt brukt litt tilfeldige krav som har variert fra l / 400 helt til l / 2000, hvor l er utkraget lengde. For de vertikale konstruksjonene spiller deformasjonsberegningene en betydelig rolle for bygg av stor høyde, og kan være dimensjonerende. Ved kontroll av utbøyningene på grunn av horisontale laster har man følgende viktige forhold: For å beregne fordelingen av horisontale krefter til vertikale skiver behøver man bare å kjenne de relative utbøyninger, for eksempel uttrykt ved skivenes relative stivheter. Korrekt dimensjonering av skivene for M, N og V i bruddgrensetilstanden ivaretar konstruksjonens sikkerhet, inklusive utbøyninger, det vil si 2. ordens effekter.

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1.

B12 SKIVESYSTEM. . Vertikalfugen ligger utenfor trykksonen. Likevektsbetraktningen blir den samme som for snitt A A i figur B = S + g 1. H V v g 1 g 2 En-etasjes skive som deles i to (stadium 2). Hvordan finne vertikal skjærkraft i delingsfugen? Beregningen viser at horisontalfugen i underkant får strekkraften S og trykkresultanten N c.

Detaljer

5.1.2 Dimensjonering av knutepunkter

5.1.2 Dimensjonering av knutepunkter 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) 500 0 500 1000 5 10 15 20 25 30 35 40 45 50 x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x

Detaljer

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense.

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. C13 SKIER 275 Tabell C 13.12. Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. Rd (kn/m) Fuge- B25, γ c = 1,8 B30, γ c = 1,8 B35, γ c = 1,8 bredde f cd = 11,8 MPa f cd = 14,2

Detaljer

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer.

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer. 12 KIEYTEM 125 Figur 12.53 viser plan av et stort dekke med tre felt (vindsug på gavl er ikke vist). Kreftene og spenningene som virker på elementene, og C er vist under planen av dekket. Trykkgurten er

Detaljer

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også

Detaljer

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4.

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4. 254 C13 SKIER I det følgende behandles typiske knutepunkter for skiver. All generell informasjon finnes i bind B. Beregning av minimumskrefter på forbindelser er spesielt viktig for skiver, og grunnlaget

Detaljer

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71 32 C2 BJELKER 2.1.3 Dimensjonering for skjærkraft For å sikre bestandigheten bør spenningen f yd i armeringen ved ut - sparinger begrenses i henhold til tabell C 6.5. Små utsparinger Når utsparingen Ø

Detaljer

7.1.4 Hylsefundament C7 SØYLER

7.1.4 Hylsefundament C7 SØYLER 148 C7 SØYLER Tabell C 7.5. Forankring av limte stenger uten forankringsfot. Forutsetninger: Kamstål B500NC: f yd = 500 / 1,15 = 435 MPa l bd = nødvendig forankringslengde for oppgitt strekkapasitet l

Detaljer

H5 DIMENSJONERINGSEKSEMPLER

H5 DIMENSJONERINGSEKSEMPLER H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det

Detaljer

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter.

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter. 57 600 50 Figur C.1. Skjæroverføring mellom ribbeplater. punktlaster og linjelaster som overføres til naboelementene avhenger av konstruksjonens stivhet i tverretningen. Dette må beregnes basert på påstøpens

Detaljer

9 Spesielle påkjenninger Gjennomgås ikke her. Normalt vil kontroll av brannmotstand og varmeisolasjonsevne

9 Spesielle påkjenninger Gjennomgås ikke her. Normalt vil kontroll av brannmotstand og varmeisolasjonsevne C13 SKIVER 293 V Rd,N = 0,5 N Ed = 0,5 77 = 38,5 kn > H Ed = 23,37 kn, det vil si at ak siallasten kan ta hele skjærkraften alene. Minste anbefalt tverrarmering: S min = 0,25 V Ed / 0,5 = 0,5 V Ed = 0,5

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering 180 I det følgende behandles typiske opplegg for bjelker. Dessuten gjennomgås dimensjonering av hylle for opplegg av dekker, mens dimensjonering av forbindelsen er vist i kapittel C11 for ribbeplater og

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

C14 FASADEFORBINDELSER 323

C14 FASADEFORBINDELSER 323 C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 207 9.1 TO-SKIPS INDUSTRIHALL Dette beregningseksemplet viser praktisk beregning av knutepunk t - ene i en to-skips industrihall, ved hjelp av tabellene

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll. 168 C7 SØYLER Figur C 7.42. Komplett fagverksmodell ved konsoller. a) Sentrisk last over konsoll b) Eksentrisk last over konsoll Typiske prefabrikkerte søyler vil vanligvis ikke være maksimalt utnyttet

Detaljer

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet C11 RIBBEPLATER 225 I det følgende behandles typiske opplegg for ribbeplater, samt noen typiske sveiseforbindelser. Beregning av ribbeplater som horisontalskiver er behandlet i kapittel C13. Generell beregning

Detaljer

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6. 248 C12 HULLDEKKER Det er som regel bare vridningsforbindelser som kan kreve så store strekk-krefter som N maks2, se figur C 12.9.a. Dersom forbindelsen skal overføre skjærkrefter mellom hulldekke og vegg

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

B18 TRYKKOVERFØRING I FORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER B18 TRYKKOVERFØRIG I FORBIDELSER 201 18.1 VALG AV MELLOMLEGG Bjelker : t = 6 10 mm (enkelt) Stål: t = 6 10 mm (enkelt) Plast: t = 4 mm (dobbelt) Brutto oppleggslengde (betongmål): av stål: l 150 mm Andre:

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

122 C6 DIMENSJONERING AV FORBINDELSER

122 C6 DIMENSJONERING AV FORBINDELSER 122 C6 DIMENSJONERING AV FORBINDELSER Tabell C 6.1. Senteravstand på festemidler som gir kapasitet 20 kn/m. Kamstål (bind B, tabell B 19.11.2) B500NC Ø (mm): 8 10 12 16 20 25 N Rd,s = f yd A s (kn): 22

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

Steni 2. b eff. Øvre flens Steg h H Nedre flens

Steni 2. b eff. Øvre flens Steg h H Nedre flens FiReCo AS Dimensjonerings-diagram for BEET vegg Lastberegninger basert på NBI tester. Jørn Lilleborge Testdokument 1998 FiReCo AS 714-N-1 Side: 2 av 17 Innhold 1. DIMENSJONERINGSDIAGRAM FOR BEET VEGG...

Detaljer

Dimensjonering MEMO 54c Armering av TSS 41

Dimensjonering MEMO 54c Armering av TSS 41 Side av 9 INNHOLD GUNNLEGGENDE FOUTSETNINGE OG ANTAGELSE... GENEELT... STANDADE... KVALITETE... 3 DIMENSJONE OG TVESNITTSVEDIE... 3 LASTE... 3 AMEINGSBEEGNING... 4 LIKEVEKT... 4 Side av 9 GUNNLEGGENDE

Detaljer

13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER C13 SKIVER

13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER C13 SKIVER 282 C13 SKIVER 13.3 EN-ETASjES INduSTRIHALL med RIbbEpLATER beregningseksempel med SKIVEfORbINdELSER 1 Generelt I dette eksemplet gjøres en praktisk gjennomføring av beregning med bruk av anbefalinger,

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET

B9 VERTIKALE AVSTIVNINGSSYSTEMER GEOMETRISKE AVVIK, KNEKKING, SLANKHET 9.2.5 Slankhet og slankhetsgrenser Den geometriske slankheten defineres som λ = l 0 / i = l 0 / (I /A), det vil si l 0 = λ (I /A) der i er treghetsradien for urisset betongtverrsnitt (lineært elastisk).

Detaljer

4.3. Statikk. Dimensjonerende kapasitet mot tverrlast og aksialkraft. 436 Gyproc Håndbok Gyproc Teknikk. Kapasiteten for Gyproc Duronomic

4.3. Statikk. Dimensjonerende kapasitet mot tverrlast og aksialkraft. 436 Gyproc Håndbok Gyproc Teknikk. Kapasiteten for Gyproc Duronomic Kapasiteten for Gyproc Duronomic Dimensjonerende kapasitet mot tverrlast og aksialkraft Forsterkningsstendere kan ta opp både tverrlaster og aksialkrefter. Dimensjoneringen er basert på partialkoeffisientmetoden.

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 Førsteamanuensis Jan. arseth 73 59 35 68 EKSMEN I EMNE TKT4116 MEKNIKK 1 Onsdag 23. mai 2007 Kl 09.00 13.00 Hjelpemidler (kode ): Irgens:

Detaljer

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste 328 14.4 FASADEOPPLEGG PÅ SØYLER OG DEKKER I figurene C 14.14 og C 14.15 er vist noen vanlige løsninger. Disse dimensjoneres som plant opplegg på grunnmur. Elementene settes vanligvis på innstøpte ankerplater

Detaljer

19.3.3 Strekkforankring av kamstål

19.3.3 Strekkforankring av kamstål 242 19.3.2.6 Armert betong Svært ofte vil senteravstander og kantavstander være så små at bruddkjeglene ikke gir nok utrivingskapasitet. Formlene her gir ingen addisjonseffekt av tilleggsarmering, så løsningen

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

Beregning etter Norsok N-004. Platekonstruksjoner etter NORSOK N-004 / DNV-RP-C201

Beregning etter Norsok N-004. Platekonstruksjoner etter NORSOK N-004 / DNV-RP-C201 Platekonstruksjoner etter ORSOK -004 / DV-RP-C201 orsk forening for stålkonstruksjoner Ingeniørenes Hus Oslo 19. mars 2009 Gunnar Solland, Det orske Veritas Beregning etter orsok -004 orsok -004 henviser

Detaljer

Strekkforankring av stenger med fot

Strekkforankring av stenger med fot 236 B19 FORAKRIG AV STÅL 19.3.2 Strekkforankring av stenger med fot 19.3.2.1 Generelt kjeglebrudd Anvisningene her baserer seg delvis på J. Hisdal, Masteroppgave \10\. Masteroppgaven analyserer hovedsakelig

Detaljer

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109 A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.

Detaljer

Focus 2D Konstruksjon

Focus 2D Konstruksjon Prosjekt: betongtal Beregning utført 01.04.2009 14:49:48 Focus 2D Konstruksjon BEREGNING AV PLANE KONSTRUKSJONER NTNU Student 3. Klasse 2008 14:49:48-01.04.2009 Side:1 1. KONSTRUKSJONSMODELL OG LASTER

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

MEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave

MEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave EK 4530 Stabilitet og knekning av konstruksjoner Høst 2006 Prosjektoppgave Innleveringsfrist: 30.11.2006 Innhold 1. Innledning... 3 2. Symboler... 3 3. Oppgavene... 3 4. Rapportering... 5 5. Forutsetninger

Detaljer

MEMO 812. Beregning av armering DTF/DTS150

MEMO 812. Beregning av armering DTF/DTS150 Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3

Detaljer

Spenninger i bjelker

Spenninger i bjelker N Teknologisk avd. R 1.0.1 Side 1 av 6 Rev Spenninger i bjelker rgens kap 18.1. ibbeler Sec. 1.1-1. En bjelke er et avlangt stkke materiale som utsettes for bøebelastning. Ren bøning bjelke b N 0 0 0 0

Detaljer

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19.

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19. B19 FORAKRIG AV STÅL 231 uttrykk i en lav verdi på sikkerhetsfaktoren. Er SF oppgitt til 3 eller mindre (for betongbrudd), kan det tyde på at det er denne modellen som er brukt. Det innebærer at: x d =

Detaljer

Hva er en sammensatt konstruksjon?

Hva er en sammensatt konstruksjon? Kapittel 3 Hva er en sammensatt konstruksjon? 3.1 Grunnlag og prinsipp Utgangspunktet for å fremstille sammensatte konstruksjoner er at vi ønsker en konstruksjon som kan spenne fra A til B, og som samtidig

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 74a Dato: 09.03.0 Sign.: sss BWC 80-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/3 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

Dimensjonering MEMO 65 Armering av TSS 20 FA

Dimensjonering MEMO 65 Armering av TSS 20 FA Dato: 10.04.2015 sss Side 1 av 9 INNHOLD DEL 1 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 3 DIMENSJONER OG TVERRSNITTSVERDIER... 3 Rør: CFRHS 40x40x4, L=215mm.

Detaljer

B19 FORANKRING AV STÅL 297

B19 FORANKRING AV STÅL 297 B19 FORANKRING AV STÅL 297 19.11 FORANKRING AV ARMERING I denne sammenhengen betyr «armering» kamstål B500NC som støpes inn i elementer eller støpes inn i fuger på byggeplass. Sveising eller liming av

Detaljer

Ekstra formler som ikke finnes i Haugan

Ekstra formler som ikke finnes i Haugan Oppgavetekstene kan inneholde unødvendige opplysninger. Ekstra formler som ikke finnes i Haugan σ n = B n = sikkerhetsfaktor, σ B = bruddspenning (fasthet), σ till = tillatt spenning σ till Kombinert normalkraft

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis Arne Aalberg 73 59 46 24 Førsteamanuensis Aase Gavina Reyes 73 59 45 24

Detaljer

Prinsipper bak seismisk dimensjonering av betongkonstruksjoner

Prinsipper bak seismisk dimensjonering av betongkonstruksjoner Prinsipper bak seismisk dimensjonering av betongkonstruksjoner Max Milan Loo Innhold Generelle dimensjoneringsprinsipper Duktile/jordskjelvsikre betongkonstruksjoner Betongoppførsel under jordskjelvspåvirkning

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 5 Faglig kontakt under eksamen: Bokmål Kjell Holthe, 951 12 477 / 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2 Fredag 3. desember

Detaljer

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft - eksempler betongbjelker INNHOLDSFORTEGNELSE 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft 1.1. Dimensjonering for bøyning i bruddgrensetilstand 1.2. Dimensjonering mot skjærbrudd 2.

Detaljer

Hovedpunkter fra pensum Versjon 12/1-11

Hovedpunkter fra pensum Versjon 12/1-11 Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er

Detaljer

BEREGNING AV SVEISINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISINNFESTNINGER OG BALKONGARMERING MEMO 722b Dato: 09.03.2011 Sign.: sss BWC 40-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG BEREGNING AV SVEISINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/10 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

Eksempel-samvirke. Spenningsberegning av bunnkonstruksjon i tankskip

Eksempel-samvirke. Spenningsberegning av bunnkonstruksjon i tankskip Eksempel-samvirke Spenningsberegning av bunnkonstruksjon i tankskip Tankskipkonstruksjon Beregn jevnføringsspenninger ved A og B for plate og stiver (A) Spant (stiver) A Toppflens 00 y mm 4 mm 0,7 m B

Detaljer

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering INNHOLD BWC 55-740 Dato: 15.05.2012 Side 1 av 19 FORUTSETNINGER...2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERRØR BRUKT I KOMBINASJON MED TSS... 2 TILLATT BRUDDLAST

Detaljer

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING MEMO 711 Dato: 11.0.015 Sign.: sss SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING Siste rev.: Dok. nr.: 18.05.016 K5-10/711 Sign.: Kontr.: sss ps SØYLER I FRONT INNFESTING

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING MEMO 732 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG, BEREGNING AV SVEISEINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/32 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning

3.2 DImENSjONERING Ribbeplater Hulldekker 3.3 DEKKER med AKSIALTRYKK Knekkingsberegning 66 C3 DEKKER 3.2 DImENSjONERING Den generelle effekten av spennarmering i ribbeplater, forskalings - plater og hulldekker er beskrevet i innledningen til kapittel C3. 3.2.1 Ribbeplater Dimensjonering for

Detaljer

ARMERING AV TSS 20 FA

ARMERING AV TSS 20 FA MEMO 65 Dato: 04.10.2011 Sign.: sss TSS 20 FA Siste rev.: 20.05.2016 Sign.: sss ARMERING Dok. nr.: K3-10/60 Kontr.: ps DIMENSJONERING ARMERING AV TSS 20 FA INNHOLD DEL 1 GRUNNLEGGENDE FORUTSETNINGER OG

Detaljer

DIMENSJONER OG TVERRSNITTSVERDIER

DIMENSJONER OG TVERRSNITTSVERDIER MEMO 811 Dato: 16.08.2012 Sign.: sss TEKNISKE SPESIFIKASJONER Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/11 Kontr.: ps DIMENSJONERING TEKNISKE SPESIFIKASJONER DTF150/DTS150 DIMENSJONER

Detaljer

Dimensjonering Memo 37. Standard armering av bjelke ender BCC

Dimensjonering Memo 37. Standard armering av bjelke ender BCC Side 1 av 7 Standard armering for BCC 250 (NB! Dette er den totale armeringen i bjelke enden) For oversiktens skyld er bjelkens hovedarmering ikke tegnet inn på opprisset. Mellom de angitte bøyler i hver

Detaljer

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE

EKSAMEN I EMNE TKT 4100 FASTHETSLÆRE NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 10.... Faglig kontakt under eksamen: Kjell Magne Mathisen, 73 59 46 74 Sensuren faller senest 10. januar (så

Detaljer

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg:

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg: -~ ~ høgskolen i oslo IEmne I Gruppe(r): I Eksamensoppgav en består av: Dimensjonering 2BA 288! Antall sider (inkl. 'forsiden): 4 I I! Emne~ode: LO 222 B I Faglig veileder:! F E Nilsen / H P Hoel j Dato:

Detaljer

Seismisk dimensjonering av grunne fundamenter

Seismisk dimensjonering av grunne fundamenter Seismisk dimensjonering av grunne fundamenter Farzin Shahrokhi EC7 - Fundamentsystemer EC7 1 krever følgende i bruddgrensetilstand (ULS) for grunne fundamenter: Totalstabilitet Sikkerhet mor bæreevne brudd

Detaljer

RIB Rev Fork Anmerkning Navn. Sweco Norge

RIB Rev Fork Anmerkning Navn. Sweco Norge NOTAT om statiske forhold i høyblokk NHH rehabilitering 1963-byggene, skisseprosjekt Prosjektnr 24165001 Notat nr.: Dato RIB 01 22.11.2016 Rev. 23.11.2016 Firma Fork Anmerkning Navn Til: Prosjektleder

Detaljer

Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside.

Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside. 6.4.3 Eksempel 3 Spenningsanalyse av dobbeltbunn i tankskip (eksamen 07) Dette er en relativt stor oppgave, men en god oppsummering av hele kapittel 6. Tegningene finnes i større utgave på fagets hjemmeside.

Detaljer

Eksempel 3.3, Limtredrager, taksperrer og opplegg

Eksempel 3.3, Limtredrager, taksperrer og opplegg Eksempel 3.3, Limtredrager, taksperrer og opplegg I huset nedenfor skal du regne ut egenlast og snølast på Røa i Oslo 105 meter over havet. Regn med at takets helning er 35 o. Regn ut både B1 og B2. Huset

Detaljer

Schöck Isokorb type D 70

Schöck Isokorb type D 70 Schöck Isokorb type Schöck Isokorb type 70 Innhold Side Eksempler på elementoppsett og tverrsnitt/produktbeskrivelse 80 81 Planvisninger 82 Kapasitetstabeller 83 88 Beregningseksempel 89 Ytterligere armering

Detaljer

Dimensjonering av avstivende dekkeskiver

Dimensjonering av avstivende dekkeskiver Dimensjonering av avstivende dekkeskiver Vidar Danielsen Aunan Bygg- og miljøteknikk Innlevert: Juni 2012 Hovedveileder: Leidulv Vinje, KT Norges teknisk-naturvitenskapelige universitet Institutt for konstruksjonsteknikk

Detaljer

D16 FUGER. Figur D 16.3.a. Ventilering av horisontal- eller vertikalfuge. Figur D 16.3.b. Ventilering mot underliggende konstruksjon.

D16 FUGER. Figur D 16.3.a. Ventilering av horisontal- eller vertikalfuge. Figur D 16.3.b. Ventilering mot underliggende konstruksjon. Lydgjennomgang En funksjonsriktig fuge uten luftlekkasjer vil i alminnelighet være tilstrekkelig lydisolerende Det vises til bind E for mer utfyllende opplysninger 163 FUGETYPER I betongelementbygg forekommer

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 NORGES TEKNISK- NTURVITENSKPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 EKSMEN I EMNE TKT4116 MEKNIKK 1 Mandag 2. juni 2008

Detaljer

Konstruksjoner Side: 1 av 10

Konstruksjoner Side: 1 av 10 Konstruksjoner Side: 1 av 10 1 HENSIKT OG OMFANG...2 2 LASTBILDE...3 3 GENERELT OM STÅLMASTER...4 3.1.1 B-mast...4 3.1.2 H-mast...4 4 KREFTER VED FOTEN AV MAST (TOPP AV FUNDAMENT)...5 4.1 Kl-fund program...5

Detaljer

Oppgavehefte i MEK2500 - Faststoffmekanikk

Oppgavehefte i MEK2500 - Faststoffmekanikk Oppgavehefte i MEK2500 - Faststoffmekanikk av Henrik Mathias Eiding og Harald Osnes ugust 20 2 Oppgave 1 En kraft har - og y-komponentene F og F y. vstanden fra et gitt punkt til et punkt på kraftens angrepslinje

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 704 Dato: 8.0.0 Sign.: sss BWC 55-740 / BWC 55 LIGHT SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.:.09.06 K5-4/5 Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD GRUNNLEGGENDE

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

Stavelement med tverrlast q og konstant aksialkraft N. Kombinert gir dette diff.ligningen for stavknekking 2EI 2EI

Stavelement med tverrlast q og konstant aksialkraft N. Kombinert gir dette diff.ligningen for stavknekking 2EI 2EI DIMENSJONERING AV PLATER 1. ELASTISK STAVKNEKKING Stavelement med tverrlast q og konstant aksialkraft N Likevekt dv q x dx 0 vertikallikevekt ch e j e V dx dm N d 0 momentlikevekt Kombinert gir dette diff.ligningen

Detaljer

Dato: sss TSS 102. Siste rev.: sss ARMERING. ps DIMENSJONERING. Dok. nr.: ARMERING AV TSS 102

Dato: sss TSS 102. Siste rev.: sss ARMERING. ps DIMENSJONERING. Dok. nr.: ARMERING AV TSS 102 MEMO 60 Dato: 04.10.011 Sign.: sss TSS 10 Siste rev.: 0.05.016 Sign.: sss ARMERING Dok. nr.: K3-10/60 Kontr.: ps DIMENSJONERING ARMERING AV TSS 10 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER...

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 744 Dato: 1.01.016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.: 3.05.016 K5-10-744 Sign.: Kontr.: sss nb EKSEMPEL INNHOLD EKSEMPEL... 1 GRUNNLEGGENDE

Detaljer

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50 240 Dato: 07.06.12 sss Side 1 av 6 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 STÅL, BETONG OG

Detaljer

Masteroppgave ved UiS. Analyse & Design. Ole Kristian Rødde Pedersen Tillegg

Masteroppgave ved UiS. Analyse & Design. Ole Kristian Rødde Pedersen Tillegg Analyse & Design Masteroppgave ved UiS Ole Kristian Rødde Pedersen 2014 Tillegg Tillegg ETABS resultater for SYSCO Innholdsfortegnelse TILLEGG A... 1 ETABS resultater for SYSCO... 1 1 Figurer og tabeller...

Detaljer

BETONGELEMENTBOKEN BIND I

BETONGELEMENTBOKEN BIND I BETONGELEMENTBOKEN BIND I A V S T I V I N G I M O N T A S J E F A S E N BETONGELEMENTBOKEN BIND I A V S T I V I N G I M O N T A S J E F A S E N FORORD Bruken av betongelementer i industriell bygging har

Detaljer

Dato: Siste rev.: Dok. nr.: ARMERING AV TSS 41

Dato: Siste rev.: Dok. nr.: ARMERING AV TSS 41 MEMO 54c Dato: 26.04.2011 Sign.: sss ARMERING AV TSS 41 Siste rev.: 19.05.2016 Sign.: sss DIMENSJONERING Dok. nr.: K3-10/54c Kontr.: ps ARMERING AV TSS 41 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER...

Detaljer

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes.

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes. 133 Konklusjon Man ser at det er en rekke variable faktorer som inngår. Dette kompliserer beregningene og gjør dem noe usikre. Etter en samlet vurdering av regler, praksis og erfaring anbefales det å regne

Detaljer

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

6. og 7. januar PRAKTISK BETONGDIMENSJONERING 6. og 7. januar PRAKTISK BETONGDIMENSJONERING (9) Fundamentering- pelehoder www.betong.net Øystein Løset, Torgeir Steen, Dr. Techn Olav Olsen 2 KORT OM MEG SELV > 1974 NTH Bygg, betong og statikk > ->1988

Detaljer

Kapasitet av rørknutepunkt

Kapasitet av rørknutepunkt Kapasitet av rørknutepunkt Knutepunkt i fagverksplattformer Knutepunktstyper Knutepunktstyper Knutepunktenes oppgave q Overføre aksialkrefter fra et avstivningsrør til et annet. q Dette utføres ved et

Detaljer

Oppgave for Haram Videregående Skole

Oppgave for Haram Videregående Skole Oppgave for Haram Videregående Skole I denne oppgaven er det gitt noen problemstillinger knyttet til et skip benyttet til ankerhåndtering og noen av verktøyene, hekkrull og tauepinne, som benyttes om bord

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,

Detaljer

Klassifisering, modellering og beregning av knutepunkter

Klassifisering, modellering og beregning av knutepunkter Side 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter Del 1 - Konstruksjonsanalyse og klassifisering av knutepunkter

Detaljer

MEK likevektslære (statikk)

MEK likevektslære (statikk) MEK2500 - likevektslære (statikk) Tormod Landet Høst 2015 Mange konstruksjoner kan analyseres med tre enkle prinsipper 1. Saint-Venants prinsipp 2. Balanse i krefter 3. Balanse i momenter Denne forelesningen

Detaljer